Skip to content
2000
Volume 28, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The occurrence of acute lung injury (ALI) caused by lipopolysaccharide (LPS) is prevalent and perilous among older individuals. Inflammation and oxidative stress are vital factors in the progression of ALI in this population. Dayuan Yin (DYY) is a classic Chinese herbal formula used for treating pulmonary diseases. Therefore,this situation can be well simulated by selecting suitable aged rats and induced by LPS, which is helpful to evaluate the role of DYY.

Objective

The objective of this study is to assess the therapeutic efficacy of DYY in reducing pulmonary inflammation and oxidative stress injury in aged rats induced by LPS.

Methods

In elderly male Sprague Dawley (SD) rats, the ALI model was induced by injecting LPS into the peritoneal cavity. The therapeutic effect of the DYY group was evaluated after 3 days of oral administration. Lung tissue damage was assessed using hematoxylin-eosin staining and the lung wet/dry (W/D) ratio. Inflammatory reaction in lung tissue was analyzed by counting inflammatory agents, measuring total protein (TP), and examining the concentration of inflammatory components in bronchoalveolar lavage fluid (BALF). Lung oxidative stress was assessed by measuring malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), and superoxide dismutase (SOD) levels in BALF. The impact of DYY on the phosphorylation of PI3K, AKT, and NF-κBp65 protein was analyzed using Western Blot (WB).

Results

The administration of DYY exhibited a dose-dependent reduction in the severity of lung injury caused by LPS, leading to a reversal of the LPS-induced lung W/D ratio. Furthermore, DYY treatment resulted in decreased levels of leukocytes, eosinophils, neutrophils, macrophages, lymphocytes, and total protein in BALF. Additionally, DYY significantly inhibited the upregulation of Interleukin -6, Interleukin -10, and Interleukin -1β (IL-6, IL-10, IL-1β) as well as Tumor necrosis factor-α(TNF-α) induced by LPS (0.01). The lungs experienced oxidative stress due to LPS, leading to the production of MDA and iNOS, as well as a decrease in SOD activity. DYY reduced oxidative stress in the lungs and inhibited the activation of p-PI3K, p-Akt, and p-NF-κBp65, with a greater effect at higher doses.

Conclusion

In a dose-dependent manner, DYY suppresses the inflammatory response and oxidative stress in the lung tissue of elderly rats, thereby reducing ALI caused by LPS. This effect may be attributed to the inhibition of the PI3K/AKT/NF-κB pathway activation.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073294620240527102409
2024-06-12
2025-09-23
Loading full text...

Full text loading...

