Skip to content
2000
Volume 28, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aim

This study aimed to investigate the mechanism of Si Shen Decoction (SSD) in rats with Collagen-Induced Arthritis (CIA).

Background

Rheumatoid arthritis (RA) is a complex immune disease characterized by bilateral symmetrical multi-joint pain and swelling. SSD has shown good results in treating RA in clinical applications, but its mechanism of action remains unclear.

Objective

To investigate the mechanism of SSD in rats with Collagen-Induced Arthritis (CIA).

Methods

Bioinformatics and network pharmacology analyses were used to predict the possible treatment targets and signaling pathways. Elisa, Western blotting, and quantitative real-time polymerase chain reaction were used to verify the mechanism of SSD in the treatment of RA.

Results

FABP4, MMP9, and PTGS2 were the most common predicted therapeutic targets. SSD treatment significantly reduced synovitis, ankle swelling and bone erosion in CIA rats. The SSD group also significantly reduced the serum secretion of CRP, TNFα, and IL1β, decreased mRNA levels of FABP4, IKKα, and p65 in the synovial membrane, but increased PPARγ. Western blot showed that SSD treatment could significantly reduce the expression of FABP4, IKKα, and phosphorylated p65 (p-p65) proteins in the synovium. SSD was found to inhibit the FABP4/PPARγ/NFκB signaling pathway and reduce the inflammatory response in CIA rats. The therapeutic effect of SSD was significant with the increase of dose.

Conclusion

SSD can relieve joint symptoms in CIA rats and alleviate inflammation by inhibiting the FABP4/PPARγ/NFκB signaling pathway. The effect of high-dose SSD was more prominent.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073296957240312090935
2024-04-03
2025-09-17
Loading full text...

Full text loading...

