Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Identifying cancer-specific biomarkers is a crucial step in the disease screening process at a very early stage of tumor development. In recent years, Quantitative proteomic approaches have gained importance in identifying novel candidate markers in cancer. Gastric cancer has always been known as a life-threatening medical condition with high mortality rates.

Objectives

The objective of our research is to adapt serum samples from Indian gastric cancer patients to identify and understand the differentially regulated proteins in comparison with healthy individuals.

Methods

A total of 30 serum isolates from gastric cancer patients and healthy individuals were obtained and subjected to 2-D Gel electrophoresis, and Tandem LC-MS analysis revealed 12 differentially expressed protein spots. The functional properties of identified proteins were further analyzed using PANTHER and STRING databases.

Results

The differentially expressed protein spots were identified as three candidate proteins: Haptoglobin, Prohibitin, and Apolipoprotein. The protein interaction studies reveal that the haptoglobin fragments were upregulated, and the remaining two prohibitin and Apolipoprotein were down-regulated in gastric cancer patients.

Conclusion

All the proteins identified as biomarkers were found to be involved in regulating cell proliferation and stabilization of oxidative metabolism in the liver; therefore, differential regulation plays a crucial role in gastric cancer progression.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073302521240429112034
2024-05-15
2025-09-05
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. EtemadiA. SafiriS. SepanlouS.G. IkutaK. BisignanoC. ShakeriR. AmaniM. FitzmauriceC. NixonM. AbbasiN. AbolhassaniH. AdvaniS.M. AfaridehM. AkinyemijuT. AlamT. AlikhaniM. AlipourV. AllenC.A. HashianiA.A. ArablooJ. AssadiR. AtiqueS. AwasthiA. BakhtiariA. BehzadifarM. BerheK. BhalaN. BijaniA. SayeedB.M.S. BjørgeT. BorzìA.M. BraithwaiteD. BrennerH. CarrerasG. CarvalhoF. OrjuelaC.C.A. CastroF. ChuD-T. CostaV.M. DaryaniA. DavitoiuD.V. DemozG.T. DemisA.B. GutiérrezD.E. DeyS. NasabD.M. DjalaliniaS. EmamianM.H. FarahmandM. FernandesJ.C. FischerF. ForoutanM. GadM.M. GallusS. GebremeskelG.G. GedefewG.A. KebriaG.F. GoriniG. NejadH.N. MirzaianH.A. HaroJ.M. HarveyJ.D. HasanzadehA. HashemianM. HassenH.Y. HayS.I. HidruH.D. HostiucM. HousehM. IlesanmiO. IlicM.D. InnosK. IslamiF. JamesS.L. JenabiE. kalhorR. KamangarF. KasaeianA. KengneA.P. KhaderY.S. KhalilovR. KhanE.A. KhanG. KhayamzadehM. PoolK.M. KhazaeiS. KhojaA.T. ShadmaniK.F. KimY.J. KocarnikJ.M. KomakiH. KoyanagiA. KumarV. La VecchiaC. LopezA.D. LuneviciusR. ManafiN. MandaA-L. GetaB. MeheretuH. MengistuG. MiazgowskiB. MirS.M. MohammadK.A. MezerjiM.G.N. MohammadianM. HafshejaniM.A. MohammadpourhodkiR. MohammedS. MohebiF. MokdadA.H. MonastaL. MoosazadehM. MoossaviM. MoradiG. MoradpourF. MoradzadehR. Vel squezM.I. MosapourA. NaderiM. NaikG. NajafiF. NahvijouA. NegoiI. NikbakhshR. NojomiM. OlagunjuA.T. OlagunjuT.O. OrenE. ParsianH. PiccinelliC. PourshamsA. PoustchiH. RabieeN. RadfarA. RafieiA. RahimiM. RahmatiM. RenzahoA.M.N. RezaeiN. RibeiroA.I. RoshandelG. SaadA.M. SaadatagahS. SalimzadehH. SamyA.M. SanabriaJ. Santric