References

  1. ShawT.D. McAuleyD.F. O’KaneC.M. Emerging drugs for treating the acute respiratory distress syndrome.Expert Opin. Emerg. Drugs2019241294110.1080/14728214.2019.1591369 30841764
    [Google Scholar]
  2. RubenfeldG.D. CaldwellE. PeabodyE. WeaverJ. MartinD.P. NeffM. SternE.J. HudsonL.D. Incidence and outcomes of acute lung injury.N. Engl. J. Med.2005353161685169310.1056/NEJMoa050333 16236739
    [Google Scholar]
  3. ButtY. KurdowskaA. AllenT.C. Acute lung injury:A clinical and molecular review.Arch. Pathol. Lab. Med.2016140434535010.5858/arpa.2015‑0519‑RA 27028393
    [Google Scholar]
  4. DingZ. ZhongR. XiaT. YangY. XingN. WangW. WangY. YangB. SunX. ShuZ. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury.Biomed. Pharmacother.202012210970610.1016/j.biopha.2019.109706 31918277
    [Google Scholar]
  5. ZhuY. LuoL. ZhangM. SongX. WangP. ZhangH. ZhangJ. LiuD. Xuanfei Baidu Formula attenuates LPS-induced acute lung injury by inhibiting the NF-κB signaling pathway.J. Ethnopharmacol.202330111583310.1016/j.jep.2022.115833 36252879
    [Google Scholar]
  6. DiaoY. DingQ. XuG. LiY. LiZ. ZhuH. ZhuW. WangP. ShiY. Qingfei litan decoction against acute lung injury/acute respiratory distress syndrome: The potential roles of anti-inflammatory and anti-oxidative effects.Front. Pharmacol.20221385750210.3389/fphar.2022.857502 35677439
    [Google Scholar]
  7. GaoP. ZhaoZ. ZhangC. WangC. LongK. GuoL. LiB. The therapeutic effects of traditional Chinese medicine Fusu agent in LPS-induced acute lung injury model rats.Drug Des. Devel. Ther.2018123867387810.2147/DDDT.S181798 30518997
    [Google Scholar]
  8. YangY. ChenJ. RenH. WeiL. HuangX. LiM. YuanJ. WangL. JiangX. GuoL. ZhangJ. Protective effect of the eluting fraction of da-yuan-yin decoction on acute lung injury.Altern. Ther. Health Med.2023295242254 37052973
    [Google Scholar]
  9. YiS. ZouL. LiZ. SakaoK. WangY. HouD.X. In vitro antioxidant activity of areca nut polyphenol extracts on RAW264.7 cells.Foods20221122360710.3390/foods11223607 36429198
    [Google Scholar]
  10. SarricaA. KirikaN. RomeoM. SalmonaM. DiomedeL. Safety and toxicology of magnolol and honokiol.Planta Med.201884161151116410.1055/a‑0642‑1966 29925102
    [Google Scholar]
  11. DindaB. DindaS. DasSharmaS. BanikR. ChakrabortyA. DindaM. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders.Eur. J. Med. Chem.2017131688010.1016/j.ejmech.2017.03.004 28288320
    [Google Scholar]
  12. ZhangS. ZhangQ. AnL. ZhangJ. LiZ. ZhangJ. LiY. TuerhongM. OhizumiY. JinJ. XuJ. GuoY. A fructan from anemarrhena asphodeloides bunge showing neuroprotective and immunoregulatory effects.Carbohydr. Polym.202022911547710.1016/j.carbpol.2019.115477 31826524
    [Google Scholar]
  13. LinY. LiuZ. ZhaoW.R. ShiW.T. ZhangJ. ZhangK.Y. DingQ. ChenX.L. TangJ.Y. ZhouZ.Y. Pharmacological activity, pharmacokinetics, and toxicity of timosaponin AIII, a natural product isolated from anemarrhena asphodeloides bunge:A review.Front. Pharmacol.20201176410.3389/fphar.2020.00764 32581782
    [Google Scholar]
  14. ChenX. LiuZ. MengR. ShiC. GuoN. Antioxidative and anticancer properties of Licochalcone A from licorice.J. Ethnopharmacol.201719833133710.1016/j.jep.2017.01.028 28111219
    [Google Scholar]
  15. SayreC.L. AlrushaidS. DaviesN.M. MartinezS.E. Pharmacological characterization of liquiritigenin, a chiral flavonoid in licorice.Res. Pharm. Sci.201611535536510.4103/1735‑5362.192484 27920817
    [Google Scholar]
  16. ShangZ. GaoY. XueY. ZhangC. QiuJ. QianY. FangM. ZhangX. SunX. KongX. GaoY. Shenge Formula attenuates high-fat diet-induced obesity and fatty liver via inhibiting ACOX1.Phytomedicine202412315518310.1016/j.phymed.2023.155183 37992491
    [Google Scholar]
  17. ZengY. ZhaoH. ZhangT. ZhangC. HeY. DuL. ZuoF. WangW. Lung-protective effect of Punicalagin on LPS-induced acute lung injury in mice.Biosci. Rep.2022421BSR2021219610.1042/BSR20212196 35028666
    [Google Scholar]
  18. ZhaoQ. RenX. SongS.Y. YuR.L. LiX. ZhangP. ShaoC.L. WangC.Y. Deciphering the underlying mechanisms of formula le-cao-shi against liver injuries by integrating network pharmacology, metabonomics, and experimental validation.Front. Pharmacol.20221388448010.3389/fphar.2022.884480 35548342
    [Google Scholar]
  19. LuS. SunX. ZhouZ. TangH. XiaoR. LvQ. WangB. QuJ. YuJ. SunF. DengZ. TianY. LiC. YangZ. YangP. RaoB. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation.Front. Immunol.202314123557510.3389/fimmu.2023.1235575 37799727
