Skip to content
2000
Volume 28, Issue 12
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Baroni (Huanghuacai), a plant of the genus in the family , is widely planted in China. Based on our survey results, the chemical compounds in the essential oil of the flowers of Baroni (EOFHCB) and relevant pharmacological activities have never been studied systematically.

Objective

To preliminarily decipher the pharmacological activities and mechanisms of EOFHCB in the treatment of anxiety disorders by GC-MS, Network Pharmacology, and Molecular docking.

Methods

EOFHCB compositions were identified using GC-MS, and their targets were predicted using Swiss Target Prediction databases. The targets of anxiety disorders were obtained by GeneCards, DisGeNET, and OMIM databases. The STRING database was used to construct the protein-protein interaction networks, and the DAVID database was used to carry out GO enrichment and KEGG pathway enrichment analysis. The EOFHCB-components-targets-pathways-anxiety disorders network was constructed by Cytoscape software (Version 3.10.0). Finally, the result was verified by molecular docking.

Results

28 chemical components were identified by GC-MS, including 3-furanmethanol (28.43%), 2-methyl-1-butanol (27.13%), nerolidol (10.62%), and so on, which correspond to 241 potential targets. Several 2440 biological processes, 187 cellular compositions, and 311 molecular functions were enriched by GO enrichment analysis and 174 pathways by KEGG enrichment analysis. The key targets are PTGS 2, SRC, DRD 2, ESR 1, MAOB, and SLC6A4. The most important pathway is the neuroactive ligand-receptor interaction.

Conclusion

EOFHCB exerts its therapeutic effects on anxiety disorders through multi-components, multi-targets, and multi-pathways, which provided new ideas and methods for the in-depth research of aromatic Chinese medicine in the treatment of anxiety disorders.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073309835240611075049
2024-07-05
2025-10-10
Loading full text...

Full text loading...

