Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Primary dysmenorrhea (PDM) is a prevalent menstrual disorder among women, often underreported and undertreated. Wen-Jing-Zhi-Tong Decoction (WJZTD), a patented Traditional Chinese Medicine (TCM) herbal decoction, has shown efficacy in treating PDM. However, the underlying therapeutic mechanism of WJZTD in PDM treatment remains to be elucidated.

Objective

This study aimed to employ integrative pharmacology and experimental validation to investigate the potential therapeutic mechanisms of WJZTD in treating PDM.

Methods

The bioactive compounds of WJZTD were identified by UPLC-Q-Exactive-Orbitrap MS/MS and GC-MS. Putative targets of WJZTD were obtained from Swiss Target Prediction, STITCH, and BATMAN-TCM databases. Known targets of PDM were retrieved from Gene Cards and Drug Bank databases. Protein-to-protein interactions were constructed to screen key targets using the STRING database. Subsequently, GO and KEGG pathway enrichment analyses were performed based on Metascape. Finally, a PDM rat model was established to validate the potential therapeutic mechanisms of WJZTD using Western Blot, PCR, and ELISA.

Results

390 bioactive compounds in WJZTD were identified through UPLC-Q-Exactive-Orbitrap MS/MS and GC-MS. Network pharmacology revealed 7 key compounds with 20 targets and pathways that are crucial for WJZTD in treating PDM. Behavioral tests confirmed that WJZTD can effectively ameliorate menstrual pain in PDM. WJZTD also inhibited prostaglandin production, thereby relieving uterine smooth muscle contraction. The downregulation of the BDNF/TrkB/ERK/CREB signaling pathway, identified as the key target and pathway through network pharmacology, may be crucial to the anti-nociceptive and anti-inflammatory effects of WJZTD in treating PDM.

Conclusion

This study provides the first comprehensive analysis of the key compounds, targets, and pathways of WJZTD, laying a solid foundation for future pharmacological studies on PDM. The anti-nociceptive and anti-inflammatory effect may be attributed to the downregulation of the BDNF/TrkB/ERK/CREB signaling pathway.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073308798240425115006
2024-04-30
2025-09-10
Loading full text...

Full text loading...

