Skip to content
2000
Volume 28, Issue 10
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background and Purpose

QiShenYiQi (QSYQ) has shown promise in the treatment of blood-brain barrier (BBB) damage following stroke. However, the identification of its bioactive components and the underlying molecular mechanisms of action remain unknown. This study aimed to investigate the active ingredients and mechanisms involved in the inhibitory effects of QSYQ on BBB damage after ischemic stroke based on network pharmacology and experimental verification.

Materials and Methods

The chemical composition and target information of QSYQ were obtained from the Traditional Chinese Medicine Systems Pharmacology and Analysis Platform. BBB injury-related targets were identified by screening databases, and the overlapping targets with QSYQ were collected. Cytoscape software was utilized to construct protein-protein interaction (PPI) networks. Molecular docking analysis was conducted using AutoDock software. Animal experiments were carried out to verify the protective effect of QSYQ on BBB and explore potential molecular mechanisms.

Results

A total of 131 active ingredients in QSYQ and 154 common targets related to QSYQ and BBB damage were identified. Analysis of the PPI network revealed key targets including ALB, INS, ACTB, TP53, and CASP3 against BBB injury. Molecular docking analysis indicated favorable binding interactions between dihydrotanshinlactone, tanshinone IIA, salviolone, and their respective target proteins, such as FOS, INS, CASP3, and JUN. In animal experiments, QSYQ demonstrated effective inhibition of BBB damage, and this effect may be attributed to the regulation of ALB, INS, TP53, and CASP3.

Conclusion

This study provides intriguing insights into the mechanisms by which QSYQ protects against BBB injury following ischemic stroke. Key targets, including ALB, INS, TP53, and CASP3, could be potentially involved in the beneficial effects of QSYQ.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073295270240522104058
2024-06-06
2025-08-19
Loading full text...

Full text loading...

References

  1. BirS. KelleyR.E. Antithrombotic therapy in the prevention of stroke.Biomedicines2021912190610.3390/biomedicines912190634944719
    [Google Scholar]
  2. YeY. ZhuY.T. ZhangJ.C. ZhangH.L. FanR.W. JinY.X. HuH.Q. XinX.Y. LiD. Burden and attributable risk factors of ischemic stroke in China from 1990 to 2019: An analysis from the Global Burden of Disease Study 2019.Front. Neurol.202314121677710.3389/fneur.2023.121677737564738
    [Google Scholar]
  3. YeY. ZhangF.T. WangX.Y. TongH.X. ZhuY.T. Antithrombotic agents for tPA‐induced cerebral hemorrhage: A systematic review and meta‐analysis of preclinical studies.J. Am. Heart Assoc.2020924e01787610.1161/JAHA.120.01787633283576
    [Google Scholar]
  4. ThiebautA.M. GaubertiM. AliC. Martinez De LizarrondoS. VivienD. YepesM. RousselB.D. The role of plasminogen activators in stroke treatment: Fibrinolysis and beyond.Lancet Neurol.201817121121113210.1016/S1474‑4422(18)30323‑530507392
    [Google Scholar]
  5. YeY. ZhuY.T. TongH.X. HanJ.Y. The protective role of immunomodulators on tissue-type plasminogen activator-induced hemorrhagic transformation in experimental stroke: A systematic review and meta-analysis.Front. Pharmacol.20201161516610.3389/fphar.2020.61516633424615
    [Google Scholar]