References

  1. VenetsanopoulouA.I. AlamanosY. VoulgariP.V. DrososA.A. Epidemiology of rheumatoid arthritis: Genetic and environmental influences.Expert Rev. Clin. Immunol.202218992393110.1080/1744666X.2022.2106970 35904251
    [Google Scholar]
  2. ZhouY.S. WangX.R. AnY. LiC. ZhangX.Y. DuanT.J. A multicenter study of deformity and disability in rheumatoid arthritis patients in China.Chin J Rheumatol2013178526532
    [Google Scholar]
  3. PrasadP. VermaS. Surbhi; Ganguly, N.K.; Chaturvedi, V.; Mittal, S.A. Rheumatoid arthritis: Advances in treatment strategies.Mol. Cell. Biochem.20234781698810.1007/s11010‑022‑04492‑3 35725992
    [Google Scholar]
  4. YangK.R. ShuR. XuD.Y. ZhangY. LiuH. Rheumatoid arthritis after treatment with glucocorticoid Discussion on TCM treatment.Rheum. Arth.2013275859
    [Google Scholar]
  5. SunP.Y. GaoM.L. Clinical observation on yiqi yangyin tongluo formula for rheumatoid arthritis patients of deficiency of Qi and Yin Syndrome.Liaoning J. Tradit. Chin. Med.201946714311433
    [Google Scholar]
  6. ZhaoY.Y. GaoM.L. WangL.M. WangE.L. Gao Mingli’s experience in treating rheumatoid arthritis by supplementing qi and nourishing yin.Chin Archi TCM201937614401442
    [Google Scholar]
  7. MateenS. ShahzadS. AhmadS. NaeemS.S. KhalidS. AkhtarK. RizviW. MoinS. Cinnamaldehyde and eugenol attenuates collagen induced arthritis via reduction of free radicals and pro-inflammatory cytokines.Phytomedicine201953707810.1016/j.phymed.2018.09.004 30668414
    [Google Scholar]
  8. YanM. YanY. ZhangZ. WangG. ShiW. JiangM. ZhaoJ. WuX. ZengH. The effect of triptolide combined with crocin on arthritis in mice: from side effect attenuation to therapy.Front. Pharmacol.20221390822710.3389/fphar.2022.908227 35814255
    [Google Scholar]
  9. LuanJ. HuZ. ChengJ. ZhangR. YangP. GuoH. NanG. GuoN. GouX. Applicability and implementation of the collagen induced arthritis mouse model, including protocols. (Review)Exp. Ther. Med.202122393910.3892/etm.2021.10371 34335888
    [Google Scholar]
  10. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑8 27156434
    [Google Scholar]
  11. DoumenM. PazminoS. BertrandD. WesthovensR. VerschuerenP. Glucocorticoids in rheumatoid arthritis: Balancing benefits and harm by leveraging the therapeutic window of opportunity.Joint Bone Spine202390310549110.1016/j.jbspin.2022.105491 36410680
    [Google Scholar]
  12. TachecíI. BradnaP. DoudaT. BašteckáD. KopáčováM. RejchrtS. BurešJ. NSAID-induced enteropathy in rheumatoid arthritis patients with chronic occult gastrointestinal bleeding: A prospective capsule endoscopy study.Gastroenterol. Res. Pract.2013201311010.1155/2013/268382 24382953
    [Google Scholar]
  13. CohenS. CurtisJ.R. DeMasiR. ChenY. FanH. SoonasraA. FleischmannR. Worldwide, 3-Year, post-marketing surveillance experience with tofacitinib in rheumatoid arthritis.Rheumatol. Ther.20185128329110.1007/s40744‑018‑0097‑3 29470834
    [Google Scholar]
  14. LüS. WangQ. LiG. SunS. GuoY. KuangH. The treatment of rheumatoid arthritis using Chinese medicinal plants: From pharmacology to potential molecular mechanisms.J. Ethnopharmacol.201517617720610.1016/j.jep.2015.10.010 26471289
    [Google Scholar]
  15. DuanH. KhanG.J. ShangL. PengH. HuW. ZhangJ. HuaJ. CassandraA. RashedM.M.A. ZhaiK. Computational pharmacology and bioinformatics to explore the potential mechanism of Schisandra against atherosclerosis.Food Chem. Toxicol.202115011205810.1016/j.fct.2021.112058 33582168
    [Google Scholar]
  16. WangW. LiH. LvJ. KhanG.J. DuanH. ZhuJ. Isodon suzhouensis determination of the anti-oxidative stress mechanism of leaves by employing bioinformatic and novel research technology.ACS Omega2023833520352910.1021/acsomega.2c07913 36713735
    [Google Scholar]
  17. ZhuY. OuyangZ. DuH. WangM. WangJ. SunH. KongL. XuQ. MaH. SunY. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics.Acta Pharm. Sin. B202212114011403910.1016/j.apsb.2022.08.022 36386472
    [Google Scholar]
  18. FuX.Y. HuangW.Y. WuJ.M. Clinical observation on the treatment of rheumatoid arthritis by Sishen Decoction combined with Western medicine.J. Sichuan Trad. Chi. Med.201267577
    [Google Scholar]
  19. CaoW. Clinical observation of 50 cases of rheumatoid arthritis treated with Sishenjian.J. Beijing Uni. Trad. Chin. Med.20087490498
    [Google Scholar]
