Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Mogroside V (MV), a triterpene glycoside, exhibits diverse biological functions. However, its ability to promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under diabetic conditions is yet to be elucidated.

Objective

To study the regulation of osteogenic differentiation of BMSCs in diabetic mice by MV and determine the potential mechanism.

Methods

BMSCs were isolated from both normal (referred to as N-BMSCs) and diabetic (referred to as DM-BMSCs) C57BL/6 mice. DM-BMSCs were treated with different concentrations of MV for varying durations, and cell viability was detected using the cell counting kit-8 assay. Following 2 weeks of osteogenic induction, osteogenic differentiation capability was evaluated using alizarin red S staining, alkaline phosphatase (ALP) activity analysis, and quantitative real-time reverse transcription polymerase chain reaction. Furthermore, the microRNA (miRNA) expression profiles of N-BMSCs, DM-BMSCs, and DM-BMSCs treated with MV were tested using high-throughput sequencing.

Results

Treatment with MV enhanced the viability of DM-BMSCs and mitigated the reduction of calcium nodule deposition, ALP activity, and mRNA expression of ALP, osteocalcin, and runt-related transcription factor 2. Of the analyzed miRNAs, miR-10b-5p was the only one that exhibited differential expression in N-BMSCs, DM-BMSCs, and DM-BMSCs treated with MV. An analysis of the top four protein clusters based on KEGG suggested that the target genes of differentially expressed miRNAs were closely linked to the PI3K/AKT pathway.

Conclusion

MV significantly enhances the viability and osteogenic differentiation of BMSCs under diabetic conditions. The alteration of miRNA profiles provides a foundation for further research into the regulatory role of miRNAs and MV in this process.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073299904240416114653
2024-04-25
2025-09-10
Loading full text...

Full text loading...

