Skip to content
2000
Volume 28, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The enhancer of rudimentary homolog (ERH) has been shown to play significant roles in tumorigenesis and progression. However, few systematic pan-cancer analyses about ERH have been described.

Methods

From the tumor immune estimation resource web server2.0 (TIMER2.0), the Genotype-Tissue Expression database (GTEx) and the Gene Expression Profile Interactive Analysis version 2 (GEPIA2) databases, we explored the expression profiles and prognostic significance of ERH in 33 cancers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas (HPA) databases were further used to examine the differential expression of ERH at the protein level. The genetic alteration profile was obtained from the cBioPortal. The correlation between ERH expression and the quantities of immune infiltrating cells was examined by the TIMER tool. Spearman's correlation test was conducted to analyze the association between ERH expression status and a number of prognostic indicators, including immune checkpoints, TMB, MSI, immune neoantigen, MMR genes, and DNA methyltransferases. Protein-Protein Interaction analyses were performed in the String and GeneMANIA databases, and enrichment analysis and predicted signaling pathways were identified through GO and KEGG. To make our results convincing, we validated them in six datasets in the Gene Expression Omnibus (GEO) database. In addition, we verified the expression of ERH between gastric cancer tissues and adjacent normal tissues by RT-qPCR.

Results

ERH expression was elevated in numerous tumors, and it was associated with the patient's prognosis. Furthermore, the quantities of immune infiltrating cells and immune checkpoint genes were remarkably associated with ERH. TMB and MSI were related to ERH expression in 14 and 15 cancer types, respectively. Moreover, the expression of ERH was strongly associated with MMR defects in multiple cancer types, and almost all tumors showed co-expression of ERH and four DNA methyltransferases. The results of GO and KEGG analysis confirmed that ERH potentially impacts several important signaling pathways. Both the GEO datasets and the RT-qPCR experiment validated our previous analysis.

Conclusion

Our pan-cancer analysis demonstrated the characterization of ERH in multiple tumors. ERH may be a valuable novel biological indicator for assessing immunotherapy efficacy and prognosis in various malignancies.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073295696240322084341
2024-04-04
2025-11-06
Loading full text...

Full text loading...

References

  1. Alves de LimaE.Jr TeixeiraA.A.S. BiondoL.A. DinizT.A. SilveiraL.S. ColettiD. Busquets RiusS. Rosa NetoJ.C. Exercise reduces the resumption of tumor growth and proteolytic pathways in the skeletal muscle of mice following chemotherapy.Cancers 20201211346610.3390/cancers12113466 33233839
    [Google Scholar]
  2. RibasA. WolchokJ.D. Cancer immunotherapy using checkpoint blockade.Science201835963821350135510.1126/science.aar4060 29567705
    [Google Scholar]
