Skip to content
2000
Volume 28, Issue 12
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Oral Mucositis (OM) is a common and highly symptomatic complication of cancer therapy that affects patient function and quality of life. Jingzhi Niuhuangjiedu Tablet (JNT) is derived from the famous Chinese herbal formulas Huanglian Jiedu and Fangfeng Tongsheng decoctions, which have been widely used to treat heat toxin syndrome diseases, such as acute pharyngitis, periodontitis, oral ulcers, and oral mucositis (OM), but the underlying mechanism remains unclear.

Objectives

This study validated the efficacy and explored the potential mechanisms of JNT in the treatment of OM by integrating network pharmacological analyses and experimental verification.

Methods

Network pharmacology and molecular docking techniques were used to predict the active components, key targets, and potential mechanisms of action of JNT against OM. The rat OM model was established by administering 5-Fluorouracil (5-FU) and acetic acid to the rat oral mucosa. Lipopolysaccharide (LPS)-treated human gingival fibroblasts (HGFs) were used as an inflammatory cell model. The GFP-NFκB HEK293T cell line was transfected to evaluate the anti-NFκB activity of JNT.

Results

A total of 236 Chinese herbal components and 201 corresponding targets were predicted for OM treatment using JNT. Bicuculine, luteolin, wogonin, and naringenin were identified as the important active compounds, while AKT1, ALB, IL6, MAPK3, and VEGFA were considered to be the major targets. Molecular docking revealed that these active compounds exhibited strong binding interactions with their targets. and experiments demonstrated that the anti-OM effect of JNT might be closely related to AKT1, NFκB, caspase-1, and NLRP3, as well as biological processes, such as inflammatory response and oxidative stress.

Conclusion

Network pharmacological and experimental evidence indicates that JNT has a potential therapeutic effect on OM by regulating the Akt/NFκB/NLRP3 pathway.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073328881240808071048
2024-08-08
2025-10-10
Loading full text...

Full text loading...

