Skip to content
2000
Volume 28, Issue 12
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Knee osteoarthritis (KOA) is a common degenerative joint disease characterized by cartilage degradation, inflammation, and pain. Traditional Chinese Medicine, including JDJM (a herbal formula derived from the renowned Du Huo Ji Sheng Tang), has been used to alleviate symptoms of KOA, but its underlying mechanisms remain unclear.

Objective

This study aims to elucidate the potential therapeutic mechanisms of JDJM in treating KOA through network pharmacology, weighted gene co-expression network analysis (WGCNA), molecular docking, and experimental validation in animal models.

Methods

The active compounds of JDJM were identified through TCMSP database searches, and their potential targets were predicted using network pharmacology. WGCNA was employed to identify key modules and hub genes associated with KOA. Molecular docking was performed to assess the binding affinities of key compounds to critical inflammatory targets. Molecular dynamics (MD) simulations were used to evaluate the stability of the protein-ligand complexes. An experimental KOA model in rabbits was used to validate the therapeutic effects of JDJM. Histopathological examinations and inflammatory marker analyses were conducted to confirm the findings.

Results

Network pharmacology and WGCNA analyses identified 21 key targets and pathways potentially involved in the therapeutic effects of JDJM. Molecular docking results showed that Glyasperin C had the highest docking scores with EGF and IL-1β, followed by Stigmasterol with IL-6, Myricanone with INS, and Sesamin with VEGFA. MD simulations confirmed the stability of these protein-ligand complexes, indicating strong and stable interactions. In the rabbit KOA model, JDJM treatment significantly improved knee joint morphology and reduced the levels of inflammatory markers, such as IL-6 and TNF-α. Histopathological analysis revealed reduced cartilage degradation and inflammation in the JDJM-treated group compared to controls.

Conclusion

JDJM exhibits promising anti-inflammatory and cartilage-protective effects, making it a potential therapeutic option for KOA patients. Further experimental and clinical studies are warranted to confirm these findings and translate them into clinical practice.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073298262240705045345
2024-07-10
2025-10-10
Loading full text...

Full text loading...