References

  1. Ferries-RoweE. CoreyE. ArcherJ.S. Primary Dysmenorrhea.Obstet. Gynecol.202013651047105810.1097/AOG.0000000000004096 33030880
    [Google Scholar]
  2. IacovidesS. AvidonI. BakerF.C. What we know about primary dysmenorrhea today: A critical review.Hum. Reprod. Update201521676277810.1093/humupd/dmv039 26346058
    [Google Scholar]
  3. RogersS.K. AhamadeenN. ChenC.X. MosherC.E. StewartJ.C. RandK.L. Dysmenorrhea and psychological distress: A meta-analysis.Arch. Women Ment. Health202326671973510.1007/s00737‑023‑01365‑6 37632569
    [Google Scholar]
  4. KhoK.A. ShieldsJ.K. Diagnosis and management of primary dysmenorrhea.JAMA2020323326826910.1001/jama.2019.16921 31855238
    [Google Scholar]
  5. ZhouH. TanJ. LiuB. HuM. ZhouW. XiaQ. HongY. LiuY. LiuZ. WangQ. Traditional chinese medicine composition for treating luteal phase deficiency dysmenorrhea with its preparation method and application.Patent CN111481650A2020
  6. YangX. ZhouH. Clinical Experience of Zhou Huifang in Treating Primary Dysmenorrhea Based on Stages of Menstrual Cycle.Chin. J. Lib. Inform. Sci. Tradit. Chin. Med.202347620821110.1016/j.jtcms.2023.02.003
    [Google Scholar]
  7. WangF. ZhangS. ZhangJ. YuanF. Systematic review of ethnomedicine, phytochemistry, and pharmacology of Cyperi Rhizoma.Front. Pharmacol.20221396590210.3389/fphar.2022.965902 36278199
    [Google Scholar]
  8. KimH.R. LeeS.H. NohE.M. ChoiB. SeoH.Y. JangH. KimS.Y. ParkM.H. Therapeutic effect of enzymatically hydrolyzed cervi cornu collagen NP-2007 and potential for application in osteoarthritis treatment.Int. J. Mol. Sci.202324141166710.3390/ijms241411667 37511425
    [Google Scholar]
  9. WeiJ. WangX. DongY. ZhongX. RenX. SongR. MaJ. YuA. FanQ. YaoJ. ShanD. LvF. ZhengY. DengQ. LiX. HeY. FanS. ZhaoC. WangX. YuanR. SheG. Curcumae Rhizoma - combined with Sparganii Rhizoma in the treatment of liver cancer: Chemical analysis using UPLC-LTQ-Orbitrap MSn, network analysis, and experimental assessment.Front. Pharmacol.202213102768710.3389/fphar.2022.1027687 36561345
    [Google Scholar]
  10. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  11. SzklarczykD. SantosA. von MeringC. JensenL.J. BorkP. KuhnM. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data.Nucleic Acids Res.201644D1D380D38410.1093/nar/gkv1277 26590256
    [Google Scholar]
  12. KongX. LiuC. ZhangZ. ChengM. MeiZ. LiX. LiuP. DiaoL. MaY. JiangP. KongX. NieS. GuoY. WangZ. ZhangX. WangY. TangL. GuoS. LiuZ. LiD. BATMAN-TCM 2.0: an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins.Nucleic Acids Res.202452D1D1110D112010.1093/nar/gkad926 37904598
    [Google Scholar]
  13. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT.I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.Curr. Protoc. Bioinformatics201654130.1-, 33.10.1002/cpbi.5 27322403
    [Google Scholar]
  14. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  15. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  16. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  17. TuoL. TangS. LiS. GuS. XieZ. Murine models and research progress on dysmenorrhea.Reprod. Sci.20233082362237210.1007/s43032‑023‑01220‑0 37010703
    [Google Scholar]
  18. YaoH. XiangL. HuangY. TanJ. ShenY. LiF. GengF. LiuW. LiX. GaoY. Guizhi Shaoyao Zhimu granules attenuate bone destruction in mice with collagen-induced arthritis by promoting mitophagy of osteoclast precursors to inhibit osteoclastogenesis.Phytomedicine202311815496710.1016/j.phymed.2023.154967 37490802
    [Google Scholar]
  19. YangX. TianY. LiuJ. KouY. XieY. WangS. ZhaoY. Peony Pollen Protects against Primary Dysmenorrhea in Mice by Inhibiting Inflammatory Response and Regulating the COX2/PGE2 Pathway.Int. J. Mol. Sci.202324241724510.3390/ijms242417245 38139073