References

  1. PenninxB.W.J.H. PineD.S. HolmesE.A. ReifA. Anxiety disorders.Lancet20213971027791492710.1016/S0140‑6736(21)00359‑7 33581801
    [Google Scholar]
  2. LeichsenringF. HeimN. SteinertC. A review of anxiety disorders.JAMA2023329151315131610.1001/jama.2023.2428 37071102
    [Google Scholar]
  3. DoyleM.M. Anxiety disorders in children.Pediatr. Rev.2022431161863010.1542/pir.2020‑001198 36316261
    [Google Scholar]
  4. YangX. FangY. ChenH. ZhangT. YinX. ManJ. YangL. LuM. Global, regional and national burden of anxiety disorders from 1990 to 2019: Results from the Global Burden of Disease Study 2019.Epidemiol Psychiatr Sci202130e3610.1017/S2045796021000275
    [Google Scholar]
  5. AndersonK.N. LindJ.N. SimeoneR.M. BoboW.V. MitchellA.A. Riehle-ColarussoT. PolenK.N. ReefhuisJ. Maternal use of specific antidepressant medications during early pregnancy and the risk of selected birth defects.JAMA Psychiatry202077121246125510.1001/jamapsychiatry.2020.2453 32777011
    [Google Scholar]
  6. XuP. WangK.Z. LuC. DongL.M. Le ZhaiJ. LiaoY.H. AibaiS. YangY. LiuX.M. Antidepressant-like effects and cognitive enhancement of the total phenols extract of Hemerocallis citrina Baroni in chronic unpredictable mild stress rats and its related mechanism.J Ethnopharmacol201619481982610.1016/j.jep.2016.09.023
    [Google Scholar]
  7. LiC.F. ChenX.Q. ChenS.M. ChenX.M. GengD. LiuQ. YiL.T. Evaluation of the toxicological properties and anti-inflammatory mechanism of Hemerocallis citrina in LPS-induced depressive-like mice.Biomed. Pharmacother.20179116717310.1016/j.biopha.2017.04.089
    [Google Scholar]
  8. JiangN. ZhangY. YaoC. ChenF. LiuY. ChenY. WangY. ChoudharyM.I. LiuX. Hemerocallis citrina Baroni ameliorates chronic sleep deprivation-induced cognitive deficits and depressive-like behaviours in mice.Life Sci. Space Res. (Amst.)202440354310.1016/j.lssr.2023.04.001
    [Google Scholar]
  9. MaT. SunY. WangL. WangJ. WuB. YanT. JiaY. An Investigation of the Anti-Depressive Properties of Phenylpropanoids and Flavonoids in Hemerocallis citrina Baroni.Molecules20222718580910.3390/molecules27185809 36144545
    [Google Scholar]
  10. LiuJ. YeT. YangS. ZhongX. HeW. XuM. FangJ. DengM. XuN. ZengJ. QingZ. Antidepressant-like activity, active components and related mechanism of Hemerocallis Citrina Baroni extracts.Front. Pharmacol.20221396767010.3389/fphar.2022.967670
    [Google Scholar]
  11. LiangY. HuangR. ChenY. ZhongJ. DengJ. WangZ. WuZ. LiM. WangH. SunY. Study on the Sleep-Improvement Effects of Hemerocallis citrina Baroni in Drosophila melanogaster and Targeted Screening to Identify Its Active Components and Mechanism.Foods202110488310.3390/foods10040883 33920660
    [Google Scholar]
  12. LiangY. ZhanX. WeiX. ZhongJ. DengJ. ChenY. PanL. ZhangJ. LiM. HuangR. WangH. SunY. Study on the material basis and mechanism of Hemerocallis citrina Baroni on sleep-improvement using Drosophila activity monitoring, metabolomic, targeted screening and transcriptomic.Food Res. Int.202317211256210.1016/j.foodres.2023.112562
    [Google Scholar]
  13. YouJ.S. HeS.C. ChenL. GuoZ.H. GaoF. ZhangM.Y. DanL. ChenW. Analysis of Pharmacological Activities and Mechanisms of Essential Oil in Leaves of C. grandis ‘Tomentosa’ by GC-MS/MS and Network Pharmacology.Comb. Chem. High Throughput Screen.20232691689170010.2174/1386207325666220610182644 35702766
    [Google Scholar]
  14. DongN.N. ChenX.L. DengB.L. XieS.C. HuJ. Effective constituents of essential oil from Gleditsiae Fructus Abnormalis and anti-cerebral ischemia/reperfusion injury mechanism: Based on GC-MS, network pharmacology, and experimental verificationZhongguo Zhongyao Zazhi20234841076108610.19540/j.cnki.cjcmm.20221102.703 36872278
    [Google Scholar]
  15. Gene Ontology Consortium. Gene Ontology Consortium: Going forward.Nucleic Acids Res.201543D1D1049D105610.1093/nar/gku1179 25428369
    [Google Scholar]
  16. ChloeL.K. CookA.C. LoveringR.C. GOing forward with the cardiac conduction system using gene ontology.Front. Genet.20221380239310.3389/fgene.2022.802393
    [Google Scholar]
  17. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong.Nucleic Acids Res.201947D1D330D33810.1093/nar/gky1055 30395331
    [Google Scholar]
  18. OgataH. GotoS. SatoK. FujibuchiW. BonoH. KanehisaM. KEGG: Kyoto Encyclopedia of Genes and Genomes.Nucleic Acids Res.1999271293410.1093/nar/27.1.29 9847135
    [Google Scholar]