  6. KanazawaM. TakahashiT. NishizawaM. ShimohataT. Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke.J. Atheroscler. Thromb.201724324025310.5551/jat.RV1600627980241
    [Google Scholar]
  7. KimJ.S. tPA helpers in the treatment of acute ischemic stroke: Are they ready for clinical use?J. Stroke201921216017410.5853/jos.2019.0058431161761
    [Google Scholar]
  8. ChenH. GuanB. WangB. PuH. BaiX. ChenX. LiuJ. LiC. QiuJ. YangD. LiuK. WangQ. QiS. ShenJ. Glycyrrhizin prevents hemorrhagic transformation and improves neurological outcome in ischemic stroke with delayed thrombolysis through targeting peroxynitrite-mediated HMGB1 signaling.Transl. Stroke Res.202011596798210.1007/s12975‑019‑00772‑131872339
    [Google Scholar]
  9. LiuQ. ShiK. WangY. ShiF.D. Neurovascular inflammation and complications of thrombolysis therapy in stroke.Stroke202354102688269710.1161/STROKEAHA.123.04412337675612
    [Google Scholar]
  10. PanX. WangM. GongS. SunM. WangY. ZhangY. LiF. YuB. KouJ. Lyophilized injection ameliorates tPA-induced hemorrhagic transformation by inhibiting cytoskeletal rearrangement associated with ROCK1 and NF-κB signaling pathways.J. Ethnopharmacol.202026211316110.1016/j.jep.2020.11316132730882
    [Google Scholar]
  11. WangY. XiaoG. HeS. LiuX. ZhuL. YangX. ZhangY. OrgahJ. FengY. WangX. ZhangB. ZhuY. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization.Biomed. Pharmacother.202012510994510.1016/j.biopha.2020.10994532028240
    [Google Scholar]
  12. YeY. LiQ. PanC.S. YanL. SunK. WangX.Y. YaoS.Q. FanJ.Y. HanJ.Y. Inhibits tissue plasminogen activator–induced brain edema and hemorrhage after ischemic stroke in mice.Front. Pharmacol.20221275902710.3389/fphar.2021.75902735095486
    [Google Scholar]
  13. YeY. ZhuY.T. XinX.Y. ZhangJ.C. ZhangH.L. LiD. Efficacy of Chinese herbal medicine for tPA thrombolysis in experimental stroke: A systematic review and meta-analysis.Phytomedicine202210015407210.1016/j.phymed.2022.15407235349833
    [Google Scholar]
  14. YaoS.Q. YeY. LiQ. WangX.Y. YanL. HuoX.M. PanC.S. FuY. LiuJ. HanJ.Y. YangXueQingNaoWan attenuated blood brain barrier disruption after thrombolysis with tissue plasminogen activator in ischemia stroke.J. Ethnopharmacol.202431811702410.1016/j.jep.2023.117024
    [Google Scholar]
  15. LiaoJ. HaoC. HuangW. ShaoX. SongY. LiuL. AiN. FanX. Network pharmacology study reveals energy metabolism and apoptosis pathways-mediated cardioprotective effects of Shenqi Fuzheng.J. Ethnopharmacol.201822715516510.1016/j.jep.2018.08.02930145173
    [Google Scholar]
  16. ZhangP. ZhangD. ZhouW. WangL. WangB. ZhangT. LiS. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad51838197310
    [Google Scholar]
  17. ZhaoJ. LinF. LiangG. HanY. XuN. PanJ. LuoM. YangW. ZengL. Exploration of the molecular mechanism of polygonati rhizoma in the treatment of osteoporosis based on network pharmacology and molecular docking.Front. Endocrinol. (Lausanne)20221281589110.3389/fendo.2021.81589135069454
    [Google Scholar]
  18. YanW. FanyingD. ShiqiL. YingliW. Network pharmacology and experimental validation to reveal the pharmacological mechanisms of Sini decoction against renal fibrosis.J. Tradit. Chin. Med.202444236237238504542
    [Google Scholar]
  19. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  20. FanS. ShiX. WangA. HouT. LiK. DiaoY. Evaluation of the key active ingredients of ‘Radix Astragali and Rehmanniae Radix Mixture’ and related signaling pathways involved in ameliorating diabetic foot ulcers from the perspective of TCM-related theories.J. Biomed. Inform.202112310390410.1016/j.jbi.2021.10390434474187
