Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aims

The aim of this study was to reveal the hepatic cell landscape and function in the progression of NAFLD to NASH.

Background

Non-Alcoholic Steatohepatitis (NASH) is the progressive form and turning point of Non-Alcoholic Fatty Liver Disease (NAFLD), which severely causes irreversible cirrhosis as well as hepatocellular carcinoma. The mechanism underlying the progression of NAFLD to NASH has not been revealed. Unraveling the mechanism of action of NAFLD-NASH is an important goal in improving the survival of patients with liver disease.

Objective

The aim of this study is to discover heterogeneous hepatic cells during the progression of NAFLD to NASH.

Methods

Single-nucleus RNA-seq (snRNA-seq) data containing NASH in NAFLD samples were obtained from the Gene Expression Omnibus (GEO) database. Cell types in liver tissues from NASH and NAFLD were identified after dimensionality reduction analysis, cluster analysis, and cell annotation. The cell pathways in which differences existed were identified by analyzing metabolic pathways in Hepatic cells. We also identified cell subpopulations in Hepatic cells. The developmental trajectories of Hepatic cells were characterized by pseudotime trajectory analysis. Single-cell regulatory network inference and clustering analysis identified key transcription factors and gene regulatory networks in Hepatic cells. Moreover, cell communication analysis determined the potential interactions between Hepatic cells and immune cells, and heapatic stellate cells.

Results

Seven cell types were identified in NAFLD and NASH. The proportion of Hepatic cells was lower in NASH and showed greater energy metabolism and glucose metabolism activity. Hepatic cells exhibited heterogeneity, showing two cell subpopulations, Hepatic cells 1 and Hepatic cells 2. Dysregulation of lipid metabolism in Hepatic Cell 2 resulted in lipid accumulation in the liver, which might be involved in the progression of NAFLD. Four key transcription factors, BHLHE40, NFEL2L, RUNX1, and INF4A, were primarily found in Hepatic cells 2. The transcription factors within the hepatic cells 2 subpopulation mainly regulated genes related to lipid metabolism, energy metabolism, and inflammatory response. The cell communication analysis showed that hepatocyte interactions with immune cells were associated with inflammatory responses, while interactions with hepatic astrocytes were associated with liver injury and hepatocyte fibrosis.

Conclusion

The hepatic cells 2 might promote the progression of NAFLD to NASH by regulating metabolic activity, which might contribute to liver injury through inflammation.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073303213240523095742
2024-05-27
2025-09-06
Loading full text...

Full text loading...

