Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

In Lung Adenocarcinoma (LUAD), Qi-deficiency and Phlegm-turbid stagnation (QP) are the most prevalent Traditional Chinese Medicine (TCM) syndrome.

Methods

Herein, we collected 90 fecal samples (Healthy individual (H): 30; other syndrome (O): 30; QP: 30) and explored the composition and diversity of gut microbiota in LUAD patients with QP syndrome using 16s-rRNA sequencing. Then, we identified biomarkers for QP syndrome in LUAD patients with Linear Discriminant Analysis (LDA) effect size (LEfSe) and applied logistic regression analysis to construct a diagnostic model evaluated with the area under the receiver operating characteristic curve (AUC) and validated with data from metagenomics.

Results

The α diversity and β diversity revealed that the microbiota community structure in LUAD patients with QP syndrome was different from that with healthy individuals and LUAD patients with other syndromes. At the phylum level, the QP group had more abundance of Bacteroidetes and less Proteobacteria than the O group. At the genus level, the abundance of 4 genera (Bacteroides, Parabacteroides, Prevotella, and Flavonifractor) was different between the QP group and O group. Moreover, LEfSe indicated that those 4 genera might be the biomarkers for LUAD patients with QP syndrome. Then, we used those 4 genera to develop a diagnostic model. The AUC based on 16s-rRNA sequencing and metagenomics was 0.989 and 1, respectively.