References

  1. HolikH. KrečakI. LucijanićM. SamardžićI. PilipacD. Vučinić LjubičićI. CohaB. Kitter PipićA. MiškićB. Zupančić-ŠalekS. Hip and knee osteoarthritis in patients with chronic myeloproliferative neoplasms: A cross-sectional study.Life2023136138810.3390/life13061388 37374170
    [Google Scholar]
  2. ZhangY. JiQ. Current advances of photobiomodulation therapy in treating knee osteoarthritis.Front. Cell Dev. Biol.202311128602510.3389/fcell.2023.1286025 38033853
    [Google Scholar]
  3. GundogduG. GundogduK. MilogluF.D. TascıS.Y. A new perspective on the relation between obesity and knee osteoarthritis.Omentin. Curr. Rheumatol. Rev.202016432433110.2174/1573397116666191226122801 31878858
    [Google Scholar]
  4. NieD. YanG. ZhouW. WangZ. YuG. LiuD. YuanN. LiH. Metabolic syndrome and the incidence of knee osteoarthritis: A meta-analysis of prospective cohort studies.PLoS One20201512e024357610.1371/journal.pone.0243576 33362213
    [Google Scholar]
  5. LiG. LiuS. ChenY. XuH. QiT. XiongA. WangD. YuF. WengJ. ZengH. Teriparatide ameliorates articular cartilage degradation and aberrant subchondral bone remodeling in DMM mice.J. Orthop. Translat.20233824125510.1016/j.jot.2022.10.015 36514714
    [Google Scholar]
  6. CodeluppiS.A. XuM. BansalY. LepackA.E. DuricV. ChowM. MuirJ. BagotR.C. LicznerskiP. WilberS.L. SanacoraG. SibilleE. DumanR.S. PittengerC. BanasrM. Prefrontal cortex astroglia modulate anhedonia-like behavior.Mol. Psychiatry202328114632464110.1038/s41380‑023‑02246‑1 37696873
    [Google Scholar]
  7. JiangW. ChenH. LinY. ChengK. ZhouD. ChenR. SongC. ZengL. YuH. Mechanical stress abnormalities promote chondrocyte senescence - The pathogenesis of knee osteoarthritis.Biomed. Pharmacother.202316711555210.1016/j.biopha.2023.115552 37748410
    [Google Scholar]
  8. ChenS. KangP. ZhaoZ. ZhangH. LiJ. XuK. GongD. JiaoF. WangH. ZhangM. Danggui-Shaoyao-San (DSS) ameliorates the progression of osteoarthritis via suppressing the NF-κB signaling pathway: An in vitro and in vivo study combined with bioinformatics analysis.Aging (Albany NY)202416164866410.18632/aging.205410 38194722
    [Google Scholar]
  9. WangY.H. ZhouY. GaoX. SunS. XieY.Z. HuY.P. FuY. FanX.H. XieQ. Duhuo jisheng decoction regulates intracellular zinc homeostasis by enhancing autophagy via PTEN/Akt/mTOR pathway to improve knee cartilage degeneration.PLoS One2024191e029092510.1371/journal.pone.0290925 38166086
    [Google Scholar]
  10. ChanK.H. ChingJ.Y.L. ChanK.L. LauH.Y. ChuK.M. ChanK. PangH.F. WongL.C. ChiaC.P. ZhangH.W. SongT. LeungS.B. NgB.F.L. LinZ.X. Therapeutic effect of Duhuo Jisheng Decoction add-on Tui-na manipulation on osteoarthritis of knee: A randomized controlled trial.Chin. Med.20231818210.1186/s13020‑023‑00737‑5 37424023
    [Google Scholar]
  11. ZhaoJ. LiangG. PanJ. YangW. ZengL. LiuJ. Efficacy of duhuo jisheng decoction for treating cold-dampness obstruction syndrome-type knee osteoarthritis: A pooled analysis.BioMed Res. Int.202220221910.1155/2022/2350404 35774274
    [Google Scholar]
  12. LiuF. LiuG. LiangW. YeH. WengX. LinP. LiH. ChenJ. LiuX. LiX. Duhuo Jisheng decoction treatment inhibits the sodium nitroprussiate-induced apoptosis of chondrocytes through the mitochondrial-dependent signaling pathway.Int. J. Mol. Med.20143461573158010.3892/ijmm.2014.1962 25339266
    [Google Scholar]
  13. ZhengS. ZhouB. YangL. HouA. ZhangJ. YuH. KuangH. JiangH. YangL. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from Duhuo Jisheng decoction on osteoarthritis in rats.J. Ethnopharmacol.202331511667910.1016/j.jep.2023.116679 37257711
    [Google Scholar]
  14. LiuL. XuL. WangS. WangL. WangX. XuH. LiX. YeH. Confirmation of inhibitingTLR4/MyD88/NF-κB signalling pathway by duhuo jisheng decoction on osteoarthritis: A network pharmacology approach-integrated experimental study.Front. Pharmacol.20221278482210.3389/fphar.2021.784822 35140604
    [Google Scholar]