    [Google Scholar]
  20. WangC. LiuL. BaiX. Knowledge mapping of primary dysmenorrhea: Hotspots, knowledge structure, and theme trends.J. Pain Res.2023163613362410.2147/JPR.S435236 37915863
    [Google Scholar]
  21. LiuZ. LiZ. MengQ. GuZ. CuiJ. Bibliometric analysis of global research landscape and hotspots on dysmenorrhea: Where are we now?J. Pain Res.20231626928510.2147/JPR.S396083 36744113
    [Google Scholar]
  22. EarlR.A. GrivellR.M. Nifedipine for primary dysmenorrhoea.Cochrane Libr.202120221CD01291210.1002/14651858.CD012912.pub2 34921554
    [Google Scholar]
  23. LiR. LiB. KreherD.A. BenjaminA.R. GubbelsA. SmithS.M. Association between dysmenorrhea and chronic pain: a systematic review and meta-analysis of population-based studies.Am. J. Obstet. Gynecol.2020223335037110.1016/j.ajog.2020.03.002 32151612
    [Google Scholar]
  24. PengY. ZhengX. FanZ. ZhouH. ZhuX. WangG. LiuZ. Paeonol alleviates primary dysmenorrhea in mice via activating CB2R in the uterus.Phytomedicine20206815315110.1016/j.phymed.2019.153151 32058234
    [Google Scholar]
  25. AdkiK.M. KulkarniY.A. Neuroprotective effect of paeonol in streptozotocin-induced diabetes in rats.Life Sci.202127111920210.1016/j.lfs.2021.119202 33577853
    [Google Scholar]
  26. LiuJ. YangD. PiaoC. WangX. SunX. LiY. ZhangS. WuX. UPLC-Q-TOF/MS Based plasma metabolomics for identification of paeonol’s metabolic target in endometriosis.Molecules202328265310.3390/molecules28020653 36677710
    [Google Scholar]
  27. SavianoA. De VitaS. ChiniM.G. MariglianoN. LauroG. CasilloG.M. RaucciF. IorizziM. HofstetterR.K. FischerK. KoeberleA. WerzO. MaioneF. BifulcoG. In silico, in vitro, and in vivo analysis of tanshinone IIA and cryptotanshinone from Salvia miltiorrhiza as modulators of cyclooxygenase-2/mPGES-1/endothelial prostaglandin EP3 pathway.Biomolecules20221219910.3390/biom12010099 35053247
    [Google Scholar]
  28. ChangS. LiX. ZhengY. ShiH. ZhangD. JingB. ChenZ. QianG. ZhaoG. Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF‐ĸB signaling pathway.Phytother. Res.20223641678169110.1002/ptr.7396 35234314
    [Google Scholar]
  29. ZhangD. JingB. ChenZ. LiX. ShiH. ZhengY. ChangS. ZhaoG. Ferulic acid alleviates sciatica by inhibiting peripheral sensitization through the RhoA/p38MAPK signalling pathway.Phytomedicine202210615442010.1016/j.phymed.2022.154420 36115115
    [Google Scholar]
  30. MallikS.B. MudgalJ. KinraM. HallS. GrantG.D. Anoopkumar-DukieS. NampoothiriM. ZhangY. AroraD. Involvement of indoleamine 2, 3-dioxygenase (IDO) and brain-derived neurotrophic factor (BDNF) in the neuroprotective mechanisms of ferulic acid against depressive-like behaviour.Metab. Brain Dis.20233872243225410.1007/s11011‑023‑01267‑7 37490224
    [Google Scholar]
  31. XinM. WuH. DuY. LiuS. ZhaoF. MouX. Synthesis and biological evaluation of resveratrol amide derivatives as selective COX-2 inhibitors.Chem. Biol. Interact.202338011052210.1016/j.cbi.2023.110522 37179037
    [Google Scholar]
  32. FuX. SunX. ZhangC. LvN. GuoH. XingC. LvJ. WuJ. ZhuX. LiuM. SuL. Genkwanin prevents lipopolysaccharide-induced inflammatory bone destruction and ovariectomy-induced bone loss.Front. Nutr.2022992103710.3389/fnut.2022.921037 35811983
    [Google Scholar]
  33. DragomanovaS. AndonovaV. VolchoK. SalakhutdinovN. KalfinR. TanchevaL. Therapeutic potential of myrtenal and its derivatives—a review.Life (Basel)20231310208610.3390/life13102086 37895468
    [Google Scholar]
  34. ChakrabortyJ. ChakrabortyS. ChakrabortyS. NarayanM.N. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders.Biochim. Biophys. Acta. Gene Regul. Mech.20231866419498810.1016/j.bbagrm.2023.194988 37739217
    [Google Scholar]
