Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Alzheimer’s Disease (AD) is a highly prevalent form of age-related dementia. However, the underlying mechanisms of AD are largely unexplored.

Materials and Methods

In this study, bioinformatics analysis was performed to identify the possible therapeutic targets for AD. The GEO database was used to screen the Differentially Expressed Genes (DEGs). Enrichment analysis, protein-protein interaction network, and LASSO model analyses were successfully performed. Furthermore, an ELISA assay was also conducted to determine the expression of principal genes within the AD and control samples.

Results

A total of 416 differentially expressed genes (DEGs) were recognized based on the GSE48350 and GSE28146 datasets. The IL-1β and CXCR4 levels were markedly elevated in the AD samples relative to the control.

Conclusion

The IL-1β and CXCR4 genes were identified as principal AD-related genes that can be targeted for anti-AD therapy.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073295516240508173238
2024-05-20
2025-09-05
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/7/CCHTS-28-7-13.html?itemId=/content/journals/cchts/10.2174/0113862073295516240508173238&mimeType=html&fmt=ahah

References

  1. LaurentC. DorothéeG. HunotS. MartinE. MonnetY. DuchampM. DongY. LégeronF.P. LeboucherA. BurnoufS. FaivreE. CarvalhoK. CaillierezR. ZommerN. DemeyerD. JouyN. SazdovitchV. Schraen-MaschkeS. DelarasseC. BuéeL. BlumD. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy.Brain2017140118420010.1093/brain/aww27027818384
    [Google Scholar]
  2. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  3. BondiM.W. EdmondsE.C. SalmonD.P. Alzheimer’s Disease: Past, Present, and Future.J. Int. Neuropsychol. Soc.2017239-1081883110.1017/S135561771700100X29198280
    [Google Scholar]
  4. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  5. 2021 Alzheimer’s disease facts and figures.Alzheimers Dement.202117332740610.1002/alz.1232833756057
    [Google Scholar]
  6. Koronyo-HamaouiM. SheynJ. HaydenE.Y. LiS. FuchsD.T. RegisG.C. LopesD.H.J. BlackK.L. BernsteinK.E. TeplowD.B. FuchsS. KoronyoY. RentsendorjA. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease.Brain2020143133635810.1093/brain/awz36431794021
    [Google Scholar]
  7. BallardC. GauthierS. CorbettA. BrayneC. AarslandD. JonesE. Alzheimer’s disease.Lancet201137797701019103110.1016/S0140‑6736(10)61349‑921371747
    [Google Scholar]
  8. PalmqvistS. SchöllM. StrandbergO. MattssonN. StomrudE. ZetterbergH. BlennowK. LandauS. JagustW. HanssonO. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity.Nat. Commun.201781121410.1038/s41467‑017‑01150‑x29089479
    [Google Scholar]
  9. ScelsiM.A. KhanR.R. LorenziM. ChristopherL. GreiciusM.D. SchottJ.M. OurselinS. AltmannA. Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci.Brain201814172167218010.1093/brain/awy14129860282
    [Google Scholar]
  10. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y33986301
    [Google Scholar]
  11. RostagnoA.A. Pathogenesis of Alzheimer’s Disease.Int. J. Mol. Sci.202224110710.3390/ijms2401010736613544
    [Google Scholar]