References

  1. Molina PratsP. Gómez GarciaF. Martinez DiazF. Amaral MendesR. Lopez- Jornet, P. The therapeutic effects of apigenin and dexamethasone on 5‐fluorouracil‐induced oral mucositis – A pilot study using a Syrian hamster model.J. Oral Pathol. Med.201746214214710.1111/jop.12473 27378179
    [Google Scholar]
  2. ChiangC.P. Yu-Fong ChangJ. WangY.P. WuY.H. WuY.C. SunA. Recurrent aphthous stomatitis – Etiology, serum autoantibodies, anemia, hematinic deficiencies, and management.J. Formos. Med. Assoc.201911891279128910.1016/j.jfma.2018.10.023 30446298
    [Google Scholar]
  3. VillaA. SonisS.T. Pharmacotherapy for the management of cancer regimen-related oral mucositis.Expert Opin. Pharmacother.201617131801180710.1080/14656566.2016.1217993 27477002
    [Google Scholar]
  4. PulitoC. CristaudoA. PortaC.L. ZapperiS. BlandinoG. MorroneA. StranoS. Oral mucositis: The hidden side of cancer therapy.J. Exp. Clin. Cancer Res.202039121010.1186/s13046‑020‑01715‑7 33028357
    [Google Scholar]
  5. MariaO.M. EliopoulosN. MuanzaT. Radiation-induced oral mucositis.Front. Oncol.201778910.3389/fonc.2017.00089 28589080
    [Google Scholar]
  6. Vera-LlonchM. OsterG. HagiwaraM. SonisS. Oral mucositis in patients undergoing radiation treatment for head and neck carcinoma.Cancer2006106232933610.1002/cncr.21622 16342066
    [Google Scholar]
  7. UthaiwatP. DaduangJ. PripremA. SettasatianC. Chio-SrichanS. LeeY.C. MahakunakornP. BoonsiriP. Topical melatonin niosome gel for the treatment of 5-FU-induced oral mucositis in mice.Curr. Drug Deliv.202118219921110.2174/1567201817666200525151848 32484102
    [Google Scholar]
  8. HitomiS. NodaiT. KokabuS. ShikayamaT. Sago-ItoM. NakatomiC. TerawakiK. OmiyaY. ShinodaM. OnoK. Hepcidin expression in the trigeminal ganglion and the oral mucosa in an oral ulcerative mucositis rat model.PLoS One2023184e028461710.1371/journal.pone.0284617 37079608
    [Google Scholar]
  9. ChenC. ZhangQ. YuW. ChangB. LeA.D. Oral mucositis: An update on innate immunity and new interventional targets.J. Dent. Res.202099101122113010.1177/0022034520925421 32479139
    [Google Scholar]
  10. DaugėlaitėG. UžkuraitytėK. JagelavičienėE. FilipauskasA. Prevention and treatment of chemotherapy and radiotherapy induced oral mucositis.Medicina20195522510.3390/medicina55020025 30678228
    [Google Scholar]
  11. YuanH. SuJ. TanJ. WeiY. Efficacy of kangfuxin liquid on radiotherapy-induced oral mucositis for patients with head and neck squamous cell carcinoma and its effect on salivary glands and immune function.Am. J. Transl. Res.202214967926804 36247271
    [Google Scholar]
  12. Jicman StanD. SârbuM.I. FoteaS. NechiforA. BălanG. AngheleM. VasileC.I. NiculețE. SârbuN. RebegeaL.F. TatuA.L. Oral mucositis induced by chemoradiotherapy in head and neck cancer-a short review about the therapeutic management and the benefits of bee honey.Medicina202258675110.3390/medicina58060751 35744014
    [Google Scholar]
  13. Peña-CardellesJ.F. Salgado-PeralvoA.O. Garrido-MartínezP. Cebrián-CarreteroJ.L. Pozo-KreilingerJ.J. Moro-RodríguezJ.E. Oral mucositis. Is it present in the immunotherapy of the immune checkpoint pd1/pd-l1 against oral cancer? A systematic review.Med. Oral Patol. Oral Cir. Bucal2021264e494e50110.4317/medoral.24353 33772569
    [Google Scholar]
  14. HashimotoK. NishimuraS. ShinyashikiY. ItoT. KakinokiR. AkagiM. Clinicopathological assessment of PD-1/PD-L1 immune checkpoint expression in desmoid tumors.Eur. J. Histochem.2023672368810.4081/ejh.2023.3688 37098880
    [Google Scholar]
  15. QinX. LuX. WangY. YuF. CuiZ. QinR. XuK. GuanX. HeX. Mechanism and significance of apoptosis of the immortalized human oral mucosal epithelial cells established by Lentivirus-mediated hTERT.Mol. Biol. Rep.20204775469547510.1007/s11033‑020‑05637‑7 32632779
    [Google Scholar]