MilicevicM.M. SarveazadA. SawhneyM. ShaahmadiF. SekerijaM. ShaikhM.A. ShamshirianA. MalleshappaS.S.K. SinghJ.A. SmarandacheC-G. SoofiM. TabuchiT. TadesseD.B. TapakL. TesfayB.E. TrainiE. TranB. TranK.B. VacanteM. AzimiV.A. VeisaniY. VosoughiK. VujcicI.S. WestermanR. WondmienehA.B. XuR. YayaS. FeyzabadiY.V. YousefiZ. YousefiB. MoghadamZ.T. ZakiL. ZamaniM. ZamanianM. ZandianH. ZarghiA. ZhangZ-J. NaghaviM. MalekzadehR. The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: A systematic analysis for the global burden of disease study 2017.Lancet Gastroenterol. Hepatol.202051425410.1016/S2468‑1253(19)30328‑031648970
    [Google Scholar]
  3. MurugesanS.C. ManickavasagamK. ChandramohanA. JebarajA. JameelA.R.A. JainM.S. VenkataramanJ. Gastric cancer in India: Epidemiology and standard of treatment.Updates Surg.201870223323910.1007/s13304‑018‑0527‑329611052
    [Google Scholar]
  4. MatsukumaA. FurusawaM. TomodaH. SeoY. A clinicopathological study of asymptomatic gastric cancer.Br. J. Cancer199674101647165010.1038/bjc.1996.6038932349
    [Google Scholar]
  5. CoghlinC. MurrayG.I. Progress in the development of protein biomarkers of oesophageal and gastric cancers.Proteomics Clin. Appl.201610453254510.1002/prca.20150007926582241
    [Google Scholar]
  6. ZengR. LiY. LiY. WanQ. HuangZ. QiuZ. TangD. Smartphone-based photoelectrochemical immunoassay with Co 9 S 8 @ZnIn 2 S 4 for point-of-care diagnosis of breast cancer biomarker.Research202220222022/983152110.34133/2022/983152136072273
    [Google Scholar]
  7. LvS. ZhangK. ZengY. TangD. Double photosystems-based ‘z-scheme’ photoelectrochemical sensing mode for ultrasensitive detection of disease biomarker accompanying three-dimensional DNA walker.Anal. Chem.201890117086709310.1021/acs.analchem.8b0182529775052
    [Google Scholar]
  8. LamK.W. LoS.C. Discovery of diagnostic serum biomarkers of gastric cancer using proteomics.Proteom. Clin. Appl.20082221922810.1002/prca.20078001521136826
    [Google Scholar]
  9. PectasidesD. MylonakisA. KostopoulouM. PapadopoulouM. TriantafillisD. VarthalitisJ. DimitriadesM. AthanassiouA. CEA, CA 19-9, and CA-50 in monitoring gastric carcinoma.Am. J. Clin. Oncol.199720434835310.1097/00000421‑199708000‑000059256887
    [Google Scholar]
  10. ZhangK. LvS. ZhouQ. TangD. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction.Sens. Actuators B Chem.202030712763110.1016/j.snb.2019.127631
    [Google Scholar]
  11. QiuZ. ShuJ. TangD. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper.Anal. Chem.20178995152516010.1021/acs.analchem.7b0098928376620
    [Google Scholar]
  12. BavelloniA. PiazziM. RaffiniM. FaenzaI. BlalockW.L. Prohibitin 2: At a communications crossroads.IUBMB Life201567423925410.1002/iub.136625904163
    [Google Scholar]
  13. YangJ. LiB. HeQ.Y. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment.Cell Death Dis.20189658010.1038/s41419‑018‑0661‑329784973
    [Google Scholar]
  14. BogenhagenD.F. RousseauD. BurkeS. The layered structure of human mitochondrial DNA nucleoids.J. Biol. Chem.200828363665367510.1074/jbc.M70844420018063578
    [Google Scholar]
  15. WangS. ZhangB. FallerD.V. Prohibitin requires Brg-1 and Brm for the repression of E2F and cell growth.EMBO J.200221123019302810.1093/emboj/cdf30212065415
    [Google Scholar]
  16. TakataH. MatsunagaS. MorimotoA. MaN. KuriharaD. ManiwaO.R. NakagawaM. AzumaT. UchiyamaS. FukuiK. PHB2 protects sister-chromatid cohesion in mitosis.Curr. Biol.200717151356136110.1016/j.cub.2007.07.00917656096