  12. BriggsR. KennellyS.P. O’NeillD. Drug treatments in Alzheimer’s disease.Clin. Med.201616324725310.7861/clinmedicine.16‑3‑24727251914
    [Google Scholar]
  13. GuX. WuH. XieY. XuL. LiuX. WangW. Caspase-1/IL-1β represses membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1 in Alzheimer’s disease.Mol. Med.2021271810.1186/s10020‑021‑00273‑833509083
    [Google Scholar]
  14. YuY. LiuL. HuL.L. YuL.L. LiJ.P. RaoJ. ZhuL.J. LiangQ. ZhangR.W. BaoH.H. ChengX.S. Potential therapeutic target genes for systemic lupus erythematosus: A bioinformatics analysis.Bioengineered20211212810281910.1080/21655979.2021.193963734180358
    [Google Scholar]
  15. BarrettT. TroupD.B. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. MuertterR.N. HolkoM. AyanbuleO. YefanovA. SobolevaA. NCBI GEO: archive for functional genomics data sets--10 years on.Nucleic Acids Res.201139DatabaseD1005D101010.1093/nar/gkq118421097893
    [Google Scholar]
  16. ChenG. RamírezJ.C. DengN. QiuX. WuC. ZhengW.J. WuH. Restructured GEO: Restructuring Gene Expression Omnibus20192019
    [Google Scholar]
  17. ZhangJ. ShenY. ChenX. JiangM. YuanF. XieS. ZhangJ. XuF. Integrative network-based analysis on multiple Gene Expression Omnibus datasets identifies novel immune molecular markers implicated in non-alcoholic steatohepatitis.Front. Endocrinol.202314111589010.3389/fendo.2023.111589037008925
    [Google Scholar]
  18. BolstadB.M. IrizarryR.A. ÅstrandM. SpeedT.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.Bioinformatics200319218519310.1093/bioinformatics/19.2.18512538238
    [Google Scholar]
  19. TripathiS. PohlM.O. ZhouY. Rodriguez-FrandsenA. WangG. SteinD.A. MoultonH.M. DeJesusP. CheJ. MulderL.C.F. YángüezE. AndenmattenD. PacheL. ManicassamyB. AlbrechtR.A. GonzalezM.G. NguyenQ. BrassA. ElledgeS. WhiteM. ShapiraS. HacohenN. KarlasA. MeyerT.F. ShalesM. GatoranoA. JohnsonJ.R. JangG. JohnsonT. VerschuerenE. SandersD. KroganN. ShawM. KönigR. StertzS. García-SastreA. ChandaS.K. Meta- and orthogonal integration of infuenza “OMICs” data defnes a role for UBR4 in virus budding.Cell Host Microbe201518672373510.1016/j.chom.2015.11.00226651948
    [Google Scholar]
  20. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  21. ZuG. SunK. LiL. ZuX. HanT. HuangH. Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus.Sci. Rep.20211112295910.1038/s41598‑021‑02248‑534824300
    [Google Scholar]
  22. AshburnerM. BallC.A. BlakeJ.A. BotsteinD. ButlerH. CherryJ.M. DavisA.P. DolinskiK. DwightS.S. EppigJ.T. HarrisM.A. HillD.P. Issel-TarverL. KasarskisA. LewisS. MateseJ.C. RichardsonJ.E. RingwaldM. RubinG.M. SherlockG. The Gene Ontology Consortium Gene Ontology: Tool for the unification of biology.Nat. Genet.2000251252910.1038/7555610802651
    [Google Scholar]
  23. Gene Ontology Consortium Gene Ontology Consortium: going forward.Nucleic Acids Res.201543Database issueD1049D105625428369
    [Google Scholar]
  24. The Gene Ontology Consortium The Gene Ontology Resource: 20 years and still GOing strong.Nucleic Acids Res.201947D1D330D33810.1093/nar/gky105530395331
    [Google Scholar]
  25. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  26. KanehisaM. FurumichiM. TanabeM. SatoY. MorishimaK. KEGG: new perspectives on genomes, pathways, diseases and drugs.Nucleic Acids Res.201745D1D353D36110.1093/nar/gkw109227899662