    [Google Scholar]
  20. WuF. WuG. LiT. LuW. FuT. ZhangZ. Exploring the target and mechanism of radix paeoniae alba on sjogren’s syndrome.Comb. Chem. High Throughput Screen.20232661224123210.2174/1386207325666220823144054 36017844
    [Google Scholar]
  21. ZhangW. SunM. LvG. GuoW. HuJ. GuJ. WangY. GongQ. PiZ. LinZ. Exploring the mechanism of tenghuang jiangu wan in osteoporosis treatment based on network pharmacology, molecular docking and experimental pharmacology.Chin. J. Anal. Chem.202452110035110.1016/j.cjac.2023.100351
    [Google Scholar]
  22. WangJ. LiH. YangZ. HuangC. SunY. HuX. Elucidation of the mechanisms and molecular targets of run-zao-zhiyang capsule for itch based on network pharmacology, molecular docking and In vitro Experiment.Comb. Chem. High Throughput Screen.202326101866187810.2174/1386207326666221031115440 36321233
    [Google Scholar]
  23. Falah AlshehriF. AlzahraniF.M. AlkhoshaibanA. Saad Al ShehriZ. Exploring the multi-gene regulatory molecular mechanism of Saudi Arabian flora against epilepsy based on data mining, network pharmacology and docking analysis.Saudi Pharm. J.202331910173210.1016/j.jsps.2023.101732 37638220
    [Google Scholar]
  24. QuL. ChenC. HeW. ChenY. LiY. WenY. ZhouS. JiangY. YangX. ZhangR. ShenL. Glycyrrhizic acid ameliorates LPS-induced acute lung injury by regulating autophagy through the PI3K/AKT/mTOR pathway.Am. J. Transl. Res.201911420422055 31105816
    [Google Scholar]
  25. KellnerM. NoonepalleS. LuQ. SrivastavaA. ZemskovE. BlackS.M. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS).Adv. Exp. Med. Biol.201796710513710.1007/978‑3‑319‑63245‑2_8 29047084
    [Google Scholar]
  26. SweeneyR.M. McAuleyD.F. Acute respiratory distress syndrome.Lancet2016388100582416243010.1016/S0140‑6736(16)00578‑X 27133972
    [Google Scholar]
  27. WardP.A. Oxidative stress: Acute and progressive lung injury.Ann. N. Y. Acad. Sci.201012031535910.1111/j.1749‑6632.2010.05552.x 20716283
    [Google Scholar]
  28. NiuX. WangY. LiW. MuQ. LiH. YaoH. ZhangH. Protective effects of Isofraxidin against lipopolysaccharide-induced acute lung injury in mice.Int. Immunopharmacol.201524243243910.1016/j.intimp.2014.12.041 25596039
    [Google Scholar]
  29. GaoJ. WangN. SongW. YuanY. TengY. LiuZ. Mechanisms underlying the synergistic effects of chuanxiong combined with Chishao on treating acute lung injury based on network pharmacology and molecular docking combined with preclinical evaluation.J. Ethnopharmacol.202432511786210.1016/j.jep.2024.117862 38342157
    [Google Scholar]
  30. ZhouW. HuZ. WuX. ZhangS. JiangY. TianL. HuangX. MaZ. QiuL. ZhengP. ZhangS. LuZ. Elucidation of the underlying mechanism of Hua-ban decoction in alleviating acute lung injury by an integrative approach of network pharmacology and experimental verification.Mol. Immunol.2023156859710.1016/j.molimm.2023.02.013 36913767
    [Google Scholar]
  31. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. Wenzel-StorjohannA. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased NRF2 level by a flavonol-enriched n -butanol fraction from Uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  32. QuimqueM.T. NotarteK.I. LetadaA. FernandezR.A. PilapilD.Y.IV PueblosK.R. AgbayJ.C. DahseH.M. Wenzel-StorjohannA. TasdemirD. KhanA. WeiD.Q. Gose MacabeoA.P. Potential cancer and alzheimer’s disease-targeting phosphodiesterase inhibitors from Uvaria alba: Insights from In vitro and consensus virtual screening.ACS Omega20216128403841710.1021/acsomega.1c00137 33817501
    [Google Scholar]
  33. Thomas EdisonE.D. Biomining fungal endophytes from tropical plants and seaweeds for drug discovery.Biodiver. Biomed2020516210.1016/B978‑0‑12‑819541‑3.00004‑9
    [Google Scholar]
  34. dela CruzT.E.E. TimbrezaL.P. SangvichienE. NotarteK.I.R. SantiagoK.A.A. Comparative study on the antimicrobial activities and metabolic profiles of five Usnea species from the philippines.J. Fungi2023911111710.3390/jof9111117 37998922
    [Google Scholar]
  35. SunZ. ChenA. FangH. SunD. HuangM. ChengE. LuoM. ZhangX. FangH. QianG. B cell-derived IL-10 promotes the resolution of lipopolysaccharide-induced acute lung injury.Cell Death Dis.202314741810.1038/s41419‑023‑05954‑2 37443161
    [Google Scholar]