    [Google Scholar]
  17. NijtmansL.G.J. de JongL. Artal SanzM. CoatesP.J. BerdenJ.A. BackJ.W. MuijsersA.O. van der SpekH. GrivellL.A. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins.EMBO J.200019112444245110.1093/emboj/19.11.244410835343
    [Google Scholar]
  18. FusaroG. DasguptaP. RastogiS. JoshiB. ChellappanS. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling.J. Biol. Chem.200327848478534786110.1074/jbc.M30517120014500729
    [Google Scholar]
  19. WangS. NathN. AdlamM. ChellappanS. Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function.Oncogene199918233501351010.1038/sj.onc.120268410376528
    [Google Scholar]
  20. TangL. ZhaoY. NieW. WangZ. GuanX. 3′ untranslated region 1630 C>T polymorphism of prohibitin increases risk of breast cancer.OncoTargets Ther.2013617718223662067
    [Google Scholar]
  21. RenL. YiJ. LiW. ZhengX. LiuJ. WangJ. DuG. Apolipoproteins and cancer.Cancer Med.20198167032704310.1002/cam4.258731573738
    [Google Scholar]
  22. SuF. LangJ. KumarA. NgC. HsiehB. SuchardM.A. ReddyS.T. EisnerF.R. Validation of candidate serum ovarian cancer biomarkers for early detection.Biomark. Insights2007210.1177/11772719070020001119662218
    [Google Scholar]
  23. QuanQ. HuangY. ChenQ. QiuH. HuQ. RongY. LiT. XiaL. ZhangB. Impact of serum apolipoprotein A-I on prognosis and bevacizumab efficacy in patients with metastatic colorectal Cancer: A propensity score-matched analysis.Transl. Oncol.201710228829410.1016/j.tranon.2017.01.00628292509
    [Google Scholar]
  24. Van HemelrijckM. WalldiusG. JungnerI. HammarN. GarmoH. BindaE. HaydayA. LambeM. HolmbergL. Low levels of apolipoprotein A-I and HDL are associated with risk of prostate cancer in the Swedish AMORIS study.Cancer Causes Control20112271011101910.1007/s10552‑011‑9774‑z21562751
    [Google Scholar]
  25. ShiJ. YangH. DuanX. LiL. SunL. LiQ. ZhangJ. Apolipoproteins as differentiating and predictive markers for assessing clinical outcomes in patients with small cell lung cancer.Yonsei Med. J.201657354955610.3349/ymj.2016.57.3.54926996551
    [Google Scholar]
  26. NaryznyS.N. LeginaO.K. Haptoglobin as a biomarker.Biochem. Suppl. Ser. B: Biomed. Chem.202115318419810.1134/S199075082103006934422226
    [Google Scholar]
  27. JeongS. KimU. OhM. NamJ. ParkS. ChoiY. LeeD. KimJ. AnH. Detection of aberrant glycosylation of serum haptoglobin for gastric cancer diagnosis using a middle-up-down glycoproteome platform.J. Pers. Med.202111657510.3390/jpm1106057534207451
    [Google Scholar]
  28. ParkS.Y. LeeS.H. KawasakiN. ItohS. KangK. Hee RyuS. HashiiN. KimJ.M. KimJ.Y. Hoe KimJ. α1‐3/4 fucosylation at Asn 241 of β‐haptoglobin is a novel marker for colon cancer: A combinatorial approach for development of glycan biomarkers.Int. J. Cancer2012130102366237610.1002/ijc.2628821780104
    [Google Scholar]
  29. RabilloudT. ChevalletM. LucheS. LelongC. Two-dimensional gel electrophoresis in proteomics: Past, present and future.J. Proteomics201073112064207710.1016/j.jprot.2010.05.01620685252
    [Google Scholar]
  30. Bech-SerraJ.J. BorthwickA. ColoméN. AlbarJ.P. WellsM. del PinoS.M. CanalsF. A multi-laboratory study assessing reproducibility of a 2D-DIGE differential proteomic experiment.J. Biomol. Tech.200920529329619949705
    [Google Scholar]