    [Google Scholar]
  27. WangB. FuC. WeiY. XuB. YangR. LiC. QiuM. YinY. QinD. Ferroptosis-related biomarkers for Alzheimer’s disease: Identification by bioinformatic analysis in hippocampus.Front. Cell. Neurosci.202216102394710.3389/fncel.2022.102394736467613
    [Google Scholar]
  28. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  29. TibshiraniR. The lasso method for variable selection in the Cox model.Stat. Med.199716438539510.1002/(SICI)1097‑0258(19970228)16:4<385::AID‑SIM380>3.0.CO;2‑39044528
    [Google Scholar]
  30. HeS. DouL. LiX. ZhangY. Review of bioinformatics in Azheimer’s Disease Research.Comput. Biol. Med.202214310526910.1016/j.compbiomed.2022.10526935158118
    [Google Scholar]
  31. LiJ. ZhangY. LuT. LiangR. WuZ. LiuM. QinL. ChenH. YanX. DengS. ZhengJ. LiuQ. Identification of diagnostic genes for both Alzheimer’s disease and Metabolic syndrome by the machine learning algorithm.Front. Immunol.202213103731810.3389/fimmu.2022.103731836405716
    [Google Scholar]
  32. HuangY.W.A. ZhouB. NabetA.M. WernigM. SüdhofT.C. Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer’s Disease Risk.J. Neurosci.201939377408742710.1523/JNEUROSCI.2994‑18.201931331998
    [Google Scholar]
  33. YanR. VassarR. Targeting the β secretase BACE1 for Alzheimer’s disease therapy.Lancet Neurol.201413331932910.1016/S1474‑4422(13)70276‑X24556009
    [Google Scholar]
  34. DinarelloC.A. Immunological and inflammatory functions of the interleukin-1 family.Annu. Rev. Immunol.200927151955010.1146/annurev.immunol.021908.13261219302047
    [Google Scholar]
  35. HalleA. HornungV. PetzoldG.C. StewartC.R. MonksB.G. ReinheckelT. FitzgeraldK.A. LatzE. MooreK.J. GolenbockD.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β.Nat. Immunol.20089885786510.1038/ni.163618604209
    [Google Scholar]
  36. EfferthT. OeschF. The immunosuppressive activity of artemisinin‐type drugs towards inflammatory and autoimmune diseases.Med. Res. Rev.20214163023306110.1002/med.2184234288018
    [Google Scholar]
  37. TanziR.E. Alzheimer’s disease risk and the Interleukin-1 genes.Ann. Neurol.200047328328510.1002/1531‑8249(200003)47:3<283::AID‑ANA2>3.0.CO;2‑N10716246
    [Google Scholar]
  38. GriffinW.S.T. MrakR.E. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease.J. Leukoc. Biol.200272223323810.1189/jlb.72.2.23312149413
    [Google Scholar]
  39. Lopez-CastejonG. Control of the inflammasome by the ubiquitin system.FEBS J.20202871112610.1111/febs.1511831679183
    [Google Scholar]
  40. GarlandaC. DinarelloC.A. MantovaniA. The interleukin-1 family: back to the future.Immunity20133961003101810.1016/j.immuni.2013.11.01024332029
    [Google Scholar]
  41. FregnanF. MuratoriL. SimõesA.R. Giacobini-RobecchiM.G. RaimondoS. Role of inflammatory cytokines in peripheral nerve injury.Neural Regen. Res.20127292259226625538747
    [Google Scholar]
  42. KimR.Y. PinkertonJ.W. EssilfieA.T. RobertsonA.A.B. BainesK.J. BrownA.C. MayallJ.R. AliM.K. StarkeyM.R. HansbroN.G. HirotaJ.A. WoodL.G. SimpsonJ.L. KnightD.A. WarkP.A. GibsonP.G. O’NeillL.A.J. CooperM.A. HorvatJ.C. HansbroP.M. Role for NLRP3 Inflammasome–mediated, IL-1β–Dependent Responses in Severe, Steroid-Resistant Asthma.Am. J. Respir. Crit. Care Med.2017196328329710.1164/rccm.201609‑1830OC28252317