  3. DanesiR. FogliS. IndraccoloS. Del ReM. Dei TosA.P. LeonciniL. AntonuzzoL. BonannoL. GuarneriV. PieriniA. AmunniG. ConteP. Druggable targets meet oncogenic drivers: Opportunities and limitations of target-based classification of tumors and the role of Molecular Tumor Boards.ESMO Open20216210004010.1016/j.esmoop.2020.100040 33540286
    [Google Scholar]
  4. HegdeP.S. ChenD.S. Top 10 challenges in cancer immunotherapy.Immunity2020521173510.1016/j.immuni.2019.12.011 31940268
    [Google Scholar]
  5. LiuB. FanY. SongZ. HanB. MengY. CaoP. TanK. Identification of DRP1 as a prognostic factor correlated with immune infiltration in breast cancer.Int. Immunopharmacol.,202089Pt B10707810.1016/j.intimp.2020.10707833049497
    [Google Scholar]
  6. YeW. LuoC. LiuF. LiuZ. ChenF. CD96 correlates with immune infiltration and impacts patient prognosis: A pan-cancer analysis.Front. Oncol.20211163461710.3389/fonc.2021.634617 33680972
    [Google Scholar]
  7. LiM. ZhangZ. GuanL. JiS. LuP. ERH gene knockdown inhibits the proliferation and migration of ARPE-19 cells through MCM complex and EMT process.Gene202489214785510.1016/j.gene.2023.147855 37778419
    [Google Scholar]
  8. PangK. LiM. HaoL. ShiZ. FengH. ChenB. MaY. XuH. PanD. ChenZ.S. HanC. ERH gene and its role in cancer cells.Front. Oncol.20221290049610.3389/fonc.2022.900496 35677162
    [Google Scholar]
  9. JinT. GuoF. SerebriiskiiI.G. HowardA. ZhangY.Z.A. 1.55 Å resolution X‐ray crystal structure of HEF2/ERH and insights into its transcriptional and cell‐cycle interaction networks.Proteins200768242743710.1002/prot.21343 17444515
    [Google Scholar]
  10. ZafrakasM. LosenI. KnüchelR. DahlE. Enhancer of the rudimentary gene homologue (ERH) expression pattern in sporadic human breast cancer and normal breast tissue.BMC Cancer20088114510.1186/1471‑2407‑8‑145 18500978
    [Google Scholar]
  11. ZhangD. ChuY. SongK. ChenY. LiuW. LvT. WangJ. ZhaoH. RenY. XuJ. XiaN. LiH. YaoQ. Knockdown of enhancer of rudimentary homolog inhibits proliferation and metastasis in ovarian cancer by regulating epithelial-mesenchymal transition.Biomed. Pharmacother.202012510997410.1016/j.biopha.2020.109974 32036222
    [Google Scholar]
  12. BalicJ.J. GaramaD.J. SaadM.I. YuL. WestA.C. WestA.J. LivisT. BhathalP.S. GoughD.J. JenkinsB.J. Serine-phosphorylated STAT3 promotes tumorigenesis via modulation of RNA polymerase transcriptional activity.Cancer Res.201979205272528710.1158/0008‑5472.CAN‑19‑0974 31481496
    [Google Scholar]
  13. LiZ. WangQ. PengS. YaoK. ChenJ. TaoY. GaoZ. WangF. LiH. CaiW. LaiY. LiK. ChenX. HuangH. The metastatic promoter DEPDC1B induces epithelial‐mesenchymal transition and promotes prostate cancer cell proliferation via Rac1‐PAK1 signaling.Clin. Transl. Med.2020106e19110.1002/ctm2.191 33135357
    [Google Scholar]
  14. ZhangS. ShiW. HuW. MaD. YanD. YuK. ZhangG. CaoY. WuJ. JiangC. WangZ. DEP domain-containing protein 1B (DEPDC1B) promotes migration and invasion in pancreatic cancer through the Rac1/PAK1-LIMK1-Cofilin1 signaling pathway.OncoTargets Ther.2020131481149610.2147/OTT.S229055 32110046
    [Google Scholar]
  15. WeinsteinJ.N. CollissonE.A. MillsG.B. ShawK.R.M. OzenbergerB.A. EllrottK. ShmulevichI. SanderC. StuartJ.M. The cancer genome atlas pan-cancer analysis project.Nat. Genet.201345101113112010.1038/ng.2764 24071849