References

  1. CariouB. ByrneC.D. LoombaR. SanyalA.J. Nonalcoholic fatty liver disease as a metabolic disease in humans: A literature review.Diabetes Obes. Metab.20212351069108310.1111/dom.1432233464677
    [Google Scholar]
  2. LiB. ZhangC. ZhanY.T. Nonalcoholic fatty liver disease cirrhosis: A review of its epidemiology, risk factors, clinical presentation, diagnosis, management, and prognosis.Can. J. Gastroenterol. Hepatol.201820181810.1155/2018/278453730065915
    [Google Scholar]
  3. PowellE.E. WongV.W.S. RinellaM. Non-alcoholic fatty liver disease.Lancet2021397102902212222410.1016/S0140‑6736(20)32511‑333894145
    [Google Scholar]
  4. LeeK.C. WuP.S. LinH.C. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis.Clin. Mol. Hepatol.2023291779810.3350/cmh.2022.023736226471
    [Google Scholar]
  5. PaternostroR. TraunerM. Current treatment of non‐alcoholic fatty liver disease.J. Intern. Med.2022292219020410.1111/joim.1353135796150
    [Google Scholar]
  6. YouN. LuY. YanX. JinZ. GuB. Haptoglobin 2-2 genotype is related to the severity of liver damage in hepatitis B patients with liver steatosis.Discov. Med.20233517998298710.24976/Discov.Med.202335179.9438058063
    [Google Scholar]
  7. SlovinS. CarissimoA. PanarielloF. GrimaldiA. BouchéV. GambardellaG. CacchiarelliD. Single-cell RNA sequencing analysis: A step-by-step overview.Methods Mol. Biol.2021228434336510.1007/978‑1‑0716‑1307‑8_1933835452
    [Google Scholar]
  8. ChenG. NingB. ShiT. Single-cell RNA-seq technologies and related computational data analysis.Front. Genet.20191031710.3389/fgene.2019.0031731024627
    [Google Scholar]
  9. XueR. ZhangQ. CaoQ. KongR. XiangX. LiuH. FengM. WangF. ChengJ. LiZ. ZhanQ. DengM. ZhuJ. ZhangZ. ZhangN. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity.Nature2022612793814114710.1038/s41586‑022‑05400‑x36352227
    [Google Scholar]
  10. MassalhaH. Bahar HalpernK. Abu-GazalaS. JanaT. MassasaE.E. MoorA.E. BuchauerL. RozenbergM. PikarskyE. AmitI. ZamirG. ItzkovitzS. A single cell atlas of the human liver tumor microenvironment.Mol. Syst. Biol.20201612e968210.15252/msb.2020968233332768
    [Google Scholar]
  11. AizaraniN. SavianoA. Sagar MaillyL. DurandS. HermanJ.S. PessauxP. BaumertT.F. GrünD. A human liver cell atlas reveals heterogeneity and epithelial progenitors.Nature2019572776819920410.1038/s41586‑019‑1373‑231292543
    [Google Scholar]
  12. MacParlandS.A. LiuJ.C. MaX.Z. InnesB.T. BartczakA.M. GageB.K. ManuelJ. KhuuN. EcheverriJ. LinaresI. GuptaR. ChengM.L. LiuL.Y. CamatD. ChungS.W. SeligaR.K. ShaoZ. LeeE. OgawaS. OgawaM. WilsonM.D. FishJ.E. SelznerM. GhanekarA. GrantD. GreigP. SapisochinG. SelznerN. WinegardenN. AdeyiO. KellerG. BaderG.D. McGilvrayI.D. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations.Nat. Commun.201891438310.1038/s41467‑018‑06318‑730348985
    [Google Scholar]
  13. LarsenF.T. HansenD. TerkelsenM.K. BendixenS.M. AvolioF. WernbergC.W. LauridsenM.M. GrønkjaerL.L. JacobsenB.G. KlinggaardE.G. MandrupS. Di CaterinoT. SiersbækM.S. ChandranV.I. GraversenJ.H. KragA. GrøntvedL. RavnskjaerK. Stellate cell expression of SPARC-related modular calcium-binding protein 2 is associated with human non-alcoholic fatty liver disease severity.JHEP Reports20235210061510.1016/j.jhepr.2022.10061536687468
    [Google Scholar]
  14. ZulibiyaA. WenJ. YuH. ChenX. XuL. MaX. ZhangB. Single-cell RNA sequencing reveals potential for endothelial-to-mesenchymal transition in tetralogy of fallot.Congenit. Heart Dis.202318661162510.32604/chd.2023.047689
    [Google Scholar]
  15. KodousA.S. BalaiahM. RamanathanP. Single cell RNA sequencing – a valuable tool for cancer immunotherapy: A mini review.Oncologie202325663563910.1515/oncologie‑2023‑0244
    [Google Scholar]