  15. MiY.L. Mechanism Study of Jiawei Duhuo Jisheng Mixture in Regulating Intestinal Barrier and Gut Microbiota Metabolism in KOA Mice.Hunan University of Chinese Medicine2024
    [Google Scholar]
  16. YiN.X. Mechanism Study of Jiawei Duhuo Jisheng Mixture and Its Active Components in Regulating Cartilage Degeneration and Synovial Inflammation in the Treatment of Knee Osteoarthritis.Hunan University of Chinese Medicine2023
    [Google Scholar]
  17. ShiQ. HuangL. DuanJ. KuangG. LuM. TanX. The effects of Jiawei Duhuo Jisheng mixture on Wnt/β-catenin signaling pathway in the synovium inflamed by knee osteoarthritis: An in vitro and in vivo experiment.J. Ethnopharmacol.202229411536310.1016/j.jep.2022.115363 35551975
    [Google Scholar]
  18. ZhuY. OuyangZ. DuH. WangM. WangJ. SunH. KongL. XuQ. MaH. SunY. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics.Acta Pharm. Sin. B202212114011403910.1016/j.apsb.2022.08.022 36386472
    [Google Scholar]
  19. ZhangB. LuC. BaiM. HeX. TanY. BianY. XiaoC. ZhangG. LuA. LiS. Tetramethylpyrazine identified by a network pharmacology approach ameliorates methotrexate-induced oxidative organ injury.J. Ethnopharmacol.201517563864710.1016/j.jep.2015.09.034 26435225
    [Google Scholar]
  20. BhatiV. KumarA. LatherV. SharmaR. PanditaD. Association of temozolomide with progressive multifocal leukoencephalopathy: A disproportionality analysis integrated with network pharmacology.Expert Opin. Drug Saf.202423564965810.1080/14740338.2023.2278682 37915230
    [Google Scholar]
  21. WuC. HuangZ.H. MengZ.Q. FanX.T. LuS. TanY.Y. YouL.M. HuangJ.Q. StalinA. YeP.Z. WuZ.S. ZhangJ.Y. LiuX.K. ZhouW. ZhangX.M. WuJ.R. A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation.Chin. Med.202116112110.1186/s13020‑021‑00534‑y 34809653
    [Google Scholar]
  22. LiY. YangL. WangY. DengZ. XuS. XieH. ZhangY. LiJ. Exploring metformin as a candidate drug for rosacea through network pharmacology and experimental validation.Pharmacol. Res.202117410597110.1016/j.phrs.2021.105971 34763093
    [Google Scholar]
  23. SilvaG.M. YangJ. LeangB. HuangJ. WeinreichD.M. RubensteinB.M. Covalent docking and molecular dynamics simulations reveal the specificity-shifting mutations Ala237Arg and Ala237Lys in TEM beta-lactamase.PLOS Comput. Biol.2022186e100994410.1371/journal.pcbi.1009944 35759512
    [Google Scholar]
  24. StrasserA. WittmannH.J. Molecular modelling approaches for the analysis of histamine receptors and their interaction with ligands.Handb. Exp. Pharmacol.2017241316110.1007/164_2016_113
    [Google Scholar]
  25. SunT. QuanW. PengS. YangD. LiuJ. HeC. ChenY. HuB. TuoQ. Network pharmacology-based strategy combined with molecular docking and in vitro validation study to explore the underlying mechanism of Huo Luo Xiao Ling Dan in treating atherosclerosis.Drug Des. Devel. Ther.2022161621164510.2147/DDDT.S357483 35669282
    [Google Scholar]
  26. DongY. ZhaoQ. WangY. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy.Sci. Rep.20211111949610.1038/s41598‑021‑98925‑6 34593896
    [Google Scholar]
  27. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  28. TiwariP. AliS.A. PuriB. KumarA. DatusaliaA.K. Tinospora cordifolia Miers enhances the immune response in mice immunized with JEV-vaccine: A network pharmacology and experimental approach.Phytomedicine202311915497610.1016/j.phymed.2023.154976 37573808
    [Google Scholar]
  29. TibbittsJ. CanterD. GraffR. SmithA. KhawliL.A. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development.MAbs20168222924510.1080/19420862.2015.1115937 26636901
    [Google Scholar]
  30. FanS. HuY. Integrative analyses of biomarkers and pathways for heart failure.BMC Med. Genomics20221517210.1186/s12920‑022‑01221‑z 35346191
    [Google Scholar]
  31. QianX. ChenZ. ChenS.S. LiuL.M. ZhangA.Q. Integrated analyses identify immune-related signature associated with qingyihuaji formula for treatment of pancreatic ductal adenocarcinoma using network pharmacology and weighted gene co-expression network.J. Immunol. Res.2020202011710.1155/2020/7503605 32537471