    [Google Scholar]
  16. LiT. FuJ. ZengZ. CohenD. LiJ. ChenQ. LiB. LiuX.S. TIMER2.0 for analysis of tumor-infiltrating immune cells.Nucleic Acids Res.202048W1W509W51410.1093/nar/gkaa407 32442275
    [Google Scholar]
  17. LonsdaleJ. ThomasJ. SalvatoreM. PhillipsR. LoE. ShadS. HaszR. WaltersG. GarciaF. YoungN. FosterB. MoserM. KarasikE. GillardB. RamseyK. SullivanS. BridgeJ. MagazineH. SyronJ. FlemingJ. SiminoffL. TrainoH. MosavelM. BarkerL. JewellS. RohrerD. MaximD. FilkinsD. HarbachP. CortadilloE. BerghuisB. TurnerL. HudsonE. FeenstraK. SobinL. RobbJ. BrantonP. KorzeniewskiG. ShiveC. TaborD. QiL. GrochK. NampallyS. BuiaS. ZimmermanA. SmithA. BurgesR. RobinsonK. ValentinoK. BradburyD. CosentinoM. Diaz-MayoralN. KennedyM. EngelT. WilliamsP. EricksonK. ArdlieK. WincklerW. GetzG. DeLucaD. MacArthurD. KellisM. ThomsonA. YoungT. GelfandE. DonovanM. MengY. GrantG. MashD. MarcusY. BasileM. LiuJ. ZhuJ. TuZ. CoxN.J. NicolaeD.L. GamazonE.R. Im, H.K.; Konkashbaev, A.; Pritchard, J.; Stevens, M.; Flutre, T.; Wen, X.; Dermitzakis, E.T.; Lappalainen, T.; Guigo, R.; Monlong, J.; Sammeth, M.; Koller, D.; Battle, A.; Mostafavi, S.; McCarthy, M.; Rivas, M.; Maller, J.; Rusyn, I.; Nobel, A.; Wright, F.; Shabalin, A.; Feolo, M.; Sharopova, N.; Sturcke, A.; Paschal, J.; Anderson, J.M.; Wilder, E.L.; Derr, L.K.; Green, E.D.; Struewing, J.P.; Temple, G.; Volpi, S.; Boyer, J.T.; Thomson, E.J.; Guyer, M.S.; Ng, C.; Abdallah, A.; Colantuoni, D.; Insel, T.R.; Koester, S.E.; Little, A.R.; Bender, P.K.; Lehner, T.; Yao, Y.; Compton, C.C.; Vaught, J.B.; Sawyer, S.; Lockhart, N.C.; Demchok, J.; Moore, H.F. The genotype-tissue expression (GTEx) project.Nat. Genet.201345658058510.1038/ng.2653 23715323
    [Google Scholar]
  18. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556W56010.1093/nar/gkz430 31114875
    [Google Scholar]
  19. CuiX. ZhangX. LiuM. ZhaoC. ZhangN. RenY. SuC. ZhangW. SunX. HeJ. GaoX. YangJ. A pan-cancer analysis of the oncogenic role of staphylococcal nuclease domain-containing protein 1 (SND1) in human tumors.Genomics202011263958396710.1016/j.ygeno.2020.06.044 32645525
    [Google Scholar]
  20. YangH. AdamR.C. GeY. HuaZ.L. FuchsE. Epithelial-mesenchymal micro-niches govern stem cell lineage choices.Cell20171693483496.e1310.1016/j.cell.2017.03.038 28413068
    [Google Scholar]
  21. AlamM.S. SultanaA. SunH. WuJ. GuoF. LiQ. RenH. HaoZ. ZhangY. WangG. Bioinformatics and network-based screening and discovery of potential molecular targets and small molecular drugs for breast cancer.Front. Pharmacol.20221394212610.3389/fphar.2022.942126 36204232
    [Google Scholar]
  22. TsaiW.L. WangC.Y. LeeY.C. TangW.C. AnuragaG. TaH.D.K. WuY.F. LeeK.H. A new light on potential therapeutic targets for colorectal cancer treatment.Biomedicines2021910143810.3390/biomedicines9101438 34680556
    [Google Scholar]
  23. ZhangC. LiY. QianJ. ZhuZ. HuangC. HeZ. ZhouL. GongY. Identification of a claudin-low subtype in clear cell renal cell carcinoma with implications for the evaluation of clinical outcomes and treatment efficacy.Front. Immunol.202213102072910.3389/fimmu.2022.1020729 36479115
    [Google Scholar]