    [Google Scholar]
  21. HouC. WenX. YanS. GuX. JiangY. ChenF. LiuY. ZhuY. LiuX. Network-based pharmacology-based research on the effect and mechanism of the Hedyotis diffusa–Scutellaria Barbata pair in the treatment of hepatocellular carcinoma.Sci. Rep.202414196310.1038/s41598‑023‑50696‑y38200019
    [Google Scholar]
  22. KhanA. WaheedY. KuttikrishnanS. PrabhuK.S. El-ElimatT. UddinS. AlaliF.Q. AgouniA. Network pharmacology, molecular simulation, and binding free energy calculation-based investigation of Neosetophomone B revealed key targets for the treatment of cancer.Front. Pharmacol.202415135290710.3389/fphar.2024.135290738434705
    [Google Scholar]
  23. LiuC. HuW. FengX. QuF. Network pharmacology analysis of a patented Chinese herbal medicine for alleviating anxiety disorder in in vitro fertilization-embryo transfer.J. Tradit. Complement. Med.202414219120210.1016/j.jtcme.2023.10.00338481549
    [Google Scholar]
  24. JiP. ZhaoN.S. WuF.L. WeiY.M. LabaC.D. WujinC.M. HuaY.L. YuanZ.W. YaoW.L. Mechanisms predictive of Tibetan Medicine Sophora moorcroftiana alkaloids for treatment of lung cancer based on the network pharmacology and molecular docking.BMC Complem. Med. Ther.20242414710.1186/s12906‑024‑04342‑338245694
    [Google Scholar]
  25. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards version 3: The human gene integrator.Database (Oxford)201020100baq02010.1093/database/baq02020689021
    [Google Scholar]
  26. WangJ. WangY. ChenZ. LiuB. WangW. LiY. Study on the mechanism of Shugan Lidan Xiaoshi granule in preventing acute pancreatitis based on network pharmacology and molecular docking.Heliyon2024105e2736510.1016/j.heliyon.2024.e2736538486764
    [Google Scholar]
  27. AmbergerJ.S. HamoshA. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes.Curr. Protoc. Bioinformat.201758112
    [Google Scholar]
  28. GuoJ. ZhangY. ZhouR. HaoY. WuX. LiG. DuQ. Deciphering the molecular mechanism of Bu Yang Huan Wu Decoction in interference with diabetic pulmonary fibrosis via regulating oxidative stress and lipid metabolism disorder.J. Pharm. Biomed. Anal.202424311606110.1016/j.jpba.2024.11606138430615
    [Google Scholar]
  29. WangY. ZhangS. LiF. ZhouY. ZhangY. WangZ. ZhangR. ZhuJ. RenY. TanY. QinC. LiY. LiX. ChenY. ZhuF. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics.Nucleic Acids Res.202048D1D1031D104131691823
    [Google Scholar]
  30. LvL. DuJ. WangD. YanZ. A comprehensive study to investigate the tumor-suppressive role of Radix Bupleuri on Gastric Cancer with Network Pharmacology and Molecular Docking.Drug Des. Devel. Ther.20241837539410.2147/DDDT.S44112638347958
    [Google Scholar]
  31. PiñeroJ. BravoÀ. Queralt-RosinachN. Gutiérrez-SacristánA. Deu-PonsJ. CentenoE. García-GarcíaJ. SanzF. FurlongL.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants.Nucleic Acids Res.201745D1D833D83910.1093/nar/gkw94327924018
    [Google Scholar]
  32. PanY. LiZ. ZhaoX. DuY. ZhangL. LuY. YangL. CaoY. QiuJ. QianY. Screening of active substances regulating alzheimer’s disease in ginger and visualization of the effectiveness on 6-gingerol pathway targets.Foods202413461210.3390/foods1304061238397589
    [Google Scholar]