  19. KanehisaM. FurumichiM. TanabeM. SatoY. MorishimaK. KEGG: New perspectives on genomes, pathways, diseases and drugs.Nucleic Acids Res.201745D1D353D36110.1093/nar/gkw1092 27899662
    [Google Scholar]
  20. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa971 33151290
    [Google Scholar]
  21. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  22. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT. I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The GeneCards Suite: From gene data mining to disease genome sequence analyses.Curr Protoc Bioinformatics2016541.30.11.30.3310.1002/cpbi.5
    [Google Scholar]
  23. PineroJ. SauchJ. SanzF. FurlongL.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data.Comput. Struct. Biotechnol. J.2021192960296710.1016/j.csbj.2021.05.015
    [Google Scholar]
  24. AmbergerJ.S. HamoshA. Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes.Curr. Protoc. Bioinformatics201720171710.1002/cpbi.27
    [Google Scholar]
  25. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  26. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  27. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  28. TangD. ChenM. HuangX. ZhangG. ZengL. ZhangG. WuS. WangY. SRplot: A free online platform for data visualization and graphing.PLoS One20231811e029423610.1371/journal.pone.0294236 37943830
    [Google Scholar]
  29. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  30. LucidoM.J. OrlandoB.J. VecchioA.J. MalkowskiM.G. Crystal structure of aspirin-acetylated human cyclooxygenase-2: Insight into the formation of products with reversed stereochemistry.Biochemistry20165581226123810.1021/acs.biochem.5b01378 26859324
    [Google Scholar]
  31. TempsC. LiethaD. WebbE.R. LiX.F. DawsonJ.C. MuirM. MacleodK.G. ValeroT. MunroA.F. Contreras-MontoyaR. Luque-OrtegaJ.R. FraserC. BeethamH. SchoenherrC. LopalcoM. ArendsM.J. FrameM.C. QianB.Z. BruntonV.G. CarragherN.O. Unciti-BrocetaA. A conformation selective mode of inhibiting SRC improves drug efficacy and tolerability.Cancer Res.202181215438545010.1158/0008‑5472.CAN‑21‑0613 34417202
    [Google Scholar]
  32. PandalaneniS. KaruppiahV. SaleemM. HaynesL.P. BurgoyneR.D. MayansO. DerrickJ.P. LianL.Y. Neuronal calcium sensor-1 binds the D2 dopamine receptor and G-protein-coupled receptor kinase 1 (GRK1) peptides using different modes of interactions.J. Biol. Chem.201529030187441875610.1074/jbc.M114.627059 25979333
    [Google Scholar]
  33. SijbesmaE. HallenbeckK.K. AndreiS.A. RustR.R. AdriaansJ.M.C. BrunsveldL. ArkinM.R. OttmannC. Exploration of a 14-3-3 PPI pocket by covalent fragments as stabilizers.ACS Med. Chem. Lett.202112697698210.1021/acsmedchemlett.1c00088 34136078
    [Google Scholar]
  34. SleimanD. GarciaP.S. LaguneM. Loc’hJ. HaouzA. TaibN. RöthlisbergerP. GribaldoS. MarlièreP. KaminskiP.A. A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes.Science2021372654151652010.1126/science.abe6494 33926955
    [Google Scholar]
  35. ColemanJ.A. GreenE.M. GouauxE. X-ray structures and mechanism of the human serotonin transporter.Nature2016532759933433910.1038/nature17629 27049939
    [Google Scholar]
  36. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.201461310.1186/1758‑2946‑6‑13
    [Google Scholar]
  37. GanX. ShuZ. WangX. YanD. LiJ. OfaimS. AlbertR. LiX. LiuB. ZhouX. BarabásiA.L. Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine.Sci. Adv.2023943eadh021510.1126/sciadv.adh0215 37889962
    [Google Scholar]
  38. LiJ. LiR. SunA. ZhouH. NeherE. YangJ. HuangJ. ZhangY. JiangZ. LiangT. MaL. WangJ. WangX. FanX. HuangJ. XieY. LiuL. TangL. LeungE.L. YanP. Metabolomics and integrated network pharmacology analysis reveal Tricin as the active anti-cancer component of Weijing decoction by suppression of PRKCA and sphingolipid signaling.Pharmacol. Res.202117110557410.1016/j.phrs.2021.105574
    [Google Scholar]
  39. TianG. WuC. LiJ. LiangB. ZhangF. FanX. LiZ. WangY. LiZ. LiuD. Lai-Han LeungE. ChenJ. Network pharmacology based investigation into the effect and mechanism of Modified Sijunzi Decoction against the subtypes of chronic atrophic gastritis.Pharmacol Res201914415816610.1016/j.phrs.2019.04.012
    [Google Scholar]
  40. De CarvalhoR.B.F. De AlmeidaA.A.C. CampeloN.B. LellisD.R.O.D. NunesL.C.C. Nerolidol and its Pharmacological Application in Treating Neurodegenerative Diseases: A Review.Recent Pat. Biotechnol.201812315816810.2174/1872208312666171206123805 29210667