  31. ChevalierF. Highlights on the capacities of “Gel-based” proteomics.Proteome Sci.2010812310.1186/1477‑5956‑8‑2320426826
    [Google Scholar]
  32. JayaramanM. SivagnanamA. ThangasamyB. NagarajanV. RaviS.G. MadheshJ.C. PerumalM.A. KarunakaranP. Comparative proteomic analysis reveals novel biomarkers for gastric Cancer in South Indian Tamil population.Comb. Chem. High Throughput Screen.20222581361137310.2174/138620732466621060312032034082671
    [Google Scholar]
  33. AnanthiS. LakshmiC.N.P. AtmikaP. AnbarasuK. MahalingamS. Global quantitative proteomics reveal deregulation of cytoskeletal and apoptotic signalling proteins in oral tongue squamous cell carcinoma.Sci. Rep.201881156710.1038/s41598‑018‑19937‑329371635
    [Google Scholar]
  34. AnanthiS. ChitraT. BiniR. PrajnaN.V. LalithaP. DharmalingamK. Comparative analysis of the tear protein profile in mycotic keratitis patients.Mol. Vis.20081450050718385783
    [Google Scholar]
  35. MiH. HuangX. MuruganujanA. TangH. MillsC. KangD. ThomasP.D. PANTHER version 11: Expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements.Nucleic Acids Res.201745D1D183D18910.1093/nar/gkw113827899595
    [Google Scholar]
  36. SzklarczykD. FranceschiniA. WyderS. ForslundK. HellerD. CepasH.J. SimonovicM. RothA. SantosA. TsafouK.P. KuhnM. BorkP. JensenL.J. von MeringC. STRING v10: Protein–protein interaction networks, integrated over the tree of life.Nucleic Acids Res.201543D1D447D45210.1093/nar/gku100325352553
    [Google Scholar]
  37. HelgasonH.H. EngwegenJ.M.N. ZapatkaM. CatsA. BootH. BeijnenJ.H. SchellensJ.H.M. Serum proteomics and disease-specific biomarkers of patients with advanced gastric cancer.Oncol. Lett.20101232733310.3892/ol_0000005822966303
    [Google Scholar]
  38. McClungJ.K. DannerD.B. StewartD.A. SmithJ.R. SchneiderE.L. LumpkinC.K. Dell’OrcoR.T. NuellM.J. Isolation of a cDNA that hybrid selects antiproliferative mRNA from rat liver.Biochem. Biophys. Res. Commun.198916431316132210.1016/0006‑291X(89)91813‑52480116
    [Google Scholar]
  39. SatoT. SakamotoT. TakitaK. SaitoH. OkuiK. NakamuraY. The human prohibitin (PHB) gene family and its somatic mutations in human tumors.Genomics199317376276410.1006/geno.1993.14028244394
    [Google Scholar]
  40. SignorileA. SgaramellaG. BellomoF. De RasmoD. Prohibitins: A critical role in mitochondrial functions and implication in diseases.Cells2019817110.3390/cells801007130669391
    [Google Scholar]
  41. KuramoriC. AzumaM. KumeK. KanekoY. InoueA. YamaguchiY. KabeY. HosoyaT. KizakiM. SuematsuM. HandaH. Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus.Biochem. Biophys. Res. Commun.2009379251952510.1016/j.bbrc.2008.12.10319116139
    [Google Scholar]
  42. LiaoQ. GuoX. LiX. XiongW. LiX. YangJ. ChenP. ZhangW. YuH. TangH. DengM. LiangF. WuM. LuoZ. WangR. ZengX. ZengZ. LiG. Prohibitin is an important biomarker for nasopharyngeal carcinoma progression and prognosis.Eur. J. Cancer Prev.2013221687610.1097/CEJ.0b013e328354d35122728421
    [Google Scholar]
  43. FengF. QiuB. ZangR. SongP. GaoS. Pseudogene PHBP1 promotes esophageal squamous cell carcinoma proliferation by increasing its cognate gene PHB expression.Oncotarget2017817290912910010.18632/oncotarget.1619628404970
    [Google Scholar]