  24. ShiY. WangY. ZhangW. NiuK. MaoX. FengK. ZhangY. N6-methyladenosine with immune infiltration and PD-L1 in hepatocellular carcinoma: novel perspective to personalized diagnosis and treatment.Front. Endocrinol.202314115380210.3389/fendo.2023.1153802 37469973
    [Google Scholar]
  25. MoG. LongX. CaoL. TangY. YanY. GuoT. A six-gene prognostic model based on neutrophil extracellular traps (NETs)-related gene signature for lung adenocarcinoma.Comb. Chem. High Throughput Screen.20242710.2174/0113862073282003240119064337 38357943
    [Google Scholar]
  26. XieR. LiuL. LuX. HeC. LiG. Identification of the diagnostic genes and immune cell infiltration characteristics of gastric cancer using bioinformatics analysis and machine learning.Front. Genet.202313106752410.3389/fgene.2022.1067524 36685898
    [Google Scholar]
  27. ChandrashekarD.S. BashelB. BalasubramanyaS.A.H. CreightonC.J. Ponce-RodriguezI. ChakravarthiB.V.S.K. VaramballyS. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses.Neoplasia201719864965810.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  28. UhlenM. OksvoldP. FagerbergL. LundbergE. JonassonK. ForsbergM. ZwahlenM. KampfC. WesterK. HoberS. WernerusH. BjörlingL. PontenF. Towards a knowledge-based human protein atlas.Nat. Biotechnol.201028121248125010.1038/nbt1210‑1248 21139605
    [Google Scholar]
  29. CeramiE. GaoJ. DogrusozU. GrossB.E. SumerS.O. AksoyB.A. JacobsenA. ByrneC.J. HeuerM.L. LarssonE. AntipinY. RevaB. GoldbergA.P. SanderC. SchultzN. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data.Cancer Discov.20122540140410.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  30. ShiK. ZhouJ. LiM. YanW. ZhangJ. ZhangX. JiangL. Pan-cancer analysis of PLAU indicates its potential prognostic value and correlation with neutrophil infiltration in BLCA.Biochim. Biophys. Acta Mol. Basis Dis.20241870216696510.1016/j.bbadis.2023.166965 38000776
    [Google Scholar]
  31. BarettiM. LeD.T. DNA mismatch repair in cancer.Pharmacol. Ther.2018189456210.1016/j.pharmthera.2018.04.004 29669262
    [Google Scholar]
  32. PengL. LiJ. WuJ. XuB. WangZ. GiamasG. StebbingJ. YuZ. A pan-cancer analysis of SMARCA4 alterations in human cancers.Front. Immunol.20211276259810.3389/fimmu.2021.762598 34675941
    [Google Scholar]
  33. BagchiA. BanerjeeA. ChakraborttyS. Rindler physics on the string worldsheet.Phys. Rev. Lett.2021126303160110.1103/PhysRevLett.126.031601 33543967
    [Google Scholar]
  34. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  35. Warde-FarleyD. DonaldsonS.L. ComesO. ZuberiK. BadrawiR. ChaoP. FranzM. GrouiosC. KaziF. LopesC.T. MaitlandA. MostafaviS. MontojoJ. ShaoQ. WrightG. BaderG.D. MorrisQ. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res.,201038Web Server issue)(Suppl. 2W214W22010.1093/nar/gkq53720576703
    [Google Scholar]
  36. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  37. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  38. LiuJ. ChenZ. ZhaoP. LiW. Prognostic and immune regulating roles of YIF1B in pan-cancer: A potential target for both survival and therapy response evaluation.Biosci. Rep.2020407BSR2020138410.1042/BSR20201384 32648580
    [Google Scholar]
