Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Sepsis is a frequent cause of Acute Lung Injury (ALI), characterized by immune dysregulation and a high mortality rate. The role of cuproptosis, a recently discovered cell death mechanism, in sepsis-associated ALI is still unclear. The study aimed to investigate the regulatory mechanisms and immune characteristics associated with cuproptosis in sepsis-associated ALI, with implications for novel diagnostic and therapeutic approaches.

Methods

Data from the GEO database was utilized to conduct a comprehensive analysis of the cuproptosis-related genes (CRGs) in sepsis-associated ALI. Gene enrichment analysis, WGCNA, CIBERSORT algorithm, and consensus clustering were employed to investigate the associations between CRGs and immune cells. A predictive model for sepsis-associated ALI was developed based on key CRGs, and its diagnostic accuracy was assessed. Finally, qPCR was employed to validate alterations in the expression of CRGs in the sepsis-associated ALI cellular model.

Results

A total of 14 CRGs were identified in sepsis-associated ALI. Strong correlations between the CRGs and immune cells were observed, and two different CRG subtypes were identified. The expression of immune-related factors in both the CRG and gene clusters exhibited similarities, suggesting a connection between the subgroups and immune cells. The prediction model effectively forecasted the incidence of sepsis-associated ALI based on the expression of CRGs. Finally, qPCR analysis confirmed that the expressions of CRGs in the sepsis-associated ALI cell model closely matched those identified through bioinformatic analyses.

Conclusion

The study comprehensively evaluated the complex relationship between cuproptosis and sepsis-associated ALI. CRGs were found to be significantly associated with the occurrence, immune characteristics, and biological processes of sepsis-associated ALI. These findings provide valuable new insights into the mechanisms underlying sepsis-associated ALI.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073290692240509094709
2025-05-01
2025-10-26
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/7/CCHTS-28-7-12.html?itemId=/content/journals/cchts/10.2174/0113862073290692240509094709&mimeType=html&fmt=ahah

References

  1. CecconiM. EvansL. LevyM. RhodesA. Sepsis and septic shock.Lancet201839210141758710.1016/S0140‑6736(18)30696‑229937192
    [Google Scholar]
  2. Fleischmann-StruzekC. MellhammarL. RoseN. CassiniA. RuddK.E. SchlattmannP. AllegranziB. ReinhartK. Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis.Intensive Care Med.20204681552156210.1007/s00134‑020‑06151‑x32572531
    [Google Scholar]
  3. ButtY. KurdowskaA. AllenT.C. Acute Lung Injury: A Clinical and Molecular Review.Arch. Pathol. Lab. Med.2016140434535010.5858/arpa.2015‑0519‑RA27028393
    [Google Scholar]
  4. CortegianiA. MadottoF. GregorettiC. BellaniG. LaffeyJ.G. PhamT. Van HarenF. GiarratanoA. AntonelliM. PesentiA. GrasselliG. LUNG SAFE Investigators and the ESICM Trials Group Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database.Crit. Care201822115710.1186/s13054‑018‑2079‑929895331
    [Google Scholar]
  5. MatthayM.A. ZemansR.L. ZimmermanG.A. ArabiY.M. BeitlerJ.R. MercatA. HerridgeM. RandolphA.G. CalfeeC.S. Acute respiratory distress syndrome.Nat. Rev. Dis. Primers2019511810.1038/s41572‑019‑0069‑030872586
    [Google Scholar]