Conclusion

A diagnostic model was developed, which would be an available tool for the clinical diagnosis of LUAD with QP syndrome.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073303081240521083505
2024-06-05
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/7/CCHTS-28-7-15.html?itemId=/content/journals/cchts/10.2174/0113862073303081240521083505&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  2. BartaJ.A. PowellC.A. WisniveskyJ.P. Global epidemiology of lung cancer.Ann. Glob. Health2019851810.5334/aogh.241930741509
    [Google Scholar]
  3. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  4. FerrerI. ZugazagoitiaJ. HerbertzS. JohnW. Paz-AresL. Schmid-BindertG. KRAS-Mutant non-small cell lung cancer: From biology to therapy.Lung Cancer2018124536410.1016/j.lungcan.2018.07.01330268480
    [Google Scholar]
  5. ReckM. RabeK.F. Precision diagnosis and treatment for advanced non-small-cell lung cancer.N. Engl. J. Med.2017377984986110.1056/NEJMra170341328854088
    [Google Scholar]
  6. Lemjabbar-AlaouiH. HassanO.U. YangY.W. BuchananP. Lung cancer: Biology and treatment options.Biochim. Biophys. Acta20151856218921026297204
    [Google Scholar]
  7. LiaoY.H. LiC.I. LinC.C. LinJ.G. ChiangJ.H. LiT.C. Traditional Chinese medicine as adjunctive therapy improves the long-term survival of lung cancer patients.J. Cancer Res. Clin. Oncol.2017143122425243510.1007/s00432‑017‑2491‑628803328
    [Google Scholar]
  8. QiF. ZhaoL. ZhouA. ZhangB. LiA. WangZ. HanJ. The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer.Biosci. Trends201591163410.5582/bst.2015.0101925787906
    [Google Scholar]
  9. NagasakaM. SextonR. AlhasanR. RahmanS. AzmiA.S. SukariA. Gut microbiome and response to checkpoint inhibitors in non-small cell lung cancer—A review.Crit. Rev. Oncol. Hematol.202014510284110.1016/j.critrevonc.2019.10284131884204
    [Google Scholar]
  10. HuangJ. JiangZ. WangY. FanX. CaiJ. YaoX. LiuL. HuangJ. HeJ. XieC. WuQ. CaoY. LeungE.L.H. Modulation of gut microbiota to overcome resistance to immune checkpoint blockade in cancer immunotherapy.Curr. Opin. Pharmacol.20205411010.1016/j.coph.2020.06.00432619934
    [Google Scholar]
  11. FanY. PedersenO. Gut microbiota in human metabolic health and disease.Nat Rev Microbiol20201915571
    [Google Scholar]
  12. ChengW.Y. WuC.Y. YuJ. The role of gut microbiota in cancer treatment: Friend or foe?Gut202069101867187610.1136/gutjnl‑2020‑32115332759302
    [Google Scholar]
  13. SudhakaranM. DoseffA.I. The targeted impact of flavones on obesity-induced inflammation and the potential synergistic role in cancer and the gut microbiota.Molecules20202511247710.3390/molecules2511247732471061
    [Google Scholar]
  14. JinY. DongH. XiaL. YangY. ZhuY. ShenY. ZhengH. YaoC. WangY. LuS. The diversity of gut microbiome is associated with favorable responses to anti–programmed death 1 immunotherapy in chinese patients with NSCLC.J. Thorac. Oncol.20191481378138910.1016/j.jtho.2019.04.00731026576
    [Google Scholar]
  15. BotticelliA. VernocchiP. MariniF. QuagliarielloA. CerbelliB. ReddelS. Del ChiericoF. Di PietroF. GiustiR. TomassiniA. GiampaoliO. MiccheliA. ZizzariI.G. NutiM. PutignaniL. MarchettiP. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment.J. Transl. Med.20201814910.1186/s12967‑020‑02231‑032014010
    [Google Scholar]
  16. LiaoX. BuY. JiaQ. Traditional Chinese medicine as supportive care for the management of liver cancer: Past, present, and future.Genes Dis.20207337037910.1016/j.gendis.2019.10.01632884991
    [Google Scholar]
  17. WanL.Q. TanY. JiangM. HuaQ. The prognostic impact of traditional Chinese medicine monomers on tumor-associated macrophages in non-small cell lung cancer.Chin. J. Nat. Med.2019171072973710.1016/S1875‑5364(19)30089‑531703753
    [Google Scholar]
  18. JiaQ. WangL. ZhangX. DingY. LiH. YangY. ZhangA. LiY. LvS. ZhangJ. Prevention and treatment of chronic heart failure through traditional Chinese medicine: Role of the gut microbiota.Pharmacol. Res.202015110455210.1016/j.phrs.2019.10455231747557
    [Google Scholar]
  19. SiF. SongX. ChenR. Syndrome and formula distribution of primary lung cancer: Literature study.J. Tradit. Chin. Med.20145511461151
    [Google Scholar]
  20. YuZ.H. XuG.S. ChenJ.B. Influencing factor analysis of traditional chinese medicine syndrome differentiation combined with epidermal growth factor receptor-tyrosine kinase inhibitor on survival of 104 cases of advanced lung adenocarcinoma epidermal growth factor receptor gene-sensitive mutations.J. Tradit. Chin. Med.20196013781383
    [Google Scholar]