  16. PiccioloG. ManninoF. IrreraN. MinutoliL. AltavillaD. VaccaroM. OteriG. SquadritoF. PallioG. Reduction of oxidative stress blunts the NLRP3 inflammatory cascade in LPS stimulated human gingival fibroblasts and oral mucosal epithelial cells.Biomed. Pharmacother.202214611252510.1016/j.biopha.2021.112525 34906776
    [Google Scholar]
  17. VoT.T.T. WeeY. ChenY.L. ChengH.C. TuanV.P. LeeI.T. Surfactin attenuates particulate matter‐induced COX‐2‐dependent PGE 2 production in human gingival fibroblasts by inhibiting TLR2 and TLR4/MyD88/NADPH oxidase/ROS/PI3K/Akt/NF‐κB signaling pathway.J. Periodontal Res.20215661185119910.1111/jre.12932 34486757
    [Google Scholar]
  18. LiangL. ChenL. LiuG. JiangL. QueL. ChenJ. WangR. ZhuH. Thalidomide attenuates oral epithelial cell apoptosis and pro-inflammatory cytokines secretion induced by radiotherapy via the miR-9-3p/NFATC2/NF-κB axis.Biochem. Biophys. Res. Commun.202260310210810.1016/j.bbrc.2022.03.030 35279460
    [Google Scholar]
  19. BassoF.G. PansaniT.N. TurrioniA.P.S. SoaresD.G. de Souza CostaC.A. HeblingJ. Tumor necrosis factor‐α and interleukin (IL)‐1β, IL‐6, and IL‐8 impair in vitro migration and induce apoptosis of gingival fibroblasts and epithelial cells, delaying wound healing.J. Periodontol.201687899099610.1902/jop.2016.150713 27063996
    [Google Scholar]
  20. KuragoZ.B. Lam-ubolA. StetsenkoA. De La MaterC. ChenY. DawsonD.V. Lipopolysaccharide-squamous cell carcinoma-monocyte interactions induce cancer-supporting factors leading to rapid STAT3 activation.Head Neck Pathol.20082111210.1007/s12105‑007‑0038‑x 19603082
    [Google Scholar]
  21. MarcanoR. RojoM.Á. Cordoba-DiazD. GarrosaM. Pathological and therapeutic approach to endotoxin-secreting bacteria involved in periodontal disease.Toxins202113853310.3390/toxins13080533 34437404
    [Google Scholar]
  22. LuoB. LiB. WangW. LiuX. XiaY. ZhangC. ZhangM. ZhangY. AnF. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model.PLoS One201498e10477110.1371/journal.pone.0104771 25136835
    [Google Scholar]
  23. HeY. LiZ. XuT. LuoD. ChiQ. ZhangY. LiS. Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway.Chemosphere2022307Pt 113566210.1016/j.chemosphere.2022.135662 35830933
    [Google Scholar]
  24. ZhangL. PrevinR. LuL. LiaoR.F. JinY. WangR.K. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway.Brain Res. Bull.201814235235910.1016/j.brainresbull.2018.08.021 30179677
    [Google Scholar]
  25. LuoJ. BianL. BlevinsM.A. WangD. LiangC. DuD. WuF. HolwerdaB. ZhaoR. RabenD. ZhouH. YoungC.D. WangX.J. Smad7 promotes healing of radiotherapy-induced oral mucositis without compromising oral cancer therapy in a xenograft mouse model.Clin. Cancer Res.201925280881810.1158/1078‑0432.CCR‑18‑1081 30185419
    [Google Scholar]
  26. AlaM. Mohammad JafariR. AlaM. HejaziS.M. TavangarS.M. MahdaviS.R. DehpourA.R. Sildenafil improves radiation‐induced oral mucositis by attenuating oxidative stress, NF‐κB, ERK and JNK signalling pathways.J. Cell. Mol. Med.202226164556456510.1111/jcmm.17480 35810384
    [Google Scholar]
  27. ChanC.W.H. LawB.M.H. WongM.M.H. ChanD.N.S. NgM.S.N. SoW.K.W. WongC.L. ChowK.M. Oral mucositis among Chinese cancer patients receiving chemotherapy: Effects and management strategies.Asia Pac. J. Clin. Oncol.2021172e10e1710.1111/ajco.13349 32700818
    [Google Scholar]
  28. MafraC.A.C.C. VasconcelosR.C. MedeirosC.A.C.X. LeitãoR.F.C. BritoG.A.C. CostaD.V.S. GuerraG.C.B. AraújoR.F.Jr MedeirosA.C. AraújoA.A. Gliclazide prevents 5-FU-induced oral mucositis by reducing oxidative stress, inflammation, and p-selectin adhesion molecules.Front. Physiol.20191032710.3389/fphys.2019.00327 30971955
    [Google Scholar]
  29. AraújoA.A. AraújoL.S. MedeirosC.A.C.X. LeitãoR.F.C. BritoG.A.C. CostaD.V.S. GuerraG.C.B. GarciaV.B. LimaM.L.S. AraújoR.F.Junior Protective effect of angiotensin II receptor blocker against oxidative stress and inflammation in an oral mucositis experimental model.J. Oral Pathol. Med.2018471097298410.1111/jop.12775 30125396
    [Google Scholar]