  20. SchinoccaC. RizzoC. FasanoS. GrassoG. La BarberaL. CicciaF. GugginoG. Role of the IL-23/IL-17 pathway in rheumatic diseases: An overview.Front. Immunol.20211263782910.3389/fimmu.2021.637829 33692806
    [Google Scholar]
  21. MeyerA. ParmarP.J. ShahraraS. Significance of IL-7 and IL-7R in RA and autoimmunity.Autoimmun. Rev.202221710312010.1016/j.autrev.2022.103120 35595051
    [Google Scholar]
  22. LuoT. LuY. YanS. XiaoX. RongX. GuoJ. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective.Chin. J. Integr. Med.2020261728010.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  23. JangS. KwonE.J. LeeJ.J. Rheumatoid arthritis: Pathogenic roles of diverse immune cells.Int. J. Mol. Sci.202223290510.3390/ijms23020905 35055087
    [Google Scholar]
  24. PopeJ.E. ChoyE.H. C-reactive protein and implications in rheumatoid arthritis and associated comorbidities.Semin. Arthritis Rheum.202151121922910.1016/j.semarthrit.2020.11.005 33385862
    [Google Scholar]
  25. AchudhanD. LiuS.C. LinY.Y. HuangC.C. TsaiC.H. KoC.Y. ChiangI.P. KuoY.H. TangC.H. Antcin K inhibits TNF-α, IL-1β and IL-8 expression in synovial fibroblasts and ameliorates cartilage degradation: Implications for the treatment of rheumatoid arthritis.Front. Immunol.20211279092510.3389/fimmu.2021.790925 34975889
    [Google Scholar]
  26. YaoZ. GettingS.J. LockeI.C. Regulation of TNF-induced osteoclast differentiation.Cells202111113210.3390/cells11010132 35011694
    [Google Scholar]
  27. ZhangH. LiuL. JiangC. PanK. DengJ. WanC. MMP9 protects against LPS-induced inflammation in osteoblasts.Innate Immun.202026425926910.1177/1753425919887236 31726909
    [Google Scholar]
  28. de BusI.A. AmericaA.H.P. de RuijterN.C.A. LamM. van de SandeJ.W. PolandM. WitkampR.F. ZuilhofH. BalversM.G.J. AlbadaB. PUFA-Derived N -acylethanolamide probes identify peroxiredoxins and small gtpases as molecular targets in LPS-Stimulated RAW264.7 macrophages.ACS Chem. Biol.20221782054206410.1021/acschembio.1c00355 35867905
    [Google Scholar]
  29. NakanoR. KitanakaT. NambaS. KitanakaN. SuwabeY. KonnoT. YamazakiJ. NakayamaT. SugiyaH. Non-Transcriptional and translational function of canonical NF-κB signaling in activating ERK1/2 in IL-1β-induced COX-2 expression in synovial fibroblasts.Front. Immunol.20201157926610.3389/fimmu.2020.579266 33117381
    [Google Scholar]
  30. FuruhashiM. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases.J. Atheroscler. Thromb.201926321623210.5551/jat.48710 30726793
    [Google Scholar]
  31. LiB. HaoJ. ZengJ. SauterE.R. SnapShot: FABP functions.Cell2020182410661066.e110.1016/j.cell.2020.07.027 32822569
    [Google Scholar]
  32. GuoD. LinC. LuY. GuanH. QiW. ZhangH. ShaoY. ZengC. ZhangR. ZhangH. BaiX. CaiD. FABP4 secreted by M1-polarized macrophages promotes synovitis and angiogenesis to exacerbate rheumatoid arthritis.Bone Res.20221014510.1038/s41413‑022‑00211‑2 35729106
    [Google Scholar]
  33. DouH.X. WangT. SuH.X. GaoD.D. XuY.C. LiY.X. WangH.Y. Exogenous FABP4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes.Endocrine202067358759610.1007/s12020‑019‑02157‑8 31845180
    [Google Scholar]
  34. LaiH.C. ChenP.H. TangC.H. ChenL.W. Dipeptidyl peptidase 4 stimulation induces adipogenesis-related gene expression of adipose stromal cells.Int. J. Mol. Sci.202324221610110.3390/ijms242216101 38003291
    [Google Scholar]
  35. LiuW.C. WuC.W. FuM.H. TainY.L. LiangC.K. HungC.Y. ChenI.C. LeeY.C. WuC.Y. WuK.L.H. Maternal high fructose-induced hippocampal neuroinflammation in the adult female offspring via PPARγ-NF-κB signaling.J. Nutr. Biochem.20208110837810.1016/j.jnutbio.2020.108378 32330843
    [Google Scholar]
  36. MaoH. HanB. LiH. TaoY. WuW. FABP4 knockdown suppresses inflammation, apoptosis and extracellular matrix degradation in IL-1β-induced chondrocytes by activating PPARγ to regulate the NF-κB signaling pathway.Mol. Med. Rep.202124685510.3892/mmr.2021.12495 34651666
    [Google Scholar]
  37. JuZ. SuM. HongJ. KimE.L. JungJ.H. Anti-inflammatory effects of an optimized PPAR-γ agonist via NF-κB pathway inhibition.Bioorg. Chem.20209610361110.1016/j.bioorg.2020.103611 32007723
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073296957240312090935
Loading
/content/journals/cchts/10.2174/0113862073296957240312090935
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test