  33. MaY.Q. ZhangM. SunZ.H. TangH.Y. WangY. LiuJ.X. ZhangZ.X. WangC. Identification of anti-gastric cancer effects and molecular mechanisms of resveratrol: From network pharmacology and bioinformatics to experimental validation.World J. Gastrointest. Oncol.202416249351310.4251/wjgo.v16.i2.49338425392
    [Google Scholar]
  34. ZhangX. ChaoP. ZhangL. LuJ. YangA. JiangH. LuC. Integrating network pharmacology, molecular docking and simulation approaches with machine learning reveals the multi-target pharmacological mechanism of Berberis integerrima against diabetic nephropathy.J. Biomol. Struct. Dyn.2024202411710.1080/07391102.2023.229416538379386
    [Google Scholar]
  35. ZhangJ. ZhouY. MaZ. Multi-target mechanism of Tripteryguim wilfordii Hook for treatment of ankylosing spondylitis based on network pharmacology and molecular docking.Ann. Med.20215311091109910.1080/07853890.2021.191834534259096
    [Google Scholar]
  36. ZouJ. XuW. LiZ. GaoP. ZhangF. CuiY. HuJ. Network pharmacology-based approach to research the effect and mechanism of Si-Miao-Yong-An decoction against thromboangiitis obliterans.Ann. Med.2023551221810510.1080/07853890.2023.221810537318081
    [Google Scholar]
  37. ChenS. LiB. ChenL. JiangH. Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation.J. Transl. Med.202321138010.1186/s12967‑023‑04233‑037308949
    [Google Scholar]
  38. MaX. ZhaoY. YangT. GongN. ChenX. LiuG. XiaoJ. Integration of network pharmacology and molecular docking to explore the molecular mechanism of Cordycepin in the treatment of Alzheimer’s disease.Front. Aging Neurosci.202214105878010.3389/fnagi.2022.105878036620771
    [Google Scholar]
  39. WangZ. LiM. LiW. OuyangJ. GouX. HuangY. Mechanism of action of Daqinjiao decoction in treating cerebral small vessel disease explored using network pharmacology and molecular docking technology.Phytomedicine202310815453810.1016/j.phymed.2022.15453836370638
    [Google Scholar]
  40. GaoJ. YangS. XieG. PanJ. ZhuF. Integrating network pharmacology and experimental verification to explore the pharmacological mechanisms of aloin against gastric cancer.Drug Des. Devel. Ther.2022161947196110.2147/DDDT.S36079035757520
    [Google Scholar]
  41. PanL. PengC. WangL. LiL. HuangS. FeiC. WangN. ChuF. PengD. DuanX. Network pharmacology and experimental validation-based approach to understand the effect and mechanism of Taohong Siwu Decoction against ischemic stroke.J. Ethnopharmacol.202229411533910.1016/j.jep.2022.11533935525530
    [Google Scholar]
  42. ManivannanH.P. VeeraraghavanV.P. FrancisA.P. Identification of molecular targets of Trigonelline for treating breast cancer through network pharmacology and bioinformatics-based prediction.Mol. Divers.2023202310.1007/s11030‑023‑10780‑x38145425
    [Google Scholar]
  43. SahaS. HalderA.K. BandyopadhyayS.S. ChatterjeeP. NasipuriM. BoseD. BasuS. Drug repurposing for COVID-19 using computational screening: Is Fostamatinib/R406 a potential candidate?Methods202220356457410.1016/j.ymeth.2021.08.00734455072
    [Google Scholar]
  44. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
  45. RosignoliS. PaiardiniA. DockingPie: A consensus docking plugin for PyMOL.Bioinformatics202238174233423410.1093/bioinformatics/btac45235792827
    [Google Scholar]
  46. TrottO. OlsonA.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  47. DongY. ZhaoQ. WangY. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy.Sci. Rep.20211111949610.1038/s41598‑021‑98925‑634593896
    [Google Scholar]