  44. UhlenM. ZhangC. LeeS. SjöstedtE. FagerbergL. BidkhoriG. BenfeitasR. ArifM. LiuZ. EdforsF. SanliK. von FeilitzenK. OksvoldP. LundbergE. HoberS. NilssonP. MattssonJ. SchwenkJ.M. BrunnströmH. GlimeliusB. SjöblomT. EdqvistP.H. DjureinovicD. MickeP. LindskogC. MardinogluA. PontenF. A pathology atlas of the human cancer transcriptome.Science20173576352eaan250710.1126/science.aan250728818916
    [Google Scholar]
  45. LealM.F. CiriloP.D.R. MazzottiT.K.F. CalcagnoD.Q. WisnieskiF. DemachkiS. MartinezM.C. AssumpçãoP.P. ChammasR. BurbanoR.R. SmithM.C. Prohibitin expression deregulation in gastric cancer is associated with the 3′ untranslated region 1630 C>T polymorphism and copy number variation.PLoS One201495e9858310.1371/journal.pone.009858324879411
    [Google Scholar]
  46. SultanA. RamanB. RaoC.M. TangiralaR. The extracellular chaperone haptoglobin prevents serum fatty acid-promoted amyloid fibril formation of β2-microglobulin, resistance to lysosomal degradation, and cytotoxicity.J. Biol. Chem.201328845323263234210.1074/jbc.M113.49833724078632
    [Google Scholar]
  47. JeongS. OhM.J. KimU. LeeJ. KimJ.H. AnH.J. Glycosylation of serum haptoglobin as a marker of gastric cancer: An overview for clinicians.Expert Rev. Proteomics202017210911710.1080/14789450.2020.174009132149536
    [Google Scholar]
  48. PinhoS.S. ReisC.A. Glycosylation in cancer: Mechanisms and clinical implications.Nat. Rev. Cancer201515954055510.1038/nrc398226289314
    [Google Scholar]
  49. HuaS. WilliamsC.C. DimapasocL.M. RoG.S. OzcanS. MiyamotoS. LebrillaC.B. AnH.J. LeiserowitzG.S. Isomer-specific chromatographic profiling yields highly sensitive and specific potential N-glycan biomarkers for epithelial ovarian cancer.J. Chromatogr. A20131279586710.1016/j.chroma.2012.12.07923380366
    [Google Scholar]
  50. HuaS. AnH.J. OzcanS. RoG.S. SoaresS. DeVere-WhiteR. LebrillaC.B. Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers.Analyst2011136183663367110.1039/c1an15093f21776491
    [Google Scholar]
  51. NakanoM. NakagawaT. ItoT. KitadaT. HijiokaT. KasaharaA. TajiriM. WadaY. TaniguchiN. MiyoshiE. Site‐specific analysis of N ‐glycans on haptoglobin in sera of patients with pancreatic cancer: A novel approach for the development of tumor markers.Int. J. Cancer2008122102301230910.1002/ijc.2336418214858
    [Google Scholar]
  52. SarratsA. SaldovaR. PlaE. FortE. HarveyD.J. StruweW.B. de LlorensR. RuddP.M. PeracaulaR. Glycosylation of liver acute‐phase proteins in pancreatic cancer and chronic pancreatitis.Proteomics Clin. Appl.20104443244810.1002/prca.20090015021137062
    [Google Scholar]
  53. KimJ.H. LeeS.H. ChoiS. KimU. YeoI.S. KimS.H. OhM.J. MoonH. LeeJ. JeongS. ChoiM.G. LeeJ.H. SohnT.S. BaeJ.M. KimS. MinY.W. LeeH. LeeJ.H. RheeP.L. KimJ.J. LeeS.J. KimS.T. LeeJ. ParkS.H. ParkJ.O. ParkY.S. LimH.Y. KangW.K. AnH.J. KimJ.H. Direct analysis of aberrant glycosylation on haptoglobin in patients with gastric cancer.Oncotarget201787110941110410.18632/oncotarget.1436228052004
    [Google Scholar]
  54. LeeS.H. JeongS. LeeJ. YeoI.S. OhM.J. KimU. KimS. KimS.H. ParkS.Y. KimJ.H. ParkS.H. KimJ.H. AnH.J. Glycomic profiling of targeted serum haptoglobin for gastric cancer using nano LC/MS and LC/MS/MS.Mol. Biosyst.201612123611362110.1039/C6MB00559D27722599
    [Google Scholar]
  55. Llorente-CortésV. Martínez-GonzálezJ. BadimonL. LDL receptor-related protein mediates uptake of aggregated LDL in human vascular smooth muscle cells.Arterioscler. Thromb. Vasc. Biol.20002061572157910.1161/01.ATV.20.6.157210845874