  30. LuoK. ZhaoH. BianB. WeiX. SiN. BrantnerA. FanX. GuX. ZhouY. WangH. Huanglian Jiedu decoction in the treatment of the traditional Chinese medicine syndrome “Shanghuo”-an intervention study.Front. Pharmacol.20211261631810.3389/fphar.2021.616318 33995016
    [Google Scholar]
  31. ZhaoT. LiuW.L. WuP. LiuY.J. YanY.H. WangJ. ZhangC.J. LiG.R. LiG. WangF.S. FanM. A randomized, placebo controlled study on Fangfeng Tongsheng granule in treatment of sub-acute eczema.Zhongguo Zhongyao Zazhi201540714151418 26281572
    [Google Scholar]
  32. LiX. WeiS. NiuS. MaX. LiH. JingM. ZhaoY. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis.Comput. Biol. Med.202214410538910.1016/j.compbiomed.2022.105389 35303581
    [Google Scholar]
  33. AkakiJ. TachiS. NakamuraN. AraiT. YamasakiH. InoueM. MakinoT. Promotive effect of Bofutsushosan (Fangfengtongshengsan) on lipid and cholesterol excretion in feces in mice treated with a high-fat diet.J. Ethnopharmacol.20182201810.1016/j.jep.2018.03.028 29588201
    [Google Scholar]
  34. JongM.S. HwangS.J. ChenY.C. ChenT.J. ChenF.J. ChenF.P. Prescriptions of Chinese herbal medicine for constipation under the national health insurance in Taiwan.J. Chin. Med. Assoc.201073737538310.1016/S1726‑4901(10)70081‑2 20688304
    [Google Scholar]
  35. LiY. XieJ. LiY. YangY. YangL. Literature data based systems pharmacology uncovers the essence of “body fire” in traditional Chinese medicine: A case by Huang-Lian-Jie-Du-Tang.J. Ethnopharmacol.201923726628510.1016/j.jep.2019.03.037 30922854
    [Google Scholar]
  36. XieY. FangX. HuaH. ZhouP. Efficacy and safety of chinese patent medicine for the prevention and treatment of radiotherapy and chemotherapy-induced oral mucositis: A systematic review and meta-analysis.Front. Pharmacol.2022138120810.3389/fphar.2022.812085
    [Google Scholar]
  37. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional Chinese medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.00123 30846939
    [Google Scholar]
  38. LiS. Network pharmacology evaluation method guidance - Draft.World J Tradit Chin Med20217114615410.4103/wjtcm.wjtcm_11_21
    [Google Scholar]
  39. LiuB. ZhangJ. ShaoL. YaoJ. Network pharmacology analysis and molecular docking to unveil the potential mechanisms of San-Huang-Chai-Zhu formula treating cholestasis.PLoS One2022172e026439810.1371/journal.pone.0264398 35196362
    [Google Scholar]
  40. LiY. QiaoY. LiH. WangZ. SuE. DuY. CheL. Mechanism of the Mongolian medicine Eerdun Wurile basic formula in improving postoperative cognitive dysfunction by inhibiting apoptosis through the SIRT1/p53 signaling pathway.J. Ethnopharmacol.202330911631210.1016/j.jep.2023.116312 36863641
    [Google Scholar]
  41. LiT. LiW. GuoX. TanT. XiangC. OuyangZ. Unraveling the potential mechanisms of the anti-osteoporotic effects of the Achyranthes bidentata–Dipsacus asper herb pair: A network pharmacology and experimental study.Front. Pharmacol.202314124219410.3389/fphar.2023.1242194 37849727
    [Google Scholar]
  42. GaoY. JiW. LuM. WangZ. JiaX. WangD. CaoP. HuC. SunX. WangZ. Systemic pharmacological verification of Guizhi Fuling decoction in treating endometriosis-associated pain.J. Ethnopharmacol.202229711554010.1016/j.jep.2022.115540 35870685
    [Google Scholar]
  43. ChenY. SunJ. ZhangZ. LiuX. WangQ. YuY. The potential effects and mechanisms of hispidulin in the treatment of diabetic retinopathy based on network pharmacology.BMC Complement. Med. Ther.202222114110.1186/s12906‑022‑03593‑2 35590353
    [Google Scholar]
  44. LiZ.H. YuD. HuangN.N. WuJ.K. DuX.W. WangX.J. Immunoregulatory mechanism studies of ginseng leaves on lung cancer based on network pharmacology and molecular docking.Sci. Rep.20211111820110.1038/s41598‑021‑97115‑8 34521875
    [Google Scholar]
  45. TangY. LiM. WangJ. PanY. WuF.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks.Biosystems2015127677210.1016/j.biosystems.2014.11.005 25451770
    [Google Scholar]
  46. HeQ. LiuC. WangX. RongK. ZhuM. DuanL. ZhengP. MiY. Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking.Front. Pharmacol.202314110258110.3389/fphar.2023.1102581 36874006