  6. JiangJ. HuangK. XuS. GarciaJ.G.N. WangC. CaiH. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction.Redox Biol.20203610163810.1016/j.redox.2020.10163832863203
    [Google Scholar]
  7. ChenL. MinJ. WangF. Copper homeostasis and cuproptosis in health and disease.Signal Transduct. Target. Ther.20227137810.1038/s41392‑022‑01229‑y36414625
    [Google Scholar]
  8. TsvetkovP. CoyS. PetrovaB. DreishpoonM. VermaA. AbdusamadM. RossenJ. Joesch-CohenL. HumeidiR. SpanglerR.D. EatonJ.K. FrenkelE. KocakM. CorselloS.M. LutsenkoS. KanarekN. SantagataS. GolubT.R. Copper induces cell death by targeting lipoylated TCA cycle proteins.Science202237565861254126110.1126/science.abf052935298263
    [Google Scholar]
  9. LuZ. DingL. ZhangS. JiangX. WangQ. LuoY. TianX. Bioinformatics analysis of copper death gene in diabetic immune infiltration.Medicine202310239e3524110.1097/MD.000000000003524137773841
    [Google Scholar]
  10. TangD. ChenX. KroemerG. Cuproptosis: A copper-triggered modality of mitochondrial cell death.Cell Res.202232541741810.1038/s41422‑022‑00653‑735354936
    [Google Scholar]
  11. YunY. WangY. YangE. JingX. Cuproptosis-Related Gene – SLC31A1, FDX1 and ATP7B – Polymorphisms are Associated with Risk of Lung Cancer.Pharm. Genomics Pers. Med.20221573374210.2147/PGPM.S37282435923305
    [Google Scholar]
  12. BianZ. FanR. XieL. A Novel Cuproptosis-Related Prognostic Gene Signature and Validation of Differential Expression in Clear Cell Renal Cell Carcinoma.Genes (Basel)202213585110.3390/genes1305085135627236
    [Google Scholar]
  13. ChenY. Identification and Validation of Cuproptosis-Related Prognostic Signature and Associated Regulatory Axis in Uterine Corpus Endometrial Carcinoma.Front. Genet.20221391203710.3389/fgene.2022.91203735937995
    [Google Scholar]
  14. TongX. TangR. XiaoM. XuJ. WangW. ZhangB. LiuJ. YuX. ShiS. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research.J. Hematol. Oncol.202215117410.1186/s13045‑022‑01392‑336482419
    [Google Scholar]
  15. LaiY. LinC. LinX. WuL. ZhaoY. LinF. Identification and immunological characterization of cuproptosis-related molecular clusters in Alzheimer’s disease.Front. Aging Neurosci.20221493267610.3389/fnagi.2022.93267635966780
    [Google Scholar]
  16. LiuY. MiaoJ. An Emerging Role of Defective Copper Metabolism in Heart Disease.Nutrients202214370010.3390/nu14030700
    [Google Scholar]
  17. ChenY. LiX. SunR. JiJ. YangF. TianW. JiW. HuangQ. A broad cuproptosis landscape in inflammatory bowel disease.Front. Immunol.202213103153910.3389/fimmu.2022.103153936405733
    [Google Scholar]
  18. WangG. XiaoR. ZhaoS. SunL. GuoJ. LiW. ZhangY. BianX. QiuW. WangS. Cuproptosis regulator-mediated patterns associated with immune infiltration features and construction of cuproptosis-related signatures to guide immunotherapy.Front. Immunol.20221394551610.3389/fimmu.2022.94551636248857
    [Google Scholar]
  19. KõksS. KõksG. Activation of GPR15 and its involvement in the biological effects of smoking.Exp. Biol. Med. (Maywood)2017242111207121210.1177/153537021770397728423922
    [Google Scholar]
  20. KõksG. UudeleppM.L. LimbachM. PetersonP. ReimannE. KõksS. Smoking-induced expression of the GPR15 gene indicates its potential role in chronic inflammatory pathologies.Am. J. Pathol.2015185112898290610.1016/j.ajpath.2015.07.00626348578
    [Google Scholar]
  21. HuangY. YinD. WuL. Identification of cuproptosis-related subtypes and development of a prognostic signature in colorectal cancer.Sci. Rep.20221211734810.1038/s41598‑022‑22300‑236253436