    [Google Scholar]
  43. XuJ. NúñezG. The NLRP3 inflammasome: activation and regulation.Trends Biochem. Sci.202348433134410.1016/j.tibs.2022.10.00236336552
    [Google Scholar]
  44. Lopez-CastejonG. BroughD. Understanding the mechanism of IL-1β secretion.Cytokine Growth Factor Rev.201122418919510.1016/j.cytogfr.2011.10.00122019906
    [Google Scholar]
  45. ZhangJ. LiuX. WanC. LiuY. WangY. MengC. ZhangY. JiangC. NLRP3 inflammasome mediates M1 macrophage polarization and IL‐1β production in inflammatory root resorption.J. Clin. Periodontol.202047445146010.1111/jcpe.1325831976565
    [Google Scholar]
  46. BentR. MollL. GrabbeS. BrosM. Interleukin-1 Beta—A Friend or Foe in Malignancies?Int. J. Mol. Sci.2018198215510.3390/ijms1908215530042333
    [Google Scholar]
  47. DolinayT. KimY.S. HowrylakJ. HunninghakeG.M. AnC.H. FredenburghL. MassaroA.F. RogersA. GazourianL. NakahiraK. HaspelJ.A. LandazuryR. EppanapallyS. ChristieJ.D. MeyerN.J. WareL.B. ChristianiD.C. RyterS.W. BaronR.M. ChoiA.M.K. Inflammasome-regulated cytokines are critical mediators of acute lung injury.Am. J. Respir. Crit. Care Med.2012185111225123410.1164/rccm.201201‑0003OC22461369
    [Google Scholar]
  48. FloresJ. NoëlA. FoveauB. BeauchetO. LeBlancA.C. Pre-symptomatic Caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging.Nat. Commun.2020111457110.1038/s41467‑020‑18405‑932917871
    [Google Scholar]
  49. MaphisN. XuG. Kokiko-CochranO.N. JiangS. CardonaA. RansohoffR.M. LambB.T. BhaskarK. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain.Brain201513861738175510.1093/brain/awv08125833819
    [Google Scholar]
  50. KarpenkoM.N. VasilishinaA.A. GromovaE.A. MuruzhevaZ.M. BernadotteA. BernadotteA. Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease.Cell. Immunol.2018327778210.1016/j.cellimm.2018.02.01129478949
    [Google Scholar]
  51. GriciucA. PatelS. FedericoA.N. ChoiS.H. InnesB.J. OramM.K. CereghettiG. McGintyD. AnselmoA. SadreyevR.I. HickmanS.E. El KhouryJ. ColonnaM. TanziR.E. TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer’s Disease.Neuron20191035820835.e710.1016/j.neuron.2019.06.01031301936
    [Google Scholar]
  52. Lopez-RodriguezA.B. HennessyE. MurrayC.L. NazmiA. DelaneyH.J. HealyD. FaganS.G. RooneyM. StewartE. LewisA. de BarraN. ScarryP. Riggs-MillerL. BocheD. CunninghamM.O. CunninghamC. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL‐1β drives amplified responses in primed astrocytes and neuronal network dysfunction.Alzheimers Dement.202117101735175510.1002/alz.1234134080771
    [Google Scholar]
  53. SunX. LiL. DongQ.X. ZhuJ. HuangY. HouS. YuX. LiuR. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease.J. Neuroinflammation202118113110.1186/s12974‑021‑02182‑334116706
    [Google Scholar]
  54. DhapolaR. HotaS.S. SarmaP. BhattacharyyaA. MedhiB. ReddyD.H. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease.Inflammopharmacology20212961669168110.1007/s10787‑021‑00889‑634813026
    [Google Scholar]
  55. ChenS. LiuH. WangS. JiangH. GaoL. WangL. TengL. WangC. WangD. The Neuroprotection of Verbascoside in Alzheimer’s Disease Mediated through Mitigation of Neuroinflammation via Blocking NF-κB-p65 Signaling.Nutrients2022147141710.3390/nu1407141735406030