  35. BuisseretB. AlhouayekM. Guillemot-LegrisO. MuccioliG.G. Endocannabinoid and Prostanoid Crosstalk in Pain.Trends Mol. Med.2019251088289610.1016/j.molmed.2019.04.009 31160168
    [Google Scholar]
  36. HuangS.W. HsuM.J. ChenH.C. MeledduR. DistintoS. MaccioniE. CottigliaF. Suppression of lipopolysaccharide-induced COX-2 expression via p38MAPK, JNK, and C/EBPβ phosphorylation inhibition by furomagydarin A, a benzofuran glycoside from Magydaris pastinacea.J. Enzyme Inhib. Med. Chem.2024391228742010.1080/14756366.2023.2287420 38058285
    [Google Scholar]
  37. JiR.R. GereauR.W.IV MalcangioM. StrichartzG.R. MAP kinase and pain.Brain Res. Brain Res. Rev.200960113514810.1016/j.brainresrev.2008.12.011 19150373
    [Google Scholar]
  38. CappoliN. TabolacciE. AcetoP. Dello RussoC. The emerging role of the BDNF-TrkB signaling pathway in the modulation of pain perception.J. Neuroimmunol.202034957740610.1016/j.jneuroim.2020.577406 33002723
    [Google Scholar]
  39. ShiM. ZhouJ. HuR. XuH. ChenY. WuX. ChenB. MaR. EA participates in pain transition through regulating KCC2 expression by BDNF-TrkB in the spinal cord dorsal horn of male rats.Neurobiol. Pain20231310011510.1016/j.ynpai.2023.100115 36875547
    [Google Scholar]
  40. ZhouW. XieZ. LiC. XingZ. XieS. LiM. YaoJ. Driving effect of BDNF in the spinal dorsal horn on neuropathic pain.Neurosci. Lett.202175613596510.1016/j.neulet.2021.135965 34022262
    [Google Scholar]
  41. ChowR. WesselsJ.M. FosterW.G. Brain-derived neurotrophic factor (BDNF) expression and function in the mammalian reproductive Tract.Hum. Reprod. Update202026454556410.1093/humupd/dmaa008 32378708
    [Google Scholar]
  42. HanF. LiuH. WangK. YangJ. YangL. LiuJ. ZhangM. DunW. Correlation between thalamus-related functional connectivity and serum BDNF levels during the periovulatory phase of primary dysmenorrhea.Front. Hum. Neurosci.20191333310.3389/fnhum.2019.00333 31632254
    [Google Scholar]
  43. SlaterH. PaananenM. SmithA.J. O’SullivanP. BriggsA.M. HickeyM. MountainJ. KarppinenJ. BealesD. Heightened cold pain and pressure pain sensitivity in young female adults with moderate-to-severe menstrual pain.Pain2015156122468247810.1097/j.pain.0000000000000317 26262827
    [Google Scholar]
  44. PodymaB. ParekhK. GülerA.D. DeppmannC.D. Metabolic homeostasis via BDNF and its receptors.Trends Endocrinol. Metab.202132748849910.1016/j.tem.2021.04.005 33958275
    [Google Scholar]
  45. ZhangL. ZhouY. YangL. WangY. XiaoZ. PACAP6-38 improves nitroglycerin-induced central sensitization by modulating synaptic plasticity at the trigeminal nucleus caudalis in a male rat model of chronic migraine.J. Headache Pain20232416610.1186/s10194‑023‑01603‑3 37271806
    [Google Scholar]
  46. BaharM.E. KimH.J. KimD.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies.Signal Transduct. Target. Ther.20238145510.1038/s41392‑023‑01705‑z 38105263
    [Google Scholar]
  47. AmidfarM. de OliveiraJ. KucharskaE. BudniJ. KimY.K. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease.Life Sci.202025711802010.1016/j.lfs.2020.118020 32603820
    [Google Scholar]
  48. WeiX. WangL. HuaJ. JinX. JiF. PengK. ZhouB. YangJ. MengX. Inhibiting BDNF/TrkB.T1 receptor improves resiniferatoxin-induced postherpetic neuralgia through decreasing ASIC3 signaling in dorsal root ganglia.J. Neuroinflammat.20211819610.1186/s12974‑021‑02148‑5 33874962
    [Google Scholar]
  49. CaoT. MatyasJ.J. RennC.L. FadenA.I. DorseyS.G. WuJ. Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain.Cells202095119410.3390/cells9051194 32403409
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073308798240425115006
Loading
/content/journals/cchts/10.2174/0113862073308798240425115006
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test