    [Google Scholar]
  22. WangJ. QinD. TaoZ. WangB. XieY. WangY. LiB. CaoJ. QiaoX. ZhongS. HuX. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer.Front. Immunol.202213105693210.3389/fimmu.2022.105693236479114
    [Google Scholar]
  23. ZhuL. WangZ. SunY. GiamasG. StebbingJ. YuZ. PengL. A Prediction Model Using Alternative Splicing Events and the Immune Microenvironment Signature in Lung Adenocarcinoma.Front. Oncol.20211177863710.3389/fonc.2021.77863735004299
    [Google Scholar]
  24. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  25. TongH. SunJ. FangJ. ZhangM. LiuH. XiaR. ZhouW. LiuK. ChenX. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study.Front. Immunol.20221385932310.3389/fimmu.2022.85932335572597
    [Google Scholar]
  26. ZhangS. LiuF. WuZ. XieJ. YangY. QiuH. Contribution of m6A subtype classification on heterogeneity of sepsis.Ann. Transl. Med.20208630610.21037/atm.2020.03.0732355750
    [Google Scholar]
  27. OuyangY. TuY. ChenS. MinH. WenZ. ZhengG. WanT. FanH. YangW. SunG. Characterization of immune microenvironment infiltration and m6A regulator-mediated RNA methylation modification patterns in osteoarthritis.Front. Immunol.202213101870110.3389/fimmu.2022.101870136505479
    [Google Scholar]
  28. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  29. HuX. NiS. ZhaoK. QianJ. DuanY. Bioinformatics-Led Discovery of Osteoarthritis Biomarkers and Inflammatory Infiltrates.Front. Immunol.20221387100810.3389/fimmu.2022.87100835734177
    [Google Scholar]
  30. HänzelmannS. CasteloR. GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  31. LangfelderP. HorvathS. WGCNA: an R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  32. The Gene Ontology Consortium Expansion of the Gene Ontology knowledgebase and resources.Nucleic Acids Res.201745D1D331D33810.1093/nar/gkw110827899567
    [Google Scholar]
  33. KanehisaM. FurumichiM. TanabeM. SatoY. MorishimaK. KEGG: new perspectives on genomes, pathways, diseases and drugs.Nucleic Acids Res.201745D1D353D36110.1093/nar/gkw109227899662
    [Google Scholar]
  34. JiaM. LiJ. ZhangJ. WeiN. YinY. ChenH. YanS. WangY. Identification and validation of cuproptosis related genes and signature markers in bronchopulmonary dysplasia disease using bioinformatics analysis and machine learning.BMC Med. Inform. Decis. Mak.20232316910.1186/s12911‑023‑02163‑x37060021
    [Google Scholar]
  35. KangM. ZhangH. ZhangJ. HuangK. ZhaoJ. HuJ. LuC. ShaoJ. WengJ. YangY. ZhuangY. XuX. A Novel Nomogram for Predicting Gestational Diabetes Mellitus During Early Pregnancy.Front. Endocrinol. (Lausanne)20211277921010.3389/fendo.2021.77921034956091
    [Google Scholar]
  36. RezoagliE. FumagalliR. BellaniG. Definition and epidemiology of acute respiratory distress syndrome.Ann. Transl. Med.201751428210.21037/atm.2017.06.6228828357
    [Google Scholar]
  37. KumarV. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury.Front. Immunol.202011172210.3389/fimmu.2020.0172232849610
    [Google Scholar]
  38. AbdullahK.M. KaushalJ.B. TakkarS. SharmaG. AlsafwaniZ.W. PothurajuR. BatraS.K. SiddiquiJ.A. Copper metabolism and cuproptosis in human malignancies: Unraveling the complex interplay for therapeutic insights.Heliyon2024105e2749610.1016/j.heliyon.2024.e2749638486750
    [Google Scholar]
  39. ZhangZ. ZengX. WuY. LiuY. ZhangX. SongZ. Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma.Front. Immunol.20221392561810.3389/fimmu.2022.92561835898502