  16. StuartT. ButlerA. HoffmanP. HafemeisterC. PapalexiE. MauckW.M.III HaoY. StoeckiusM. SmibertP. SatijaR. Comprehensive integration of single-cell data.Cell2019177718881902.e2110.1016/j.cell.2019.05.03131178118
    [Google Scholar]
  17. KorsunskyI. MillardN. FanJ. SlowikowskiK. ZhangF. WeiK. BaglaenkoY. BrennerM. LohP. RaychaudhuriS. Fast, sensitive and accurate integration of single-cell data with Harmony.Nat. Methods201916121289129610.1038/s41592‑019‑0619‑031740819
    [Google Scholar]
  18. ZhangX. LanY. XuJ. QuanF. ZhaoE. DengC. LuoT. XuL. LiaoG. YanM. PingY. LiF. ShiA. BaiJ. ZhaoT. LiX. XiaoY. CellMarker: A manually curated resource of cell markers in human and mouse.Nucleic Acids Res.201947D1D721D72810.1093/nar/gky90030289549
    [Google Scholar]
  19. HuC. LiT. XuY. ZhangX. LiF. BaiJ. ChenJ. JiangW. YangK. OuQ. LiX. WangP. ZhangY. CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data.Nucleic Acids Res.202351D1D870D87610.1093/nar/gkac94736300619
    [Google Scholar]
  20. SongZ. YuJ. WangM. ShenW. WangC. LuT. ShanG. DongG. WangY. ZhaoJ. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease.Congenit. Heart Dis.202318669370110.32604/chd.2024.048081
    [Google Scholar]
  21. AibarS. González-BlasC.B. MoermanT. Huynh-ThuV.A. ImrichovaH. HulselmansG. RambowF. MarineJ.C. GeurtsP. AertsJ. van den OordJ. AtakZ.K. WoutersJ. AertsS. SCENIC: Single-cell regulatory network inference and clustering.Nat. Methods201714111083108610.1038/nmeth.446328991892
    [Google Scholar]
  22. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  23. JinS. Guerrero-JuarezC.F. ZhangL. ChangI. RamosR. KuanC.H. MyungP. PlikusM.V. NieQ. Inference and analysis of cell-cell communication using CellChat.Nat. Commun.2021121108810.1038/s41467‑021‑21246‑933597522
    [Google Scholar]
  24. Caballano-InfantesE. García-GarcíaA. Lopez-GomezC. CuetoA. Robles-DiazM. Ortega-AlonsoA. Martín-ReyesF. Alvarez-AlvarezI. Arranz-SalasI. Ruiz-CabelloF. LucenaI.M. García-FuentesE. AndradeR.J. García-CortesM. Differential iNKT and T cells activation in non-alcoholic fatty liver disease and drug-induced liver injury.Biomedicines20211015510.3390/biomedicines1001005535052736
    [Google Scholar]
  25. YahooN. DudekM. KnolleP. HeikenwälderM. Role of immune responses in the development of NAFLD-associated liver cancer and prospects for therapeutic modulation.J. Hepatol.202379253855110.1016/j.jhep.2023.02.03336893854
    [Google Scholar]
  26. HuangY. DouC. HuX. CuiH. Gene expression profile analysis reveals the effect of metformin treatment on HepG2 cells.Biocell202246496196710.32604/biocell.2022.018131
    [Google Scholar]
  27. BessoneF. RazoriM.V. RomaM.G. Molecular pathways of nonalcoholic fatty liver disease development and progression.Cell. Mol. Life Sci.20197619912810.1007/s00018‑018‑2947‑030343320
    [Google Scholar]
  28. ParkH.J. ChoiJ. KimH. YangD.Y. AnT.H. LeeE.W. HanB.S. LeeS.C. KimW.K. BaeK.H. OhK.J. Cellular heterogeneity and plasticity during NAFLD progression.Front. Mol. Biosci.202310122166910.3389/fmolb.2023.122166937635938
    [Google Scholar]
  29. HubyT. GautierE.L. Immune cell-mediated features of non-alcoholic steatohepatitis.Nat. Rev. Immunol.202222742944310.1038/s41577‑021‑00639‑334741169
    [Google Scholar]
  30. RaiR.P. LiuY. IyerS.S. LiuS. GuptaB. DesaiC. KumarP. SmithT. SinghiA.D. NusratA. ParkosC.A. MongaS.P. CzajaM.J. AnaniaF.A. RaemanR. Blocking integrin α4β7-mediated CD4 T cell recruitment to the intestine and liver protects mice from western diet-induced non-alcoholic steatohepatitis.J. Hepatol.20207351013102210.1016/j.jhep.2020.05.04732540177
    [Google Scholar]
  31. MittalD. LepletierA. MadoreJ. AguileraA.R. StannardK. BlakeS.J. WhitehallV.L.J. LiuC. BettingtonM.L. TakedaK. LongG.V. ScolyerR.A. LanR. SiemersN. KormanA. TengM.W.L. JohnstonR.J. DougallW.C. SmythM.J. CD96 is an immune checkpoint that regulates CD8+ T-cell antitumor function.Cancer Immunol. Res.20197455957110.1158/2326‑6066.CIR‑18‑063730894377