    [Google Scholar]
  32. SongL. LangfelderP. HorvathS. Comparison of co-expression measures: Mutual information, correlation, and model based indices.BMC Bioinformatics201213132810.1186/1471‑2105‑13‑328 23217028
    [Google Scholar]
  33. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  34. ChenZ. XieD. LiuZ. ZhongY. ZengJ. ChenZ. ChenX. Identification of the significant pathways of Banxia Houpu decoction in the treatment of depression based on network pharmacology.PLoS One2020159e023984310.1371/journal.pone.0239843 32997725
    [Google Scholar]
  35. ZhouW. WuJ. ZhangJ. LiuX. GuoS. JiaS. ZhangX. ZhuY. WangM. Integrated bioinformatics analysis to decipher molecular mechanism of compound Kushen injection for esophageal cancer by combining WGCNA with network pharmacology.Sci. Rep.20201011274510.1038/s41598‑020‑69708‑2 32728182
    [Google Scholar]
  36. AshburnerM. BallC.A. BlakeJ.A. BotsteinD. ButlerH. CherryJ.M. DavisA.P. DolinskiK. DwightS.S. EppigJ.T. HarrisM.A. HillD.P. Issel-TarverL. KasarskisA. LewisS. MateseJ.C. RichardsonJ.E. RingwaldM. RubinG.M. SherlockG. Gene Ontology: Tool for the unification of biology.Nat. Genet.2000251252910.1038/75556 10802651
    [Google Scholar]
  37. KanehisaM. SatoY. FurumichiM. MorishimaK. TanabeM. New approach for understanding genome variations in KEGG.Nucleic Acids Res.201947D1D590D59510.1093/nar/gky962 30321428
    [Google Scholar]
  38. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  39. SinghR. KumarA. LatherV. SharmaR. PanditaD. Identification of novel signal of Raynaud’s phenomenon with calcitonin gene-related peptide (CGRP) antagonists using data mining algorithms and network pharmacological approaches.Expert Opin. Drug Saf.202423223123810.1080/14740338.2023.2248877 37594041
    [Google Scholar]
  40. CavasottoC.N. AbagyanR.A. Protein flexibility in ligand docking and virtual screening to protein kinases.J. Mol. Biol.2004337120922510.1016/j.jmb.2004.01.003 15001363
    [Google Scholar]
  41. NavyashreeV. KantK. KumarA. Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: A molecular docking and dynamics approach.J. Biomol. Struct. Dyn.20213941404141610.1080/07391102.2020.1731603 32072856
    [Google Scholar]
  42. DeyD. KumarA. Unveiling the potential of recently FDA-approved drugs as quorum sensing inhibitors against P. Aeruginosa using high-performance computational techniques.J. Biomol. Struct. Dyn.202411810.1080/07391102.2024.2304682 38230441
    [Google Scholar]
  43. SpitzerR. JainA.N. Surflex-Dock: Docking benchmarks and real-world application.J. Comput. Aided Mol. Des.201226668769910.1007/s10822‑011‑9533‑y 22569590
    [Google Scholar]
  44. XueQ. LiuX. RussellP. LiJ. PanW. FuJ. ZhangA. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock.Ecotoxicol. Environ. Saf.202223311332310.1016/j.ecoenv.2022.113323 35183811
    [Google Scholar]
  45. HoltP.A. ChairesJ.B. TrentJ.O. Molecular docking of intercalators and groove-binders to nucleic acids using Autodock and Surflex.J. Chem. Inf. Model.20084881602161510.1021/ci800063v 18642866
    [Google Scholar]
  46. LoschwitzJ. JäckeringA. KeutmannM. OlagunjuM. OlubiyiO.O. StrodelB. Dataset of AMBER force field parameters of drugs, natural products and steroids for simulations using GROMACS.Data Brief20213510694810.1016/j.dib.2021.106948 33855133
    [Google Scholar]
  47. GuptaM.K. VaddeR. DondeR. GoudaG. KumarJ. NayakS. JenaM. BeheraL. Insights into the structure–function relationship of brown plant hopper resistance protein, Bph14 of rice plant: A computational structural biology approach.J. Biomol. Struct. Dyn.20193771649166510.1080/07391102.2018.1462737 29633905
    [Google Scholar]
  48. ZhangY.H. OuL. KuangG.Y. Study on the efficacy and mechanism of jiawei duhuo jisheng mixture in promoting cartilage repair in knee osteoarthritis.Zhongguo Zhongyiyao Xinxi Zazhi201825012832