    [Google Scholar]
  40. MoweryN.T. TerzianW.T.H. NelsonA.C. Acute lung injury.Curr. Probl. Surg.202057510077710.1016/j.cpsurg.2020.10077732505224
    [Google Scholar]
  41. WangY. ZhaoZ. XiaoZ. The Emerging Roles of Ferroptosis in Pathophysiology and Treatment of Acute Lung Injury.J. Inflamm. Res.2023164073408510.2147/JIR.S42067637727372
    [Google Scholar]
  42. HuangJ. ChenJ. WangC. LaiL. MiH. ChenS. Deciphering the molecular classification of pediatric sepsis: Integrating WGCNA and machine learning-based classification with immune signatures for the development of an advanced diagnostic model.Front. Genet.202415129438110.3389/fgene.2024.129438138348451
    [Google Scholar]
  43. YanJ. LiZ. LiY. ZhangY. Sepsis induced cardiotoxicity by promoting cardiomyocyte cuproptosis.Biochem. Biophys. Res. Commun.202469014924510.1016/j.bbrc.2023.14924538006800
    [Google Scholar]
  44. WangT. FangX. ShengX. LiM. MeiY. MeiQ. PanA. Identification of immune characteristic biomarkers and therapeutic targets in cuproptosis for sepsis by integrated bioinformatics analysis and single-cell RNA sequencing analysis.Heliyon2024105e2737910.1016/j.heliyon.2024.e2737938495196
    [Google Scholar]
  45. ChangJ. YinW. ZhiH. ChenS. SunJ. ZhaoY. HuangL. XueL. ZhangX. ZhangT. DongH. LiY. Copper Deposition in Polydopamine Nanostructure to Promote Cuproptosis by Catalytically Inhibiting Copper Exporters of Tumor Cells for Cancer Immunotherapy.Small2024e2308565230856510.1002/smll.20230856538339770
    [Google Scholar]
  46. LuX. ChenX. LinC. YiY. ZhaoS. ZhuB. DengW. WangX. XieZ. RaoS. NiZ. YouT. LiL. HuangY. XueX. YuY. SunW. ShenX. Elesclomol Loaded Copper Oxide Nanoplatform Triggers Cuproptosis to Enhance Antitumor Immunotherapy.Adv. Sci.2024e2309984230998410.1002/advs.20230998438430531
    [Google Scholar]
  47. HuF. HuangJ. BingT. MouW. LiD. ZhangH. ChenY. JinQ. YuY. YangZ. Stimulus‐Responsive Copper Complex Nanoparticles Induce Cuproptosis for Augmented Cancer Immunotherapy.Adv. Sci.20241113230938810.1002/advs.20230938838269649
    [Google Scholar]
  48. WangY. YuQ. LiuS. LiuC. JuY. SongQ. ChengD. Aluminum-maltol induced oxidative stress and reduced AMPK activity via BCK-related energy supply failure in C6 cell.Ecotoxicol. Environ. Saf.202427011583110.1016/j.ecoenv.2023.11583138101974
    [Google Scholar]
  49. GuoB. YangF. ZhangL. ZhaoQ. WangW. YinL. ChenD. WangM. HanS. XiaoH. XingN. Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD‐L1 for Enhanced Cancer Immunotherapy.Adv. Mater.20233522221226710.1002/adma.20221226736916030
    [Google Scholar]
  50. LillM. KõksS. SoometsU. SchalkwykL.C. FernandesC. LutsarI. TabaP. Peripheral blood RNA gene expression profiling in patients with bacterial meningitis.Front. Neurosci.201373310.3389/fnins.2013.0003323515576
    [Google Scholar]
  51. SikkK. KõksS. SoometsU. SchalkwykL.C. FernandesC. HaldreS. AquiloniusS.M. TabaP. Peripheral blood RNA expression profiling in illicit methcathinone users reveals effect on immune system.Front. Genet.201124210.3389/fgene.2011.0004222303338
    [Google Scholar]
  52. HirumaT. TsuyuzakiH. UchidaK. TrapnellB.C. YamamuraY. KusakabeY. TotsuT. SuzukiT. MoritaS. DoiK. NoiriE. NakamuraK. NakajimaS. YahagiN. MorimuraN. ChangK. YamadaY. IFN-β Improves Sepsis-related Alveolar Macrophage Dysfunction and Postseptic Acute Respiratory Distress Syndrome–related Mortality.Am. J. Respir. Cell Mol. Biol.2018591455510.1165/rcmb.2017‑0261OC29365277