    [Google Scholar]
  56. BuG. LiY. CamJ. Low-density lipoprotein receptor family: Endocytosis and signal transduction.Mol. Neurobiol.2001231536810.1385/MN:23:1:5311642543
    [Google Scholar]
  57. HoY.Y. DeckelbaumR.J. ChenY. VogelT. TalmageD.A. Apolipoprotein E inhibits serum-stimulated cell proliferation and enhances serum-independent cell proliferation.J. Biol. Chem.200127646434554346210.1074/jbc.M10532520011551921
    [Google Scholar]
  58. MahleyR.W. RallS.C.Jr Apolipoprotein E: Far more than a lipid transport protein.Annu. Rev. Genomics Hum. Genet.20001150753710.1146/annurev.genom.1.1.50711701639
    [Google Scholar]
  59. GreenowK. PearceN.J. RamjiD.P. The key role of apolipoprotein E in atherosclerosis.J. Mol. Med.200583532934210.1007/s00109‑004‑0631‑315827760
    [Google Scholar]
  60. AliK. MiddletonM. PuréE. RaderD.J. Apolipoprotein E suppresses the type I inflammatory response in vivo. Circ. Res.200597992292710.1161/01.RES.0000187467.67684.4316179587
    [Google Scholar]
  61. KimJ. BasakJ.M. HoltzmanD.M. The role of apolipoprotein E in Alzheimer’s disease.Neuron200963328730310.1016/j.neuron.2009.06.02619679070
    [Google Scholar]
  62. IshigamiM. SwertfegerD.K. HuiM.S. GranholmN.A. HuiD.Y. Apolipoprotein E inhibition of vascular smooth muscle cell proliferation but not the inhibition of migration is mediated through activation of inducible nitric oxide synthase.Arterioscler. Thromb. Vasc. Biol.20002041020102610.1161/01.ATV.20.4.102010764667
    [Google Scholar]
  63. WilliamsH. JohnsonJ.L. CarsonK.G.S. JacksonC.L. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice.Arterioscler. Thromb. Vasc. Biol.200222578879210.1161/01.ATV.0000014587.66321.B412006391
    [Google Scholar]
  64. ChenY.C. PohlG. WangT.L. MorinP.J. RisbergB. KristensenG.B. YuA. DavidsonB. ShihI.M. Apolipoprotein E is required for cell proliferation and survival in ovarian cancer.Cancer Res.200565133133710.1158/0008‑5472.331.65.115665311
    [Google Scholar]
  65. WalloisD.L. SouliéC. SergeantN. de WriezeW.N. HarlinC.M.C. DelacourteA. BoudinC.M.L. ApoE synthesis in human neuroblastoma cells.Neurobiol. Dis.19974535636410.1006/nbdi.1997.01559440124
    [Google Scholar]
  66. VenanzoniM. GiuntaS. MuraroG. StorariL. CresciniC. MazzucchelliR. MontironiR. SethA. Apolipoprotein E expression in localized prostate cancers.Int. J. Oncol.200322477978610.3892/ijo.22.4.77912632068
    [Google Scholar]
  67. YiJ. RenL. WuJ. LiW. ZhengX. DuG. WangJ. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for gastric cancer.Ann. Transl. Med.201971638010.21037/atm.2019.07.5931555694
    [Google Scholar]
  68. SakashitaK. TanakaF. ZhangX. MimoriK. KamoharaY. InoueH. SawadaT. HirakawaK. MoriM. Clinical significance of ApoE expression in human gastric cancer.Oncol. Rep.20082061313131919020708
    [Google Scholar]
  69. ShiX. XuJ. WangJ. CuiM. GaoY. NiuH. JinH. Expression analysis of apolipoprotein E and its associated genes in gastric cancer.Oncol. Lett.20151031309131410.3892/ol.2015.344726622669
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073302521240429112034
Loading
/content/journals/cchts/10.2174/0113862073302521240429112034
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 2-D gel; biomarker; gastric cancer; LC-MS; Prohibitin; proteomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test