    [Google Scholar]
  56. GriffinW.S.T. ShengJ.G. RoystonM.C. GentlemanS.M. McKenzieJ.E. GrahamD.I. RobertsG.W. MrakR.E. Glial-neuronal interactions in Alzheimer’s disease: The potential role of a ‘cytokine cycle’ in disease progression.Brain Pathol.199881657210.1111/j.1750‑3639.1998.tb00136.x9458167
    [Google Scholar]
  57. LiY. LiuL. BargerS.W. GriffinW.S.T. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway.J. Neurosci.20032351605161110.1523/JNEUROSCI.23‑05‑01605.200312629164
    [Google Scholar]
  58. ZlotnikA. YoshieO. Chemokines.Immunity200012212112710.1016/S1074‑7613(00)80165‑X10714678
    [Google Scholar]
  59. HarryG.J. Microglia during development and aging.Pharmacol. Ther.2013139331332610.1016/j.pharmthera.2013.04.01323644076
    [Google Scholar]
  60. van der VorstE.P.C. DöringY. WeberC. Chemokines.Arterioscler. Thromb. Vasc. Biol.20153511e52e5610.1161/ATVBAHA.115.30635926490276
    [Google Scholar]
  61. VilgelmA.E. RichmondA. Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy.Front. Immunol.20191033310.3389/fimmu.2019.0033330873179
    [Google Scholar]
  62. MillerM. MayoK. Chemokines from a Structural Perspective.Int. J. Mol. Sci.20171810208810.3390/ijms1810208828974038
    [Google Scholar]
  63. ThakurS. DhapolaR. SarmaP. MedhiB. ReddyD.H. Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics.Inflammation202346111710.1007/s10753‑022‑01721‑135986874
    [Google Scholar]
  64. GhoshM.C. BaatarD. CollinsG. CarterA. IndigF. BiragynA. TaubD.D. Dexamethasone augments CXCR4-mediated signaling in resting human T cells via the activation of the Src kinase Lck.Blood2009113357558410.1182/blood‑2008‑04‑15180318840710
    [Google Scholar]
  65. TachibanaK. HirotaS. IizasaH. YoshidaH. KawabataK. KataokaY. KitamuraY. MatsushimaK. YoshidaN. NishikawaS. KishimotoT. NagasawaT. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract.Nature1998393668559159410.1038/312619634237
    [Google Scholar]
  66. NakataY. TomkowiczB. GewirtzA.M. PtasznikA. Integrin inhibition through Lyn-dependent cross talk from CXCR4 chemokine receptors in normal human CD34+ marrow cells.Blood2006107114234423910.1182/blood‑2005‑08‑334316467205
    [Google Scholar]
  67. NengrooM.A. KhanM.A. VermaA. DattaD. Demystifying the CXCR4 conundrum in cancer biology: Beyond the surface signaling paradigm.Biochim. Biophys. Acta Rev. Cancer20221877518879010.1016/j.bbcan.2022.18879036058380
    [Google Scholar]
  68. BianchiM.E. MezzapelleR. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration.Front. Immunol.202011210910.3389/fimmu.2020.0210932983169
    [Google Scholar]
  69. JanssensR. StruyfS. ProostP. Pathological roles of the homeostatic chemokine CXCL12.Cytokine Growth Factor Rev.201844516810.1016/j.cytogfr.2018.10.00430396776
    [Google Scholar]
  70. KawaguchiN. ZhangT.T. NakanishiT. Involvement of CXCR4 in Normal and Abnormal Development.Cells20198218510.3390/cells802018530791675
    [Google Scholar]