    [Google Scholar]
  53. SeymourC.W. KennedyJ.N. WangS. ChangC.C.H. ElliottC.F. XuZ. BerryS. ClermontG. CooperG. GomezH. HuangD.T. KellumJ.A. MiQ. OpalS.M. TalisaV. van der PollT. VisweswaranS. VodovotzY. WeissJ.C. YealyD.M. YendeS. AngusD.C. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis.JAMA2019321202003201710.1001/jama.2019.579131104070
    [Google Scholar]
  54. KingoK. AuninE. KarelsonM. RätsepR. SilmH. VasarE. KõksS. Expressional changes in the intracellular melanogenesis pathways and their possible role the pathogenesis of vitiligo.J. Dermatol. Sci.2008521394610.1016/j.jdermsci.2008.03.01318514490
    [Google Scholar]
  55. van der PollT. van de VeerdonkF.L. SciclunaB.P. NeteaM.G. The immunopathology of sepsis and potential therapeutic targets.Nat. Rev. Immunol.201717740742010.1038/nri.2017.3628436424
    [Google Scholar]
  56. ChenS. ZhouZ. WangY. ChenS. JiangJ. Machine learning‐based identification of cuproptosis‐related markers and immune infiltration in severe community‐acquired pneumonia.Clin. Respir. J.202317761862810.1111/crj.1363337279744
    [Google Scholar]
  57. QinJ. XiaoX. LiS. WenN. QinK. LiH. WuJ. LuB. LiM. SunX. Identification of cuproptosis-related biomarkers and analysis of immune infiltration in allograft lung ischemia-reperfusion injury.Front. Mol. Biosci.202310126947810.3389/fmolb.2023.126947838074089
    [Google Scholar]
  58. WangX. WangL. YuB. UBE2D1 and COX7C as Potential Biomarkers of Diabetes-Related Sepsis.BioMed Res. Int.2022202211410.1155/2022/946371735445133
    [Google Scholar]
  59. LuH. WangH. SunP. WangJ. LiS. XuT. MiR-522-3p inhibits proliferation and activation by regulating the expression of SLC31A1 in T cells.Cytotechnology202173348349610.1007/s10616‑021‑00472‑534149179
    [Google Scholar]
  60. VoliF. ValliE. LerraL. KimptonK. SalettaF. GiorgiF.M. MercatelliD. RouaenJ.R.C. ShenS. MurrayJ.E. Ahmed-CoxA. CirilloG. MayohC. BeavisP.A. HaberM. TrapaniJ.A. KavallarisM. VittorioO. Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion.Cancer Res.202080194129414410.1158/0008‑5472.CAN‑20‑047132816860
    [Google Scholar]
  61. FabrizioF.P. TrombettaD. RossiA. SparaneoA. CastellanaS. MuscarellaL.A. Gene code CD274/PD-L1 : from molecular basis toward cancer immunotherapy.Ther. Adv. Med. Oncol.20181010.1177/175883591881559830574211
    [Google Scholar]
  62. LiW. DingX. ZhaoR. XiongD. XieZ. XuJ. TanM. LiC. YangC. The role of targeted regulation of COX11 by miR-10a-3p in the development and progression of paediatric mycoplasma pneumoniae pneumonia.J. Thorac. Dis.20211395409541810.21037/jtd‑21‑71034659807
    [Google Scholar]
  63. XueQ. KangR. KlionskyD.J. TangD. LiuJ. ChenX. Copper metabolism in cell death and autophagy.Autophagy20231982175219510.1080/15548627.2023.220055437055935
    [Google Scholar]
  64. Di SerioC. DoriaL. PelleritoS. PrudovskyI. MicucciI. MassiD. LandriscinaM. MarchionniN. MasottiG. TarantiniF. The release of fibroblast growth factor-1 from melanoma cells requires copper ions and is mediated by phosphatidylinositol 3-kinase/Akt intracellular signaling pathway.Cancer Lett.20082671677410.1016/j.canlet.2008.03.00118400376
    [Google Scholar]
  65. DouroudisK. KingoK. TraksT. ReimannE. RaudK. RätsepR. MössnerR. SilmH. VasarE. KõksS. Polymorphisms in the ATG16L1 gene are associated with psoriasis vulgaris.Acta Derm. Venereol.2012921858710.2340/00015555‑118321879234
    [Google Scholar]