  21. XuW. YangG. XuY. ZhangQ. FuQ. YuJ. YuM. ZhaoW. YangZ. HuF. HanD. WangX. The possibility of traditional chinese medicine as maintenance therapy for advanced nonsmall cell lung cancer.Evid. Based Complement. Alternat. Med.201420141910.1155/2014/27891725165478
    [Google Scholar]
  22. GaoM. WuJ. ZhouS. ChenY. WangM. HeW. JiangL. ShuY. WangX. Combining fecal microbiome and metabolomics reveals diagnostic biomarkers for esophageal squamous cell carcinoma.Microbiol. Spectr.2024125e04012-2310.1128/spectrum.04012‑2338497715
    [Google Scholar]
  23. NguyenS.M. TranH.T.T. LongJ. ShrubsoleM.J. CaiH. YangY. NguyenL.M. NguyenG.H. NguyenC.V. TaT.V. WuJ. CaiQ. ZhengW. TranT.V. ShuX.O. Gut microbiome of patients with breast cancer in Vietnam.JCO Glob. Oncol.20241010e230023410.1200/GO.23.0023438359370
    [Google Scholar]
  24. LogueJ.B. StedmonC.A. KellermanA.M. NielsenN.J. AnderssonA.F. LaudonH. LindströmE.S. KritzbergE.S. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter.ISME J.201610353354510.1038/ismej.2015.13126296065
    [Google Scholar]
  25. YangJ. LiD. YangZ. DaiW. FengX. LiuY. JiangY. LiP. LiY. TangB. ZhouQ. QiuC. ZhangC. XuX. FengS. WangD. WangH. WangW. ZhengY. ZhangL. WangW. ZhouK. LiS. YuP. Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families.Gut Microbes202011491892910.1080/19490976.2020.171298631971861
    [Google Scholar]
  26. HanX. LiangL. HeC. RenQ. SuJ. CaoL. ZhengJ. A real-world study and network pharmacology analysis of EGFR-TKIs combined with ZLJT to delay drug resistance in advanced lung adenocarcinoma.BMC Complement. Med. Therap.202323142210.1186/s12906‑023‑04213‑337990309
    [Google Scholar]
  27. HuangX. ZhuL. ZhouL. XuW. YaoY. ZhouZ. LiH. Multidisciplinary and comprehensive chinese medicine for advanced non-small cell lung cancer patients: A retrospective study of 855 cases.Chin. J. Integr. Med.202127749049510.1007/s11655‑020‑3428‑532876856
    [Google Scholar]
  28. ZhangW.Q. ZhaoS.K. LuoJ.W. DongX.P. HaoY.T. LiH. ShanL. ZhouY. ShiH.B. ZhangZ.Y. PengC.L. ZhaoX.G. Alterations of fecal bacterial communities in patients with lung cancer.Am. J. Transl. Res.201810103171318530416659
    [Google Scholar]
  29. LiuF. LiJ. GuanY. LouY. ChenH. XuM. DengD. ChenJ. NiB. ZhaoL. LiH. SangH. CaiX. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer.Int. J. Biol. Sci.201915112381239210.7150/ijbs.3598031595156
    [Google Scholar]
  30. WexlerH.M. Bacteroides: The good, the bad, and the nitty-gritty.Clin. Microbiol. Rev.200720459362110.1128/CMR.00008‑0717934076
    [Google Scholar]
  31. LiuQ.Q. LiC.M. FuL.N. WangH.L. TanJ. WangY.Q. SunD.F. GaoQ.Y. ChenY.X. FangJ.Y. Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B.Gut Microbes2020121178890010.1080/19490976.2020.178890032684087
    [Google Scholar]
  32. SittipoP. LobiondaS. ChoiK. SariI.N. KwonH.Y. LeeY.K. Toll-like receptor 2-mediated suppression of colorectal cancer pathogenesis by polysaccharide a from bacteroides fragilis. Front. Microbiol.20189158810.3389/fmicb.2018.0158830065713
    [Google Scholar]
  33. SinhaR. AhnJ. SampsonJ.N. ShiJ. YuG. XiongX. HayesR.B. GoedertJ.J. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations.PLoS One2016113e015212610.1371/journal.pone.015212627015276
    [Google Scholar]
  34. HuY. Le LeuR.K. ChristophersenC.T. SomashekarR. ConlonM.A. MengX.Q. WinterJ.M. WoodmanR.J. McKinnonR. YoungG.P. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats.Carcinogenesis201637436637510.1093/carcin/bgw01926905582
    [Google Scholar]
  35. LeyR.E. Prevotella in the gut: Choose carefully.Nat. Rev. Gastroenterol. Hepatol.2016132697010.1038/nrgastro.2016.426828918
    [Google Scholar]
  36. GuptaA. DhakanD.B. MajiA. SaxenaR. P KV.P. MahajanS. PulikkanJ. KurianJ. GomezA.M. ScariaJ. AmatoK.R. SharmaA.K. SharmaV.K. Association of Flavonifractor plautii, a Flavonoid-Degrading Bacterium, with the Gut Microbiome of Colorectal Cancer Patients in India.mSystems201946e00438e1910.1128/mSystems.00438‑1931719139
    [Google Scholar]
  37. LiuZ. HeH. YanS. WangY. YangT. LiG.Z. End-to-end models to imitate traditional chinese medicine syndrome differentiation in lung cancer diagnosis: model development and validation.JMIR Med. Inform.202086e1782110.2196/1782132543445
    [Google Scholar]
  38. LiuZ. YuZ. OuYangX. DuJ. LanX. ZhaoM. Applied research on serum protein fingerprints for prediction of Qi deficiency syndrome and phlegm and blood stasis in patients with non-small cell lung cancer.J. Tradit. Chin. Med.201232335035410.1016/S0254‑6272(13)60036‑923297554
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073303081240521083505
Loading
/content/journals/cchts/10.2174/0113862073303081240521083505
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test