    [Google Scholar]
  32. ErikssonE.M. KehC.E. DeeksS.G. MartinJ.N. HechtF.M. NixonD.F. Differential expression of CD96 surface molecule represents CD8⁺ T cells with dissimilar effector function during HIV-1 infection.PLoS One2012712e5169610.1371/journal.pone.005169623272144
    [Google Scholar]
  33. BunetR. NayracM. RamaniH. SyllaM. DurandM. Chartrand-LefebvreC. RoutyJ.P. LandayA.L. GauchatJ.F. ChomontN. AncutaP. KaufmannD.E. BernardN. TremblayC.L. El-FarM. Loss of CD96 expression as a marker of HIV-specific CD8+ T-cell differentiation and dysfunction.Front. Immunol.20211267306110.3389/fimmu.2021.67306134122431
    [Google Scholar]
  34. SmirnoffN. Ascorbic acid metabolism and functions: A comparison of plants and mammals.Free Radic. Biol. Med.201812211612910.1016/j.freeradbiomed.2018.03.03329567393
    [Google Scholar]
  35. XiongY. LeiQ.Y. ZhaoS. GuanK.L. Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK.Cold Spring Harb. Symp. Quant. Biol.201176028528910.1101/sqb.2011.76.01094222096030
    [Google Scholar]
  36. JudgeA. DoddM.S. Metabolism.Essays Biochem.202064460764710.1042/EBC2019004132830223
    [Google Scholar]
  37. RuiL. Energy metabolism in the liver.Compr. Physiol.20144117719710.1002/cphy.c13002424692138
    [Google Scholar]
  38. HeerenJ. SchejaL. Metabolic-associated fatty liver disease and lipoprotein metabolism.Mol. Metab.20215010123810.1016/j.molmet.2021.10123833892169
    [Google Scholar]
  39. SuY. DingJ. YangF. HeC. XuY. ZhuX. ZhouH. LiH. The regulatory role of PDE4B in the progression of inflammatory function study.Front. Pharmacol.20221398213010.3389/fphar.2022.98213036278172
    [Google Scholar]
  40. San JoséG. FortuñoA. BeloquiÓ. DíezJ. ZalbaG. NADPH oxidase CYBA polymorphisms, oxidative stress and cardiovascular diseases.Clin. Sci.2008114317318210.1042/CS2007013018184111
    [Google Scholar]
  41. MishraA. AliZ. VibhutiA. KumarR. AlamP. RamR. ThinlasT. MohammadG. PashaM.A.Q. CYBA and GSTP1 variants associate with oxidative stress under hypobaric hypoxia as observed in high-altitude pulmonary oedema.Clin. Sci.2012122629931110.1042/CS2011020521973220
    [Google Scholar]
  42. MatsuoY. Introducing thioredoxin-related transmembrane proteins: Emerging roles of human TMX and clinical implications.Antioxid. Redox Signal.20223613-15984100010.1089/ars.2021.018734465218
    [Google Scholar]
  43. ÖzenverN. EfferthT. Identification of prognostic and predictive biomarkers and druggable targets among 205 antioxidant genes in 21 different tumor types via data-mining.Pharmaceutics202315242710.3390/pharmaceutics1502042736839749
    [Google Scholar]
  44. ChalmersS.A. Ayilam RamachandranR. GarciaS.J. DerE. HerlitzL. AmpudiaJ. ChuD. JordanN. ZhangT. ParodisI. GunnarssonI. DingH. ShenN. PetriM. MokC.C. SaxenaR. PoluK.R. ConnellyS. NgC.T. MohanC. PuttermanC. The CD6/ALCAM pathway promotes lupus nephritis via T cell–mediated responses.J. Clin. Invest.20221321e14733410.1172/JCI14733434981775
    [Google Scholar]
  45. te RietJ. HeleniusJ. StrohmeyerN. CambiA. FigdorC.G. MüllerD.J. Dynamic coupling of ALCAM to the actin cortex strengthens cell adhesion to CD6.J. Cell Sci.2014127Pt 7jcs.14107710.1242/jcs.14107724496453
    [Google Scholar]
  46. MaC. WuW. LinR. GeY. ZhangC. SunS. CongY. LiX. LiuZ. Critical role of CD6highCD4+ T cells in driving Th1/Th17 cell immune responses and mucosal inflammation in IBD.J. Crohn’s Colitis201913451052410.1093/ecco‑jcc/jjy17930395204
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073303213240523095742
Loading
/content/journals/cchts/10.2174/0113862073303213240523095742
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test