  48. GuoL. ShiH. ZhuL. Siteng fang reverses multidrug resistance in gastric cancer: A network pharmacology and molecular docking study.Front. Oncol.20211167138210.3389/fonc.2021.67138234026648
    [Google Scholar]
  49. YeY. XinX.Y. ZhangH.L. FanR.W. ZhuY.T. LiD. A modified mouse model of haemorrhagic transformation associated with tPA administration after thromboembolic stroke.Heliyon202391e1310210.1016/j.heliyon.2023.e1310236747951
    [Google Scholar]
  50. DoggettT.M. BreslinJ.W. Acute alcohol intoxication-induced microvascular leakage.Alcohol. Clin. Exp. Res.20143892414242610.1111/acer.1252525257290
    [Google Scholar]
  51. ZhuW. LiY. ZhaoJ. WangY. LiY. WangY. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking.Ann. Med.202254154155210.1080/07853890.2022.203493135132912
    [Google Scholar]
  52. WangX. ZhangL. SunW. PeiL. TianM. LiangJ. LiuX. ZhangR. FangH. WuJ. SunS. XuY. KangJ.S. SongB. Changes of metabolites in acute ischemic stroke and its subtypes.Front. Neurosci.20211458092910.3389/fnins.2020.58092933505234
    [Google Scholar]
  53. YuanS. BäckM. BruzeliusM. MasonA.M. BurgessS. LarssonS. Plasma Phospholipid fatty acids, FADS1 and risk of 15 cardiovascular diseases: A mendelian randomisation study.Nutrients20191112300110.3390/nu1112300131817859
    [Google Scholar]
  54. HanH. JangJ. ParkJ. KimH. KimJ. Transient blood brain barrier disruption induced by oleic acid is mediated by nitric oxide.Curr. Neurovasc. Res.201310428729610.2174/1567202611310999002423937199
    [Google Scholar]
  55. ZhouC. SuM. SunP. TangX. YinK.J. Nitro-oleic acid-mediated blood-brain barrier protection reduces ischemic brain injury.Exp. Neurol.202134611386110.1016/j.expneurol.2021.11386134499902
    [Google Scholar]
  56. SubediL. GaireB.P. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases.Pharmacol. Res.202116910566110.1016/j.phrs.2021.10566133971269
    [Google Scholar]
  57. ArefnezhadR. NejabatA. BehjatiF. TorkamancheM. ZareiH. YekkehbashM. AfsharmaneshF. NiknamZ. JamialahmadiT. SahebkarA. Tanshinone IIA against cerebral ischemic stroke and ischemia-reperfusion injury: A review of the current documents.Mini Rev. Med. Chem.20242410.2174/011389557529972124022707003238482618
    [Google Scholar]
  58. ZhangW. FengJ. ZhouR. YeL. LiuH. PengL. LouJ. LiC. Tanshinone IIA protects the human blood–brain barrier model from leukocyte-associated hypoxia-reoxygenation injury.Eur. J. Pharmacol.20106481-314615210.1016/j.ejphar.2010.08.04020826144
    [Google Scholar]
  59. LiJ. WangX. LiuH. GuoH. ZhangM. MeiD. LiuC. HeL. LiuL. LiuX. Impaired hepatic and intestinal ATP-binding cassette transporter G5/8 was associated with high exposure of β-sitosterol and the potential risks to blood–brain barrier integrity in diabetic rats.J. Pharm. Pharmacol.201466342843610.1111/jphp.1217824237052
    [Google Scholar]
  60. ChenQ.F. LiuY.Y. PanC.S. FanJ.Y. YanL. HuB.H. ChangX. LiQ. HanJ.Y. Angioedema and hemorrhage after 4.5-Hour tPA (Tissue-Type Plasminogen Activator) thrombolysis ameliorated by T541 via restoring brain microvascular integrity.Stroke20184992211221910.1161/STROKEAHA.118.02175430354988
    [Google Scholar]
  61. DengX.L. LiuZ. WangC. LiY. CaiZ. Insulin resistance in ischemic stroke.Metab. Brain Dis.20173251323133410.1007/s11011‑017‑0050‑028634787
    [Google Scholar]