  36. WangK. WangM. LiaoX. GaoS. HuaJ. WuX. GuoQ. XuW. SunJ. HeY. LiQ. GaoW. Locally organised and activated Fth1hi neutrophils aggravate inflammation of acute lung injury in an IL-10-dependent manner.Nat. Commun.2022131770310.1038/s41467‑022‑35492‑y 36513690
    [Google Scholar]
  37. ChangH.Y. ChenY.C. LinJ.G. Asatone prevents acute lung injury by reducing expressions of NF-KB,MAPK and inflammatory cytokines.Am. J. Chin. Med.201846365167110.1142/S0192415X18500349 29595073
    [Google Scholar]
  38. ImaiY. KubaK. NeelyG.G. Yaghubian-MalhamiR. PerkmannT. van LooG. ErmolaevaM. VeldhuizenR. LeungY.H.C. WangH. LiuH. SunY. PasparakisM. KopfM. MechC. BavariS. PeirisJ.S.M. SlutskyA.S. AkiraS. HultqvistM. HolmdahlR. NichollsJ. JiangC. BinderC.J. PenningerJ.M. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury.Cell2008133223524910.1016/j.cell.2008.02.043 18423196
    [Google Scholar]
  39. AyalaA. MuñozM.F. ArgüellesS. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid. Med. Cell. Longev.2014201413110.1155/2014/360438 24999379
    [Google Scholar]
  40. KimK.H. KimD.H. JeongN. KimK.I. KimY.H. LeeM. ChoiJ.Y. JungH.J. JungS.K. JooM. Therapeutic effect of Chung-Pae, an experimental herbal formula, on acute lung inflammation is associated with suppression of NF- κ B and activation of Nrf2.Evid. Based Complement. Alternat. Med.2013201311110.1155/2013/659459 24062787
    [Google Scholar]
  41. ZhuL. WeiM. YangN. LiX. Glycyrrhizic acid alleviates the meconium-induced acute lung injury in neonatal rats by inhibiting oxidative stress through mediating the Keap1/Nrf2/HO-1 signal pathway.Bioengineered20211212616262610.1080/21655979.2021.1937445 34499011
    [Google Scholar]
  42. BerkaV. LiuW. WuG. TsaiA.L. Comparison of oxygen-induced radical intermediates in iNOS oxygenase domain with those from nNOS and eNOS.J. Inorg. Biochem.20141399310510.1016/j.jinorgbio.2014.06.011 25016313
    [Google Scholar]
  43. JiangK. GuoS. YangC. YangJ. ChenY. ShaukatA. ZhaoG. WuH. DengG. Barbaloin protects against lipopolysaccharide (LPS)-induced acute lung injury by inhibiting the ROS-mediated PI3K/AKT/NF-κB pathway.Int. Immunopharmacol.20186414015010.1016/j.intimp.2018.08.023 30173054
    [Google Scholar]
  44. KondylisV. KumariS. VlantisK. PasparakisM. The interplay of IKK, NF ‐κB and RIPK 1 signaling in the regulation of cell death, tissue homeostasis and inflammation.Immunol. Rev.2017277111312710.1111/imr.12550 28462531
    [Google Scholar]
  45. ZhouB. WengG. HuangZ. LiuT. DaiF. Arctiin prevents LPS-Induced acute lung injury via inhibition of PI3K/AKT signaling pathway in mice.Inflammation20184162129213510.1007/s10753‑018‑0856‑x 30116933
    [Google Scholar]
  46. AfoninaI.S. ZhongZ. KarinM. BeyaertR. Limiting inflammation the negative regulation of NF-κB and the NLRP3 inflammasome.Nat. Immunol.201718886186910.1038/ni.3772 28722711
    [Google Scholar]
  47. WangL. LiZ. LuT. SuL. MaoC. ZhangY. ZhangX. JiangX. XieH. YuX. The potential mechanism of Choulingdan mixture in improving acute lung injury based on HPLC–Q‐TOF–MS, network pharmacology and in vivo experiments.Biomed. Chromatogr.20233710e570910.1002/bmc.5709 37533317
    [Google Scholar]
  48. ZhuH. WangS. ShanC. LiX. TanB. ChenQ. YangY. YuH. YangA. Mechanism of protective effect of xuan-bai-cheng-qi decoction on LPS-induced acute lung injury based on an integrated network pharmacology and RNA-sequencing approach.Respir. Res.202122118810.1186/s12931‑021‑01781‑1 34183011
    [Google Scholar]
  49. MengL. LiL. LuS. LiK. SuZ. WangY. FanX. LiX. ZhaoG. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways.Mol. Immunol.20189471710.1016/j.molimm.2017.12.008 29241031
    [Google Scholar]
  50. PooladandaV. ThatikondaS. BaleS. PattnaikB. SigalapalliD.K. BathiniN.B. SinghS.B. GoduguC. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation.Cell Death Dis.20191028110.1038/s41419‑018‑1247‑9 30692512
    [Google Scholar]
  51. ZhangC. LiX. GaoD. ZhuH. WangS. TanB. YangA. Network pharmacology and experimental validation of the anti-inflammatory effect of tingli dazao xiefei decoction in acute lung injury treatment.J. Inflamm. Res.2023166195620910.2147/JIR.S433840 38145012
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073294620240527102409
Loading
/content/journals/cchts/10.2174/0113862073294620240527102409
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): acute lung injury; DYY; inflammation; LPS; oxidative stress; PI3K/AKT/NF-κB
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test