References

  1. HarreiterJ. RodenM. Diabetes mellitus—definition, classification, diagnosis, screening and prevention (Update 2019).Wien. Klin. Wochenschr.2019131S161510.1007/s00508‑019‑1450‑4 30980151
    [Google Scholar]
  2. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  3. PolakD. ShapiraL. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes.J. Clin. Periodontol.201845215016610.1111/jcpe.12803 29280184
    [Google Scholar]
  4. XiaoY. MareddyS. CrawfordR. Clonal characterization of bone marrow derived stem cells and their application for bone regeneration.Int. J. Oral Sci.201023127135 21125790
    [Google Scholar]
  5. XingQ. FengJ. ZhangX. Semaphorin3B promotes proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells in a high-glucose microenvironment.Stem Cells Int.202120211910.1155/2021/6637176 33727932
    [Google Scholar]
  6. YinM. ZhangY. YuH. LiX. Role of hyperglycemia in the senescence of mesenchymal stem cells.Front. Cell Dev. Biol.2021966541210.3389/fcell.2021.665412 33968939
    [Google Scholar]
  7. LiY. WangX. Chrysin attenuates high glucose-induced BMSC dysfunction via the activation of the PI3K/AKT/Nrf2 signaling pathway.Drug Des. Devel. Ther.20221616518210.2147/DDDT.S335024 35058687
    [Google Scholar]
  8. GongX. ChenN. RenK. JiaJ. WeiK. ZhangL. LvY. WangJ. LiM. The fruits of Siraitia grosvenorii: A review of a chinese food-medicine.Front. Pharmacol.201910140010.3389/fphar.2019.01400 31849659
    [Google Scholar]
  9. TakemotoT. AriharaS. NakajimaT. OkuhiraM. Studies on the constituents of fructus Momordicae. II. Structure of sapogenin.Yakugaku Zasshi1983103111155116610.1248/yakushi1947.103.11_1155 6676454
    [Google Scholar]
  10. TakasakiM. KonoshimaT. MurataY. SugiuraM. NishinoH. TokudaH. MatsumotoK. KasaiR. YamasakiK. Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenori.Cancer Lett.20031981374210.1016/S0304‑3835(03)00285‑4 12893428
    [Google Scholar]
  11. LiuH. QiX. YuK. LuA. LinK. ZhuJ. ZhangM. SunZ. AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice.Food Funct.201910115116210.1039/C8FO01486H 30516208
    [Google Scholar]
  12. ChenW.J. WangJ. QiX.Y. XieB.J. The antioxidant activities of natural sweeteners, mogrosides, from fruits of Siraitia grosvenori.Int. J. Food Sci. Nutr.200758754855610.1080/09637480701336360 17852496
    [Google Scholar]
  13. LiY. ZouL. LiT. LaiD. WuY. QinS. Mogroside V inhibits LPS-induced COX-2 expression/ROS production and overexpression of HO-1 by blocking phosphorylation of AKT1 in RAW264.7 cells.Acta Biochim. Biophys. Sin.201951436537410.1093/abbs/gmz014 30877761
    [Google Scholar]
  14. LinZ. HeH. WangM. LiangJ. MicroRNA‐130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate.Cell Prolif.2019526e1268810.1111/cpr.12688 31557368
    [Google Scholar]
  15. LiS. HuangQ. ZhangL. QiaoX. ZhangY. TangF. LiZ. Effect of CAPE-pNO2 against type 2 diabetes mellitus via the AMPK/GLUT4/GSK3β/PPARα pathway in HFD/STZ-induced diabetic mice.Eur. J. Pharmacol.201985311010.1016/j.ejphar.2019.03.027 30885574
    [Google Scholar]
  16. MaZ. LiaoJ. ZhaoC. CaiD. Effects of the 1, 4-dihydropyridine L-type calcium channel blocker benidipine on bone marrow stromal cells.Cell Tissue Res.2015361246747610.1007/s00441‑015‑2115‑x 25743688
    [Google Scholar]
  17. DamaG. DuJ. ZhuX. LiuY. LinJ. Bone marrow-derived mesenchymal stem cells: A promising therapeutic option for the treatment of diabetic foot ulcers.Diabetes Res. Clin. Pract.202319511020110.1016/j.diabres.2022.110201 36493913
    [Google Scholar]
  18. Florencio-SilvaR. SassoG.R.S. Sasso-CerriE. SimõesM.J. CerriP.S. Biology of bone tissue: Structure, function, and factors that influence bone cells.BioMed Res. Int.2015201511710.1155/2015/421746 26247020
    [Google Scholar]
  19. BeckG.R.Jr ZerlerB. MoranE. Phosphate is a specific signal for induction of osteopontin gene expression.Proc. Natl. Acad. Sci.200097158352835710.1073/pnas.140021997 10890885
    [Google Scholar]
  20. GlowackiJ. ReyC. GlimcherM.J. CoxK.A. LianJ. A role for osteocalcin in osteoclast differentiation.J. Cell. Biochem.199145329230210.1002/jcb.240450312 2066381
    [Google Scholar]
  21. KomoriT. Regulation of proliferation, differentiation and functions of osteoblasts by runx2.Int. J. Mol. Sci.2019207169410.3390/ijms20071694 30987410
    [Google Scholar]
  22. WronkaM. KrzemińskaJ. MłynarskaE. RyszJ. FranczykB. The influence of lifestyle and treatment on oxidative stress and inflammation in diabetes.Int. J. Mol. Sci.202223241574310.3390/ijms232415743 36555387
    [Google Scholar]
  23. SunY. ZhuY. LiuX. ChaiY. XuJ. Morroniside attenuates high glucose–induced BMSC dysfunction by regulating the Glo1/AGE/RAGE axis.Cell Prolif.2020538e1286610.1111/cpr.12866 32643284
    [Google Scholar]
  24. ZhouY. ZhengY. EbersoleJ. HuangC.F. Insulin secretion stimulating effects of mogroside V and fruit extract of luo han kuo (Siraitia grosvenori Swingle) fruit extract.Yao Xue Xue Bao2009441112521257 21351724
    [Google Scholar]
  25. LiuY. ZhangB. LiuJ. QiaoC. XueN. LvH. LiS. Mogroside V alleviates lipopolysaccharide-induced neuroinflammation via inhibition of TLR4-MyD88 and activation of AKT/AMPK-Nrf2 signaling pathway.Evid. Based Complement. Alternat. Med.2021202111310.1155/2021/5521519 34012471
    [Google Scholar]