  66. JiaW. TianH. JiangJ. ZhouL. LiL. LuoM. DingN. NiceE.C. HuangC. ZhangH. Brain‐Targeted HFn‐Cu‐REGO Nanoplatform for Site‐Specific Delivery and Manipulation of Autophagy and Cuproptosis in Glioblastoma.Small2023192220535410.1002/smll.20220535436399643
    [Google Scholar]
  67. WenH. QuC. WangZ. GaoH. LiuW. WangH. SunH. GuJ. YangZ. WangX. Cuproptosis enhances docetaxel chemosensitivity by inhibiting autophagy via the DLAT / mTOR pathway in prostate cancer.FASEB J.2023379e2314510.1096/fj.202300980R37584654
    [Google Scholar]
  68. Torra-MassanaM. JodarM. BarragánM. Soler-VenturaA. Delgado-DueñasD. RodríguezA. OlivaR. VassenaR. Altered mitochondrial function in spermatozoa from patients with repetitive fertilization failure after ICSI revealed by proteomics.Andrology2021941192120410.1111/andr.1299133615715
    [Google Scholar]
  69. YuZ. ZhouR. ZhaoY. PanY. LiangH. ZhangJ.S. TaiS. JinL. TengC.B. Blockage of SLC31A1‐dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death.Cell Prolif.2019522e1256810.1111/cpr.1256830706544
    [Google Scholar]
  70. ChenL. LiN. ZhangM. SunM. BianJ. YangB. LiZ. WangJ. LiF. ShiX. WangY. YuanF. ZouP. ShanC. WangJ. APEX2‐based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copper‐binding Protein that Regulates Autophagy Activation.Angew. Chem. Int. Ed.20216048253462535510.1002/anie.20210896134550632
    [Google Scholar]
  71. LiuJ. YaoS. JiaJ. ChenZ. YuanY. HeY. WastiB. DuanW. LiD. WangG. JiaA. SunW. QiuS. MaL. LiJ. LiuY. ZhengJ. XiangX. ZhangX. LiuS. HeZ. PengZ. ZhangH. ZhangD. XiaoB. Loss of MBD2 ameliorates LPS‐induced alveolar epithelial cell apoptosis and ALI in mice via modulating intracellular zinc homeostasis.FASEB J.2022362e2216210.1096/fj.202100924RR35061304
    [Google Scholar]
  72. HuangY. ZhengG. Circ_UBE2D2 Attenuates the Progression of Septic Acute Kidney Injury in Rats by Targeting miR-370-3p/NR4A3 Axis.J. Microbiol. Biotechnol.202232674074810.4014/jmb.2112.1203835722711
    [Google Scholar]
  73. HarrisM.P. ZhangQ.J. CochranC.T. PonceJ. AlexanderS. KronembergerA. FuquaJ.D. ZhangY. FattalR. HarperT. MurryM.L. GrueterC.E. AbelE.D. LiraV.A. Perinatal versus adult loss of ULK1 and ULK2 distinctly influences cardiac autophagy and function.Autophagy20221892161217710.1080/15548627.2021.202228935104184
    [Google Scholar]
  74. XuL. WuP. RongA. LiK. XiaoX. ZhangY. WuH. Systematic pan-cancer analysis identifies cuproptosis-related gene DLAT as an immunological and prognostic biomarker.Aging202315104269428710.18632/aging.20472837199628
    [Google Scholar]
  75. YangW. GuoQ. WuH. TongL. XiaoJ. WangY. LiuR. XuL. YanH. SunZ. Comprehensive analysis of the cuproptosis-related gene DLD across cancers: A potential prognostic and immunotherapeutic target.Front. Pharmacol.202314111146210.3389/fphar.2023.111146237113760
    [Google Scholar]
  76. AsadovC. KarimovaN. HasanovaA. BayramovB. ShirinovaA. AlimirzoyevaZ. Association of CYP3A5 * 3, CYP3A4 * 18 ; CYP2B6 * 6 polymorphisms with imatinib treatment outcome in Azerbaijani chronic myeloid leukaemia patients.Indian J. Med. Res.2023158215116010.4103/ijmr.ijmr_1103_2237706370
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073290692240509094709
Loading
/content/journals/cchts/10.2174/0113862073290692240509094709
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): acute lung injury; bioinformatics; cuproptosis; immunity; Sepsis; signature
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test