    [Google Scholar]
  49. KuangT. ZhangY. ShenF. Effect of jiawei duhuo jisheng mixture on serum metabolomics in patients with knee osteoarthritis of liver-kidney deficiency syndrome.Zhongguo Zhongyiyao Xinxi Zazhi202027112328
    [Google Scholar]
  50. YanK. XieJ.J. KuangG.Y. Clinical observation of jiawei duhuo jisheng mixture combined with quadriceps function exercise in the treatment of knee osteoarthritis.Chin. J. Tradit. Chin. Med.20192504108110
    [Google Scholar]
  51. ZhangY.H. Study on the Efficacy and Mechanism of Jiawei Duhuo Jisheng Mixture in Promoting Cartilage Repair in Knee Osteoarthritis.Hunan University of Chinese Medicine2019
    [Google Scholar]
  52. FengH. HeY. LaL. HouC. SongL. YangQ. WuF. LiuW. HouL. LiY. WangC. LiY. The flavonoid-enriched extract from the root of Smilax china L. inhibits inflammatory responses via the TLR-4-mediated signaling pathway.J. Ethnopharmacol.202025611278510.1016/j.jep.2020.112785 32222576
    [Google Scholar]
  53. WangL. HeC. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis.Front. Immunol.20221396719310.3389/fimmu.2022.967193 36032081
    [Google Scholar]
  54. QiuL. LuoY. ChenX. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats.Biomed. Pharmacother.20181031585159110.1016/j.biopha.2018.05.003 29864946
    [Google Scholar]
  55. WangQ. YingL. WeiB. JiY. XuY. Effects of quercetin on apoptosis and extracellular matrix degradation of chondrocytes induced by oxidative stress‐mediated pyroptosis.J. Biochem. Mol. Toxicol.2022362e2295110.1002/jbt.22951 34791735
    [Google Scholar]
  56. WangX.P. XieW.P. BiY.F. WangB.A. SongH.B. WangS.L. BiR.X. Quercetin suppresses apoptosis of chondrocytes induced by IL 1β via inactivation of p38 MAPK signaling pathway.Exp. Ther. Med.202121546810.3892/etm.2021.9899 33767763
    [Google Scholar]
  57. VelagapudiR. JamshaidF. LepiarzI. KatolaF.O. HemmingK. OlajideO.A. The tiliroside derivative, 3-O-[(E)-(2-oxo-4-(p-tolyl) but–3–en–1–yl] kaempferol produced inhibition of neuroinflammation and activation of AMPK and Nrf2/HO-1 pathways in BV-2 microglia.Int. Immunopharmacol.20197710595110.1016/j.intimp.2019.105951 31634788
    [Google Scholar]
  58. ZhuangZ. YeG. HuangB. Kaempferol alleviates the interleukin-1β-induced inflammation in rat osteoarthritis chondrocytes via suppression of NF-κB.Med. Sci. Monit.2017233925393110.12659/MSM.902491 28806392
    [Google Scholar]
  59. KhanN.M. AhmadI. AnsariM.Y. HaqqiT.M. Wogonin, a natural flavonoid, intercalates with genomic DNA and exhibits protective effects in IL-1β stimulated osteoarthritis chondrocytes.Chem. Biol. Interact.2017274132310.1016/j.cbi.2017.06.025 28688942
    [Google Scholar]
  60. KhanN.M. HaseebA. AnsariM.Y. DevarapalliP. HaynieS. HaqqiT.M. Dataset of effect of Wogonin, a natural flavonoid, on the viability and activation of NF-κB and MAPKs in IL-1β-stimulated human OA chondrocytes.Data Brief20171215015510.1016/j.dib.2017.03.054 28443293
    [Google Scholar]
  61. LiuJ. JiaS. YangY. PiaoL. WangZ. JinZ. BaiL. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling.Biomed. Pharmacother.202315811411810.1016/j.biopha.2022.114118 36527845
    [Google Scholar]
  62. SunK. LuoJ. GuoJ. YaoX. JingX. GuoF. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review.Osteoarthritis Cartilage202028440040910.1016/j.joca.2020.02.027 32081707
    [Google Scholar]
  63. XueJ.F. ShiZ.M. ZouJ. LiX.L. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis.Biomed. Pharmacother.2017891252126110.1016/j.biopha.2017.01.130 28320092
    [Google Scholar]
  64. XuK. HeY. MoqbelS.A.A. ZhouX. WuL. BaoJ. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway.Int. J. Biol. Macromol.202117535136010.1016/j.ijbiomac.2021.02.029 33556400
    [Google Scholar]
  65. TangL. SimI. MoqbelS.A.A. WuL. Dapansutrile ameliorated chondrocyte inflammation and osteoarthritis through suppression of MAPK signaling pathway.Hum. Exp. Toxicol.20224110.1177/09603271221145401 36508695