    [Google Scholar]
  47. GongH. XiaY. JingG. YuanM. ZhouH. WuD. ZuoJ. LeiC. AidebaikeD. WuX. SongX. Berberine alleviates neuroinflammation by downregulating NFκB/LCN2 pathway in sepsis-associated encephalopathy: network pharmacology, bioinformatics, and experimental validation.Int. Immunopharmacol.202413311203610.1016/j.intimp.2024.112036 38640713
    [Google Scholar]
  48. YangZ. HaoT. MaJ. YangD. QiuM. WangR. Tribuloside: Mechanisms and efficacy in treating acute lung injury revealed by network pharmacology and experimental validation.Dose Response20242221559325824125159410.1177/15593258241251594 38725454
    [Google Scholar]
  49. TakeuchiI. KawamataR. MakinoK. A rat model of oral mucositis induced by cancer chemotherapy for quantitative experiments.Anticancer Res.20204052701270610.21873/anticanres.14241 32366415
    [Google Scholar]
  50. DittoeD.K. OlsonE.G. WytheL.A. LawlessZ.G. ThompsonD.R. PerryL.M. RickeS.C. Mitigating the attachment of Salmonella Infantis on isolated poultry skin with cetylpyridinium chloride.PLoS One20231812e029354910.1371/journal.pone.0293549 38127975
    [Google Scholar]
  51. LuS. WangY. LiuJ. Tumor necrosis factor-α signaling in nonalcoholic steatohepatitis and targeted therapies.J. Genet. Genomics202249426927810.1016/j.jgg.2021.09.009 34757037
    [Google Scholar]
  52. KusagawaE. OkudaC. YamaguchiR. NakanoK. MiyakeY. KataokaT. Cucurbitacin B down-regulates TNF receptor 1 expression and inhibits the TNF-α-dependent nuclear factor κB signaling pathway in human lung adenocarcinoma A549 cells.Int. J. Mol. Sci.20222313713010.3390/ijms23137130 35806134
    [Google Scholar]
  53. TangJ. DiaoP. ShuX. LiL. XiongL. Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in lps-induced raw264.7 cells: In vitro assessment and a theoretical model.BioMed Res. Int.201920191810.1155/2019/7039802 31781635
    [Google Scholar]
  54. XiongG. JiW. WangF. ZhangF. XueP. ChengM. SunY. WangX. ZhangT. Quercetin inhibits inflammatory response induced by LPS from Porphyromonas gingivalis in human gingival fibroblasts via suppressing NF-κB signaling pathway.BioMed Res. Int.2019201911010.1155/2019/6282635 31531360
    [Google Scholar]
  55. JiaZ. NallasamyP. LiuD. ShahH. LiJ.Z. ChitrakarR. SiH. McCormickJ. ZhuH. ZhenW. LiY. Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IKBα/NF-κB signaling pathway.J. Nutr. Biochem.201526329330210.1016/j.jnutbio.2014.11.008 25577468
    [Google Scholar]
  56. DongJ. XuO. WangJ. ShanC. RenX. Luteolin ameliorates inflammation and Th1/Th2 imbalance via regulating the TLR4/NF-κB pathway in allergic rhinitis rats.Immunopharmacol. Immunotoxicol.202143331932710.1080/08923973.2021.1905659 33900898
    [Google Scholar]
  57. BianY. DongY. SunJ. SunM. HouQ. LaiY. ZhangB. Protective effect of kaempferol on lps-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells.J. Agric. Food Chem.202068116016710.1021/acs.jafc.9b06294 31825618
    [Google Scholar]
  58. HeX. WangJ. SunL. MaW. LiM. YuS. ZhouQ. JiangJ. Wogonin attenuates inflammation and oxidative stress in lipopolysaccharide-induced mastitis by inhibiting Akt/NF-κB pathway and activating the Nrf2/HO-1 signaling.Cell Stress Chaperones202328698999910.1007/s12192‑023‑01391‑4 37910344
    [Google Scholar]
  59. AlimohammadiM. MohammadR.N. RahimiA. FaramarziF. Alizadeh-NavaeiR. RafieiA. The effect of immunomodulatory properties of naringenin on the inhibition of inflammation and oxidative stress in autoimmune disease models: A systematic review and meta-analysis of preclinical evidence.Inflamm. Res.20227110-111127114210.1007/s00011‑022‑01599‑7 35804246
    [Google Scholar]
  60. HsuD.Z. LiuM.Y. Bicuculline methiodide attenuates hepatic injury and decreases mortality in septic rats: Role of cytokines.Shock200422434735010.1097/01.shk.0000136705.33995.bd 15377890
    [Google Scholar]