  39. ChenZ.Y. HsiehY.M. HuangC.C. TsaiC.C. Inhibitory effects of probiotic lactobacillus on the growth of human colonic carcinoma cell line HT-29.Molecules201722110710.3390/molecules22010107 28075415
    [Google Scholar]
  40. XiaoM. TangN. YanY. LiZ. ShiS. HeS. ChenZ. CaoK. ChenJ. ZhouJ. ChenX. Knockdown of enhancer of rudimentary homolog expression attenuates proliferation, cell cycle and apoptosis of melanoma cells.Melanoma Res.202131430931810.1097/CMR.0000000000000747 34193803
    [Google Scholar]
  41. PangK. ZhangZ. HaoL. ShiZ. ChenB. ZangG. DongY. LiR. LiuY. WangJ. ZhangJ. CaiL. HanX. HanC. The ERH gene regulates migration and invasion in 5637 and T24 bladder cancer cells.BMC Cancer201919122510.1186/s12885‑019‑5423‑9 30866868
    [Google Scholar]
  42. ParkJ.H. ParkM. ParkS.Y. LeeY.J. HongS.C. JungE.J. JuY.T. JeongC.Y. KimJ.Y. KoG.H. HahY.S. JeongS.H. ERH overexpression is associated with decreased cell migration and invasion and a good prognosis in gastric cancer.Transl. Cancer Res.2020995281529110.21037/tcr‑20‑1498 35117894
    [Google Scholar]
  43. ZhangY. ChenW. ChengX. WangF. GaoC. SongF. SongF. LiangX. FangW. ChenZ. Sphingomyelin phodiesterase acid-like 3A promotes hepatocellular carcinoma growth through the enhancer of rudimentary homolog.Front. Oncol.20221285276510.3389/fonc.2022.852765 35686107
    [Google Scholar]
  44. WengM.T. TungT.H. LeeJ.H. WeiS.C. LinH.L. HuangY.J. WongJ.M. LuoJ. SheuJ.C. Enhancer of rudimentary homolog regulates DNA damage response in hepatocellular carcinoma.Sci. Rep.201551935710.1038/srep09357 25880358
    [Google Scholar]
  45. WengM.T. LeeJ.H. WeiS.C. LiQ. ShahamatdarS. HsuD. SchetterA.J. SwatkoskiS. MannanP. GarfieldS. GucekM. KimM.K.H. AnnunziataC.M. CreightonC.J. EmanueleM.J. HarrisC.C. SheuJ.C. GiacconeG. LuoJ. Evolutionarily conserved protein ERH controls CENP-E mRNA splicing and is required for the survival of KRAS mutant cancer cells.Proc. Natl. Acad. Sci. USA201210952E3659E366710.1073/pnas.1207673110 23236152
    [Google Scholar]
  46. LeclercJ. FlamentC. LovecchioT. DelattreL. Ait YahyaE. Baert-DesurmontS. BurnichonN. BronnerM. CabaretO. LejeuneS. GuimbaudR. MorinG. MauillonJ. JonveauxP. Laurent-PuigP. FrébourgT. PorchetN. BuisineM.P. Diversity of genetic events associated with MLH1 promoter methylation in Lynch syndrome families with heritable constitutional epimutation.Genet. Med.201820121589159910.1038/gim.2018.47 29790873
    [Google Scholar]
  47. LeiX. LeiY. LiJ.K. DuW.X. LiR.G. YangJ. LiJ. LiF. TanH.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.Cancer Lett.202047012613310.1016/j.canlet.2019.11.009 31730903
    [Google Scholar]
  48. WengM.T. LuoJ. The enigmatic ERH protein: Its role in cell cycle, RNA splicing and cancer.Protein Cell201341180781210.1007/s13238‑013‑3056‑3 24078386
    [Google Scholar]
  49. LiuJ.N. KongX.S. HuangT. WangR. LiW. ChenQ.F. Clinical implications of aberrant PD-1 and CTLA4 expression for cancer immunity and prognosis: A pan-cancer study.Front. Immunol.202011204810.3389/fimmu.2020.02048 33072070
    [Google Scholar]
  50. HuoJ. WuL. ZangY. DongH. LiuX. HeF. ZhangX. Eight-gene metabolic signature related with tumor-associated macrophages predicting overall survival for hepatocellular carcinoma.BMC Cancer20212113110.1186/s12885‑020‑07734‑z 33413205