  26. QiX.Y. ChenW.J. ZhangL.Q. XieB.J. Mogrosides extract from Siraitia grosvenori scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice.Nutr. Res.200828427828410.1016/j.nutres.2008.02.008 19083420
    [Google Scholar]
  27. ShunhanY. LiangL. JiagangQ. HuachengW. Mogroside V promotes bone formation by stimulating osteoblast proliferation and differentiation.Chin. J. Tissue Eng. Res.2019234701
    [Google Scholar]
  28. BaiL. ShiG. YangY. ChenW. ZhangL. Anti-aging effect of Siraitia grosuenorii by enhancement of hematopoietic stem cell function.Am. J. Chin. Med.201644480381510.1142/S0192415X16500440 27222064
    [Google Scholar]
  29. ZhaoX. ChenZ. ZhouZ. LiY. WangY. ZhouZ. LuH. SunC. ChuX. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with high-fat diet-induced hepatic insulin resistance in mice.Genes Nutr.2019141610.1186/s12263‑019‑0630‑1 30820263
    [Google Scholar]
  30. SinghR. HaS.E. WeiL. JinB. ZoggH. PoudrierS.M. miR-10b-5p rescues diabetes and gastrointestinal dysmotility.Gastroenterology202116016621678e18.
    [Google Scholar]
  31. ZhouX. JiaoZ. JiJ. LiS. HuangX. LuX. ZhaoH. PengJ. ChenX. JiQ. JiY. Characterization of mouse serum exosomal small RNA content: The origins and their roles in modulating inflammatory response.Oncotarget2017826427124272710.18632/oncotarget.17448 28514744
    [Google Scholar]
  32. WanG. XuZ. XiangX. ZhangM. JiangT. ChenJ. LiS. WangC. YanC. YangX. ChenZ. Elucidation of endothelial progenitor cell dysfunction in diabetes by RNA sequencing and constructing lncRNA–miRNA–mRNA competing endogenous RNA network.J. Mol. Med.2022100111569158510.1007/s00109‑022‑02251‑x 36094536
    [Google Scholar]
  33. BetelD. WilsonM. GabowA. MarksD.S. SanderC. The microRNA.org resource: Targets and expression.Nucleic Acids Res.200836D149D153 18158296
    [Google Scholar]
  34. RehmsmeierM. SteffenP. HöchsmannM. GiegerichR. Fast and effective prediction of microRNA/target duplexes.RNA200410101507151710.1261/rna.5248604
    [Google Scholar]
  35. LiY. XiaoL. LiJ. SunP. ShangL. ZhangJ. ZhaoQ. OuyangY. LiL. GongK. MicroRNA profiling of diabetic atherosclerosis in a rat model.Eur. J. Med. Res.20182315510.1186/s40001‑018‑0354‑5 30390707
    [Google Scholar]
  36. HwangS.J. AhnB.J. ShinM.W. SongY.S. ChoiY. OhG.T. KimK.W. LeeH.J. miR-125a-5p attenuates macrophage-mediated vascular dysfunction by targeting Ninjurin1.Cell Death Differ.20222961199121010.1038/s41418‑021‑00911‑y 34974535
    [Google Scholar]
  37. JiangY. HeY. ChenY. ZengJ. HuangW. HuangL. LuoJ. MaY. WuL. YangX. Overexpression of MICRORNA ‐155 aggravates pulpitis by targeting kinesin superfamily PROTEINS‐5C based on illumina HIGH‐THROUGHPUT sequencing.Int. Endod. J.202356783785310.1111/iej.13923 37070646
    [Google Scholar]
  38. ZhengJ. XuJ. ZhangR. DuJ. WangH. LiJ. ZhouD. SunY. ShenB. MicroRNA-989 targets 5-hydroxytryptamine receptor1 to regulate ovarian development and eggs production in Culex pipiens pallens.Parasit. Vectors202316132610.1186/s13071‑023‑05957‑0 37705064
    [Google Scholar]
  39. LinJ. ShenJ. LiuJ. ChengW. LiL. JiaoF. Whole-blood MicroRNA sequence profiling and identification of specific miR-21 for adolescents with postural tachycardia syndrome.Front. Neurosci.20221692047710.3389/fnins.2022.920477 35844239
    [Google Scholar]
  40. HaJ. ParkC. ParkC. ParkS. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization.J. Biomed. Inform.202010210335810.1016/j.jbi.2019.103358 31857202
    [Google Scholar]
  41. HaJ. ParkC. MLMD: Metric learning for predicting MiRNA-disease associations.IEEE Access20219788477885810.1109/ACCESS.2021.3084148
    [Google Scholar]
  42. HaJ. MDMF: Predicting miRNA–disease association based on matrix factorization with disease similarity constraint.J. Pers. Med.202212688510.3390/jpm12060885 35743670
    [Google Scholar]
  43. HaJ. ParkS. NCMD: Node2vec-based neural collaborative filtering for predicting MiRNA-disease association.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232021257126810.1109/TCBB.2022.3191972 35849666
    [Google Scholar]
  44. HaJ. SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association.Knowl. Base. Syst.202326311029510.1016/j.knosys.2023.110295
    [Google Scholar]
  45. MohebbiM. DingL. MalmbergR.L. CaiL. Human MicroRNA target prediction via multi-hypotheses learning.J. Comput. Biol.202128211713210.1089/cmb.2020.0227 33232617
    [Google Scholar]
  46. HoxhajG. ManningB.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism.Nat. Rev. Cancer2020202748810.1038/s41568‑019‑0216‑7 31686003
    [Google Scholar]
  47. RamachandranV. SaravananR. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats.Hum. Exp. Toxicol.201534988489310.1177/0960327114561663 26286522
    [Google Scholar]
  48. YangC. LiuX. ZhaoK. ZhuY. HuB. ZhouY. WangM. WuY. ZhangC. XuJ. NingY. ZouD. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects.Stem Cell Res. Ther.20191016510.1186/s13287‑019‑1168‑2 30795815
    [Google Scholar]
  49. PanM.H. YangJ.R. TsaiM.L. SangS. HoC.T. Anti-inflammatory effect of momordica grosvenori swingle extract through suppressed LPS-induced upregulation of iNOS and COX-2 in murine macrophages.J. Funct. Foods20091214515210.1016/j.jff.2009.01.003
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073299904240416114653
Loading
/content/journals/cchts/10.2174/0113862073299904240416114653
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test