    [Google Scholar]
  66. ShanW. ChengC. HuangW. DingZ. LuoS. CuiG. LuW. LiuF. XuJ. HeW. YinZ. Angiopoietin-like 2 upregulation promotes human chondrocyte injury via NF-κB and p38/MAPK signaling pathway.J. Bone Miner. Metab.201937697698610.1007/s00774‑019‑01016‑w 31214838
    [Google Scholar]
  67. ZhangC. YuL. ZhouY. ZhaoQ. LiuS.Q. Chitosan oligosaccharides inhibit IL-1β-induced chondrocyte apoptosis via the P38 MAPK signaling pathway.Glycoconj. J.201633573574410.1007/s10719‑016‑9667‑1 27178341
    [Google Scholar]
  68. ChenY. ShouK. GongC. YangH. YangY. BaoT. Anti-inflammatory effect of geniposide on osteoarthritis by suppressing the activation of p38 MAPK signaling pathway.BioMed Res. Int.2018201811110.1155/2018/8384576 29682561
    [Google Scholar]
  69. BenderdourM. TardifG. PelletierJ.P. Di BattistaJ.A. ReboulP. RangerP. Martel-PelletierJ. Interleukin 17 (IL-17) induces collagenase-3 production in human osteoarthritic chondrocytes via AP-1 dependent activation: differential activation of AP-1 members by IL-17 and IL-1beta.J. Rheumatol.200229612621272 12064845
    [Google Scholar]
  70. HonoratiM.C. CattiniL. FacchiniA. IL-17, IL-1β and TNF-α stimulate VEGF production by dedifferentiated chondrocytes.Osteoarthritis Cartilage200412968369110.1016/j.joca.2004.05.009 15325633
    [Google Scholar]
  71. Cajas SantanaL.J. Rondón HerreraF. RojasA.P. Martínez LozanoD.J. PrietoN. Bohorquez CastañedaM. Serum chemerin in a cohort of Colombian patients with primary osteoarthritis.Reumatol. Clín.202117953053510.1016/j.reumae.2020.05.003 34756315
    [Google Scholar]
  72. ZhangY.H. OuL. KuangG.Y. Effect of Jiawei Duhuo Jisheng Mixture on IL-1, NO, Sox9, and Collagen II in synovial fluid of knee osteoarthritis. *.Chin. J. Tradit. Chin. Med.2018330837103712
    [Google Scholar]
  73. KuangG.Y. YanK. ChaiS. Clinical efficacy of jiawei duhuo jisheng mixture in the treatment of knee osteoarthritis and its effect on IL-1, IL-6, TNF-α, and NO in joint fluid. *.Zhongguo Shiyan Fangjixue Zazhi20172301174178
    [Google Scholar]
  74. ZhuS. BatushanskyA. JopkiewiczA. MakosaD. HumphriesK.M. Van RemmenH. GriffinT.M. Sirt5 deficiency causes posttranslational protein malonylation and dysregulated cellular metabolism in chondrocytes under obesity conditions.Cartilage2021132_suppl)(Suppl.1185S1199S10.1177/194760352199320933567897
    [Google Scholar]
  75. MelasI.N. ChairakakiA.D. ChatzopoulouE.I. MessinisD.E. KatopodiT. PliakaV. SamaraS. MitsosA. DailianaZ. KolliaP. AlexopoulosL.G. Modeling of signaling pathways in chondrocytes based on phosphoproteomic and cytokine release data.Osteoarthritis Cartilage201422350951810.1016/j.joca.2014.01.001 24457104
    [Google Scholar]
  76. GuanM. ZhuY. LiaoB. TanQ. QiH. ZhangB. HuangJ. DuX. BaiD. Low‐intensity pulsed ultrasound inhibits VEGFA expression in chondrocytes and protects against cartilage degeneration in experimental osteoarthritis.FEBS Open Bio202010343444310.1002/2211‑5463.12801 31975545
    [Google Scholar]
  77. LiuY. ZengY. SiH.B. TangL. XieH.Q. ShenB. Exosomes derived from human urine–derived stem cells overexpressing mir-140-5p alleviate knee osteoarthritis through downregulation of VEGFA in a rat model.Am. J. Sports Med.20225041088110510.1177/03635465221073991 35179989
    [Google Scholar]
  78. LongD.L. UliciV. ChubinskayaS. LoeserR.F. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities.Osteoarthritis Cartilage20152391523153110.1016/j.joca.2015.04.019 25937027
    [Google Scholar]
  79. JanssenJ.N. BatschkusS. SchimmelS. BodeC. SchminkeB. MiosgeN. The influence of TGF-β3, EGF, and BGN on SOX9 and RUNX2 expression in human chondrogenic progenitor cells.J. Histochem. Cytochem.201967211712710.1369/0022155418811645 30431382
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073298262240705045345
Loading
/content/journals/cchts/10.2174/0113862073298262240705045345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test