  62. DingP.F. ZhangH.S. WangJ. GaoY.Y. MaoJ.N. HangC.H. LiW. Insulin resistance in ischemic stroke: Mechanisms and therapeutic approaches.Front. Endocrinol. (Lausanne)202213109243110.3389/fendo.2022.109243136589857
    [Google Scholar]
  63. LuZ. XiongY. FengX. YangK. GuH. ZhaoX. MengX. WangY. Insulin resistance estimated by estimated glucose disposal rate predicts outcomes in acute ischemic stroke patients.Cardiovasc. Diabetol.202322122510.1186/s12933‑023‑01925‑137633905
    [Google Scholar]
  64. BanksW.A. RheaE.M. The blood–brain barrier, oxidative stress, and insulin resistance.Antioxidants20211011169510.3390/antiox1011169534829566
    [Google Scholar]
  65. HoangT.N. PaiardiniM. Role of cytokine agonists and immune checkpoint inhibitors toward HIV remission.Curr. Opin. HIV AIDS201914212112810.1097/COH.000000000000052830585798
    [Google Scholar]
  66. RaufA. BadoniH. Abu-IzneidT. OlatundeA. RahmanM.M. PainuliS. SemwalP. WilairatanaP. MubarakM.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases.Molecules20222710319410.3390/molecules2710319435630670
    [Google Scholar]
  67. FarooqiA.A. WenR. AttarR. TavernaS. ButtG. XuB. Regulation of cell-signaling pathways by berbamine in different cancers.Int. J. Mol. Sci.2022235275810.3390/ijms2305275835269900
    [Google Scholar]
  68. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials (Basel)202215380410.3390/ma1503080435160749
    [Google Scholar]
  69. Beltrán RomeroL.M. Vallejo-VazA.J. Muñiz GrijalvoO. Cerebrovascular disease and statins.Front. Cardiovasc. Med.2021877874010.3389/fcvm.2021.77874034926626
    [Google Scholar]
  70. HackamD.G. HegeleR.A. Lipid-modifying therapies and stroke prevention.Curr. Neurol. Neurosci. Rep.202222737538210.1007/s11910‑022‑01197‑435554824
    [Google Scholar]
  71. WangY. LinW. LiC. SinghalS. JainG. ZhuL. LuL. ZhuR. WangW. Multipronged therapeutic effects of chinese herbal medicine qishenyiqi in the treatment of acute myocardial infarction.Front. Pharmacol.201789810.3389/fphar.2017.0009828303103
    [Google Scholar]
  72. LiX. WuL. LiuW. JinY. ChenQ. WangL. FanX. LiZ. ChengY. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action.PLoS One201495e9500410.1371/journal.pone.009500424817581
    [Google Scholar]
  73. WuL. WangY. LiZ. ZhangB. ChengY. FanX. Identifying roles of “Jun-Chen-Zuo-Shi” component herbs of QiShenYiQi formula in treating acute myocardial ischemia by network pharmacology.Chin. Med.2014912410.1186/1749‑8546‑9‑2425342960
    [Google Scholar]
  74. GongY.T. LiY.P. ChengY.R. ShiX.J. YangL. YangD.P. XuW.J. DongL. [Molecular mechanism of Qishen Yiqi Dripping Pills in treating myocardial ischemia: A study based on HIF-1 signaling pathway].Zhongguo Zhongyao Zazhi202146153949395934472272
    [Google Scholar]
  75. WuP. XieX. ChenM. SunJ. CaiL. WeiJ. YangL. HuangX. WangL. Elucidation of the mechanisms and molecular targets of qishen yiqi formula for the treatment of pulmonary arterial hypertension using a bioinformatics/network topology-based strategy.Comb. Chem. High Throughput Screen.202124570171510.2174/138620732366620101914535433076804
    [Google Scholar]
  76. LiS. XuG. Qishen Yiqi dripping pill protects diabetic nephropathy by inhibiting the PI3K-AKT signaling pathways in rats.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/623982935754685
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073295270240522104058
Loading
/content/journals/cchts/10.2174/0113862073295270240522104058
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test