  71. McQuadeA. KangY.J. HasselmannJ. JairamanA. SoteloA. CoburnM. ShabestariS.K. ChadarevianJ.P. FoteG. TuC.H. DanhashE. SilvaJ. MartinezE. CotmanC. PrietoG.A. ThompsonL.M. SteffanJ.S. SmithI. DavtyanH. CahalanM. ChoH. Blurton-JonesM. Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer’s disease.Nat. Commun.2020111537010.1038/s41467‑020‑19227‑533097708
    [Google Scholar]
  72. ParachikovaA. CotmanC.W. Reduced CXCL12/CXCR4 results in impaired learning and is downregulated in a mouse model of Alzheimer disease.Neurobiol. Dis.200728214315310.1016/j.nbd.2007.07.00117764962
    [Google Scholar]
  73. BonhamL.W. KarchC.M. FanC.C. TanC. GeierE.G. WangY. WenN. BroceI.J. LiY. BarkovichM.J. FerrariR. HardyJ. MomeniP. HöglingerG. MüllerU. HessC.P. SugrueL.P. DillonW.P. SchellenbergG.D. MillerB.L. AndreassenO.A. DaleA.M. BarkovichA.J. YokoyamaJ.S. DesikanR.S. FerrariR. HernandezD.G. NallsM.A. RohrerJ.D. RamasamyA. KwokJ.B.J. Dobson-StoneC. SchofieldP.R. HallidayG.M. HodgesJ.R. PiguetO. BartleyL. ThompsonE. HaanE. HernándezI. RuizA. BoadaM. BorroniB. PadovaniA. CruchagaC. CairnsN.J. BenussiL. BinettiG. GhidoniR. ForloniG. AlbaniD. GalimbertiD. FenoglioC. SerpenteM. ScarpiniE. ClarimónJ. LleóA. BlesaR. WaldöM.L. NilssonK. NilssonC. MackenzieI.R.A. HsiungG-Y.R. MannD.M.A. GrafmanJ. MorrisC.M. AttemsJ. GriffithsT.D. McKeithI.G. ThomasA.J. PietriniP. HueyE.D. WassermannE.M. BaborieA. JarosE. TierneyM.C. PastorP. RazquinC. Ortega-CuberoS. AlonsoE. PerneczkyR. Diehl-SchmidJ. AlexopoulosP. KurzA. RaineroI. RubinoE. PinessiL. RogaevaE. George-HyslopP.S. RossiG. TagliaviniF. GiacconeG. RoweJ.B. SchlachetzkiJ.C.M. UphillJ. CollingeJ. MeadS. DanekA. Van DeerlinV.M. GrossmanM. TrojanowskiJ.Q. van der ZeeJ. CrutsM. Van BroeckhovenC. CappaS.F. LeberI. HannequinD. GolfierV. VercellettoM. BriceA. NacmiasB. SorbiS. BagnoliS. PiaceriI. NielsenJ.E. HjermindL.E. RiemenschneiderM. MayhausM. IbachB. GasparoniG. PichlerS. GuW. RossorM.N. FoxN.C. WarrenJ.D. SpillantiniM.G. MorrisH.R. RizzuP. HeutinkP. SnowdenJ.S. RollinsonS. RichardsonA. GerhardA. BruniA.C. MalettaR. FrangipaneF. CupidiC. BernardiL. AnfossiM. GalloM. ConidiM.E. SmirneN. RademakersR. BakerM. DicksonD.W. Graff-RadfordN.R. PetersenR.C. KnopmanD. JosephsK.A. BoeveB.F. ParisiJ.E. SeeleyW.W. MillerB.L. KarydasA.M. RosenH. van SwietenJ.C. DopperE.G.P. SeelaarH. PijnenburgY.A.L. ScheltensP. LogroscinoG. CapozzoR. NovelliV. PucaA.A. FranceschiM. PostiglioneA. MilanG. SorrentinoP. KristiansenM. ChiangH-H. GraffC. PasquierF. RollinA. DeramecourtV. LebouvierT. KapogiannisD. FerrucciL. Pickering-BrownS. SingletonA.B. HardyJ. MomeniP. International FTD-Genomics Consortium (IFGC) International Parkinson’s Disease Genetics Consortium (IPDGC) International Genomics of Alzheimer’s Project (IGAP) CXCR4 involvement in neurodegenerative diseases.Transl. Psychiatry2018817310.1038/s41398‑017‑0049‑729636460
    [Google Scholar]
  74. GavrielY. Rabinovich-NikitinI. EzraA. BarbiroB. SolomonB. Subcutaneous Administration of AMD3100 into Mice Models of Alzheimer’s Disease Ameliorated Cognitive Impairment, Reduced Neuroinflammation, and Improved Pathophysiological Markers.J. Alzheimers Dis.202078265367110.3233/JAD‑20050633016905
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073295516240508173238
Loading
/content/journals/cchts/10.2174/0113862073295516240508173238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test