    [Google Scholar]
  51. WuZ.H. TangY. YuH. LiH.D. The role of ferroptosis in breast cancer patients: A comprehensive analysis.Cell Death Discov.2021719310.1038/s41420‑021‑00473‑5 33947836
    [Google Scholar]
  52. YangJ. LiaoX. AgarwalM.K. BarnesL. AuronP.E. StarkG.R. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκB.Genes Dev.200721111396140810.1101/gad.1553707 17510282
    [Google Scholar]
  53. KöberlinM.S. SnijderB. HeinzL.X. BaumannC.L. FausterA. VladimerG.I. GavinA.C. Superti-FurgaG. A conserved circular network of coregulated lipids modulates innate immune responses.Cell2015162117018310.1016/j.cell.2015.05.051 26095250
    [Google Scholar]
  54. SteuerC.E. RamalingamS.S. Tumor mutation burden: Leading immunotherapy to the era of precision medicine?J. Clin. Oncol.201836763163210.1200/JCO.2017.76.8770 29337637
    [Google Scholar]
  55. ZhangC. ZhangM. GeS. HuangW. LinX. GaoJ. GongJ. ShenL. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K‐Akt signaling in gastric cancer.Cancer Med.20198104766478110.1002/cam4.2360 31243897
    [Google Scholar]
  56. TangJ. PearceL. O’Donnell-TormeyJ. Hubbard-LuceyV.M. Erratum: Trends in the global immuno-oncology landscape.Nat. Rev. Drug Discov.2018171292210.1038/nrd.2018.202 30361553
    [Google Scholar]
  57. LeeD.W. HanS.W. BaeJ.M. JangH. HanH. KimH. BangD. JeongS.Y. ParkK.J. KangG.H. KimT.Y. Tumor mutation burden and prognosis in patients with colorectal cancer treated with adjuvant fluoropyrimidine and oxaliplatin.Clin. Cancer Res.201925206141614710.1158/1078‑0432.CCR‑19‑1105 31285374
    [Google Scholar]
  58. DevarakondaS. RotoloF. TsaoM.S. LancI. BrambillaE. MasoodA. OlaussenK.A. FultonR. SakashitaS. McLeer-FlorinA. DingK. Le TeuffG. ShepherdF.A. PignonJ.P. GrazianoS.L. KratzkeR. SoriaJ.C. SeymourL. GovindanR. MichielsS. Tumor mutation burden as a biomarker in resected non–small-cell lung cancer.J. Clin. Oncol.201836302995300610.1200/JCO.2018.78.1963 30106638
    [Google Scholar]
  59. GryfeR. KimH. HsiehE.T.K. AronsonM.D. HolowatyE.J. BullS.B. RedstonM. GallingerS. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer.N. Engl. J. Med.20003422697710.1056/NEJM200001133420201 10631274
    [Google Scholar]
  60. OvermanM.J. McDermottR. LeachJ.L. LonardiS. LenzH.J. MorseM.A. DesaiJ. HillA. AxelsonM. MossR.A. GoldbergM.V. CaoZ.A. LedeineJ.M. MaglinteG.A. KopetzS. AndréT. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study.Lancet Oncol.20171891182119110.1016/S1470‑2045(17)30422‑9 28734759
    [Google Scholar]
  61. MariathasanS. TurleyS.J. NicklesD. CastiglioniA. YuenK. WangY. KadelE.E.III KoeppenH. AstaritaJ.L. CubasR. JhunjhunwalaS. BanchereauR. YangY. GuanY. ChalouniC. ZiaiJ. ŞenbabaoğluY. SantoroS. SheinsonD. HungJ. GiltnaneJ.M. PierceA.A. MeshK. LianoglouS. RieglerJ. CaranoR.A.D. ErikssonP. HöglundM. SomarribaL. HalliganD.L. van der HeijdenM.S. LoriotY. RosenbergJ.E. FongL. MellmanI. ChenD.S. GreenM. DerlethC. FineG.D. HegdeP.S. BourgonR. PowlesT. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.Nature2018554769354454810.1038/nature25501 29443960
    [Google Scholar]