    [Google Scholar]
  41. PerestreloR. BarrosA.S. CâmaraJ.S. RochaS.M. In-depth search focused on furans, lactones, volatile phenols, and acetals as potential age markers of Madeira wines by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction.J. Agric. Food Chem.20115973186320410.1021/jf104219t 21375340
    [Google Scholar]
  42. dos SantosÉ.R.Q. MaiaJ.G.S. Fontes-JúniorE.A. do Socorro Ferraz MaiaC. Linalool as a therapeutic and medicinal tool in depression treatment: A review.Curr. Neuropharmacol.20222061073109210.2174/1570159X19666210920094504 34544345
    [Google Scholar]
  43. NegreirosH.A. de MouraK.G. Barreto do NascimentoM.L.L. do Nascimento RodriguesD.C. FerreirP.M.P. BrazD.C. de FariasM.G. de Sousa CorrêiaL. PereiraA.R.S. SantosL.K.B. GonçalvesJ.C.R. MendesA.N. Carneiro da SilvaF.C. CavalcantA.A.C.M. de Castro e Sousa, J.M. Alpha-terpineol as antitumor candidate in pre-clinical studies.Anticancer. Agents Med. Chem.202121152023203110.2174/1871520621999210104195820 33397274
    [Google Scholar]
  44. KhanR. JoriC. AnsariM.M. AhmadA. NadeemA. SiddiquiN. SultanaS. α-terpineol mitigates dextran sulfate sodium-induced colitis in rats by attenuating inflammation and apoptosis.ACS Omega2023832297942980210.1021/acsomega.3c04317 37599911
    [Google Scholar]
  45. IshaqueA. SalimA. SimjeeS.U. KhanI. AdliD.S.H. Alpha terpineol directs bone marrow mesenchymal stem cells toward neuronal lineage through regulation of wnt signaling pathway.Cell Biochem. Funct.202341222323310.1002/cbf.3775 36651266
    [Google Scholar]
  46. MączkaW. WińskaK. GrabarczykM. One hundred faces of geraniol.Molecules20202514330310.3390/molecules25143303 32708169
    [Google Scholar]
  47. LeiY. FuP. JunX. ChengP. Pharmacological properties of geraniol – A review.Planta Med.2019851485510.1055/a‑0750‑6907 30308694
    [Google Scholar]
  48. BagheriS. SalehiI. Ramezani-AliakbariF. Kourosh-AramiM. KomakiA. Neuroprotective effect of geraniol on neurological disorders: A review article.Mol. Biol. Rep.20224911108651087410.1007/s11033‑022‑07755‑w 35900613
    [Google Scholar]
  49. SaeedN.M. El-DemerdashE. Abdel-RahmanH.M. AlgandabyM.M. Al-AbbasiF.A. Abdel-NaimA.B. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models.Toxicol. Appl. Pharmacol.20122641849310.1016/j.taap.2012.07.020 22842335
    [Google Scholar]
  50. LiN. WangW. ZhouH. WuQ. DuanM. LiuC. WuH. DengW. ShenD. TangQ. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury.Free Radic Biol Med202016030331810.1016/j.freeradbiomed.2020.08.009
    [Google Scholar]
  51. PeiróG. Ortiz-MartínezF. GallardoA. Pérez-BalaguerA. Sánchez-PayáJ. PonceJ.J. TibauA. López-VilaroL. EscuinD. AdroverE. BarnadasA. LermaE. Src, a potential target for overcoming trastuzumab resistance in HER2-positive breast carcinoma.Br. J. Cancer2014111468969510.1038/bjc.2014.327 24937674
    [Google Scholar]
  52. De KockL. FresonK. The (Patho)biology of SRC kinase in platelets and megakaryocytes.Medicina (Kaunas)2020561263310.3390/medicina56120633 33255186
    [Google Scholar]
  53. YinJ. ChenK.Y.M. ClarkM.J. HijaziM. KumariP. BaiX. SunaharaR.K. BarthP. RosenbaumD.M. Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane.Nature2020584781912512910.1038/s41586‑020‑2379‑5 32528175
    [Google Scholar]
  54. LiuJ. YuanS. NiuX. KelleherR. SheridanH. ESR1 dysfunction triggers neuroinflammation as a critical upstream causative factor of the Alzheimer’s disease process.Aging (Albany NY)202214218595861410.18632/aging.204359 36326669
    [Google Scholar]
  55. TanY.Y. JennerP. ChenS.D. Monoamine Oxidase-B inhibitors for the treatment of parkinson’s disease: Past, present, and future.J. Parkinsons Dis.202212247749310.3233/JPD‑212976 34957948
    [Google Scholar]
  56. HandeS.H. KrishnaS.M. SahoteK.K. DevN. ErlT.P. RamakrishnaK. RavidhranR. DasR. Population genetic variation of SLC6A4 gene, associated with neurophysiological development.J Genet.20211001610.1007/s12041‑021‑01266‑6
    [Google Scholar]
  57. BorderR. JohnsonE.C. EvansL.M. SmolenA. BerleyN. SullivanP.F. KellerM.C. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples.Am. J. Psychiatry2019176537638710.1176/appi.ajp.2018.18070881 30845820
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073309835240611075049
Loading
/content/journals/cchts/10.2174/0113862073309835240611075049
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test