  61. ThorntonC.P. LiM. BudhathokiC. YehC.H. RubleK. Anti-inflammatory mouthwashes for the prevention of oral mucositis in cancer therapy: An integrative review and meta-analysis.Support. Care Cancer20223097205721810.1007/s00520‑022‑07068‑5 35486227
    [Google Scholar]
  62. KiyomiA. YoshidaK. AraiC. UsukiR. YamazakiK. HoshinoN. KurokawaA. ImaiS. SuzukiN. ToyamaA. SugiuraM. Salivary inflammatory mediators as biomarkers for oral mucositis and oral mucosal dryness in cancer patients: A pilot study.PLoS One2022174e026709210.1371/journal.pone.0267092 35476641
    [Google Scholar]
  63. BayramogluZ. MokhtareB. MendilA.S. CobanT.A. MammadovR. BulutS. SuleymanZ. SuleymanH. Effect of taxifolin on methotrexate-induced oxidative and inflammatory oral mucositis in rats: Biochemical and histopathological evaluation.J. Appl. Oral Sci.202230e2022011510.1590/1678‑7757‑2022‑0115 36134855
    [Google Scholar]
  64. HaydenM.S. GhoshS. Regulation of NF-κB by TNF family cytokines.Semin. Immunol.201426325326610.1016/j.smim.2014.05.004 24958609
    [Google Scholar]
  65. WongH.R. OdomsK.K. DenenbergA.G. AllenG.L. ShanleyT.P. Hyperoxia prolongs tumor necrosis factor-alpha-mediated activation of NF-kappaB: Role of IkappaB kinase.Shock200217427427910.1097/00024382‑200204000‑00006 11954826
    [Google Scholar]
  66. XingZ. GauldieJ. CoxG. BaumannH. JordanaM. LeiX.F. AchongM.K. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses.J. Clin. Invest.1998101231132010.1172/JCI1368 9435302
    [Google Scholar]
  67. LaiN.J.Y. NguE.L. PangJ.R. WongK.H. ArdiantoC. MingL.C. LimS.H. WalvekarS.G. AnwarA. YowY.Y. Carrageenophyte Kappaphycus malesianus inhibits microglia-mediated neuroinflammation via suppression of AKT/NF-κB and ERK signaling pathways.Mar. Drugs202220853410.3390/md20080534 36005538
    [Google Scholar]
  68. TangB. TangF. WangZ. QiG. LiangX. LiB. YuanS. LiuJ. YuS. HeS. Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: Suppression by carnosic acid nanoparticle.Int. J. Nanomedicine2016116401642010.2147/IJN.S101285 27942213
    [Google Scholar]
  69. YangJ. LinN. LiS. DongZ. WangD. LiuY. ZhouY. YuanH. Cannabidiol alleviates oral mucositis by inhibiting PI3K/Akt/NF-κB-mediated pyroptosis.Balkan Med. J.202441428629710.4274/balkanmedj.galenos.2024.2024‑2‑66 38966918
    [Google Scholar]
  70. GuoW. LiuB. YinY. KanX. GongQ. LiY. CaoY. WangJ. XuD. MaH. FuS. LiuJ. LicochalconeA. Licochalcone a protects the blood–milk barrier integrity and relieves the inflammatory response in LPS-induced mastitis.Front. Immunol.20191028710.3389/fimmu.2019.00287 30858849
    [Google Scholar]
  71. CirilloN. VicidominiA. McCulloughM. GambardellaA. HassonaY. PrimeS.S. ColellaG. A hyaluronic acid-based compound inhibits fibroblast senescence induced by oxidative stress in vitro and prevents oral mucositis in vivo.J. Cell. Physiol.201523071421142910.1002/jcp.24908 25536474
    [Google Scholar]
  72. OrtizF. Acuña-CastroviejoD. DoerrierC. DayoubJ.C. LópezL.C. VenegasC. GarcíaJ.A. LópezA. VoltH. Luna-SánchezM. EscamesG. Melatonin blunts the mitochondrial/NLRP 3 connection and protects against radiation‐induced oral mucositis.J. Pineal Res.2015581344910.1111/jpi.12191 25388914
    [Google Scholar]
  73. SussanT.E. JunJ. ThimmulappaR. BedjaD. AnteroM. GabrielsonK.L. PolotskyV.Y. BiswalS. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice.PLoS One2008311e379110.1371/journal.pone.0003791 19023427
    [Google Scholar]
  74. YanakaA. Role of NRF2 in protection of the gastrointestinal tract against oxidative stress.J. Clin. Biochem. Nutr.2018631182510.3164/jcbn.17‑139 30087539
    [Google Scholar]
  75. TonoloF. FoldaA. ScalconV. MarinO. BindoliA. RigobelloM.P. Nrf2-activating bioactive peptides exert anti-inflammatory activity through inhibition of the NF-κB pathway.Int. J. Mol. Sci.2022238438210.3390/ijms23084382 35457199
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073328881240808071048
Loading
/content/journals/cchts/10.2174/0113862073328881240808071048
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test