  62. KwonM. HongJ.Y. KimS.T. KimK.M. LeeJ. Association of serine/threonine kinase 11 mutations and response to programmed cell death 1 inhibitors in metastatic gastric cancer.Pathol. Res. Pract.2020216615294710.1016/j.prp.2020.152947 32284250
    [Google Scholar]
  63. LagosG.G. IzarB. RizviN.A. Beyond tumor PD-L1: Emerging genomic biomarkers for checkpoint inhibitor immunotherapy.Am. Soc. Clin. Oncol. Educ. Book20204040e47e5710.1200/EDBK_289967 32315237
    [Google Scholar]
  64. ShimJ.H. KimH.S. ChaH. KimS. KimT.M. AnagnostouV. ChoiY.L. JungH.A. SunJ.M. AhnJ.S. AhnM.J. ParkK. ParkW.Y. LeeS.H. HLA-corrected tumor mutation burden and homologous recombination deficiency for the prediction of response to PD-(L)1 blockade in advanced non-small-cell lung cancer patients.Ann. Oncol.202031790291110.1016/j.annonc.2020.04.004 32320754
    [Google Scholar]
  65. YoshinoT. PentheroudakisG. MishimaS. OvermanM.J. YehK.H. BabaE. NaitoY. CalvoF. SaxenaA. ChenL.T. TakedaM. CervantesA. TaniguchiH. YoshidaK. KoderaY. KitagawaY. TaberneroJ. BurrisH. DouillardJ.Y. JSCO—ESMO—ASCO—JSMO—TOS: International expert consensus recommendations for tumour-agnostic treatments in patients with solid tumours with microsatellite instability or NTRK fusions.Ann. Oncol.202031786187210.1016/j.annonc.2020.03.299 32272210
    [Google Scholar]
  66. KjeldsenE. NielsenC.J.F. RoyA. TesauroC. JakobsenA.K. StougaardM. KnudsenB.R. Characterization of camptothecin-induced genomic changes in the camptothecin-resistant T-ALL-derived cell line CPT-K5.Cancer Genomics Proteomics201815291114 29496689
    [Google Scholar]
  67. HuangS.C. NgK.F. ChangI.Y.F. ChangC.J. ChaoY.C. ChangS.C. ChenM.C. YehT.S. ChenT.C. The clinicopathological significance of SWI/SNF alterations in gastric cancer is associated with the molecular subtypes.PLoS One2021161e024535610.1371/journal.pone.0245356 33481850
    [Google Scholar]
  68. PellatA. NetterJ. PerkinsG. CohenR. CouletF. ParcY. SvrcekM. DuvalA. AndréT. Lynch syndrome: What’s new?Bull. Cancer20191067-864765510.1016/j.bulcan.2018.10.009 30527816
    [Google Scholar]
  69. MehdiA. RabbaniS.A. Role of methylation in pro- and anti-cancer immunity.Cancers 202113354510.3390/cancers13030545 33535484
    [Google Scholar]
  70. DanielF.I. CherubiniK. YurgelL.S. de FigueiredoM.A.Z. SalumF.G. The role of epigenetic transcription repression and DNA methyltransferases in cancer.Cancer2011117467768710.1002/cncr.25482 20945317
    [Google Scholar]
  71. LiuJ. WangY. YinJ. YangY. GengR. ZhongZ. NiS. LiuW. DuM. YuH. BaiJ. Pan-cancer analysis revealed SRSF9 as a new biomarker for prognosis and immunotherapy.J. Oncol.2022202212110.1155/2022/3477148 35069733
    [Google Scholar]
  72. JiricnyJ. The multifaceted mismatch-repair system.Nat. Rev. Mol. Cell Biol.20067533534610.1038/nrm1907 16612326
    [Google Scholar]
  73. GengY. GuanR. HongW. HuangB. LiuP. GuoX. HuS. YuM. HouB. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival.Ann. Transl. Med.20208638710.21037/atm.2020.03.98 32355831
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073295696240322084341
Loading
/content/journals/cchts/10.2174/0113862073295696240322084341
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ERH; immune infiltration; pan-cancer analysis; prognosis; tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test