Skip to content
2000
Volume 28, Issue 10
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Most COVID-19 survivors are troubled with chronic persistent symptoms, which have currently no definitive treatments. Bufei Huoxue (BFHX) capsule exerts clinical benefit, while the material basis and molecular mechanism remain unclear.

Aim

The study aimed to elucidate the protective mechanisms of BFHX capsule against COVID-19 convalescence.

Methods

UHPLC-HRMS and various databases were employed to explore potential compounds and targets. PPI, MCODE, transcription factor (TF), and miRNA analyses were conducted to receive hub targets and corresponding upstream regulators. Molecular docking was applied to verify the binding activity of compound and target. Further, GO, KEGG, WIKI, and Reactome analyses were performed, and compound-target-symptom and gene-disease networks were constructed.

Results

A total of 127 compounds and 313 targets were acquired. A sum of 10 hub targets were screened and molecular docking results suggested that the top 3 compounds had good binding affinities with the top 3 target proteins. MLLT1, CBFB, and EZH2 were identified as key TFs, and hsa-mir-146a-5p, hsa-mir-26b-5p, and hsa-mir-24-3p were predicted to be important miRNAs. BFHX capsule may alleviate the symptoms by targeting TNF, IL-6, IFNG, and TGF-. Besides, BFHX capsule may exert a therapeutic effect on respiratory disease (especially pulmonary fibrosis and lung infection) and multi-system damage during COVID-19 convalescence by regulating cytokine-cytokine receptor interaction, as well as TGF-, TNF, and Toll-like receptor signaling pathways.

Conclusion

In summary, BFHX capsule may exert a therapeutic effect on multi-system damages during COVID-19 convalescence through multiple compounds (such as albiflorin, isopsoralen, and neobavaisoflavone), multiple targets (such as TNF, IL-6, and EGF) and multiple pathways (TGF-, TNF, and Toll-like receptor signaling pathways).

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073296539240527064736
2024-06-12
2025-10-11
Loading full text...

Full text loading...

References

  1. GalanopoulosM. GkerosF. DoukatasA. KarianakisG. PontasC. TsoukalasN. ViazisN. LiatsosC. MantzarisG.J. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract.World J. Gastroenterol.202026314579458810.3748/wjg.v26.i31.457932884218
    [Google Scholar]
  2. ShawB. DaskarehM. GholamrezanezhadA. The lingering manifestations of COVID-19 during and after convalescence: Update on long-term pulmonary consequences of coronavirus disease 2019 (COVID-19).Radiol. Med.20211261404610.1007/s11547‑020‑01295‑833006087
    [Google Scholar]
  3. HuangC. HuangL. WangY. LiX. RenL. GuX. KangL. GuoL. LiuM. ZhouX. LuoJ. HuangZ. TuS. ZhaoY. ChenL. XuD. LiY. LiC. PengL. LiY. XieW. CuiD. ShangL. FanG. XuJ. WangG. WangY. ZhongJ. WangC. WangJ. ZhangD. CaoB. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study.Lancet20213971027022023210.1016/S0140‑6736(20)32656‑833428867
    [Google Scholar]
  4. CarfìA. BernabeiR. LandiF. Gemelli AgainstC.P.A.C.S.G. Persistent Symptoms in Patients After Acute COVID-19.JAMA2020324660360510.1001/jama.2020.1260332644129
    [Google Scholar]
  5. YongS.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments.Infect. Dis.2021531073775410.1080/23744235.2021.192439734024217
    [Google Scholar]
  6. ChenY. LiuC. WangT. QiJ. JiaX. ZengX. BaiJ. LuW. DengY. ZhongB. HeW. XingY. LianZ. ZhouH. YanJ. YangX. YuH. ZhouJ. ZhouD. QiuL. ZhongN. WangJ. Efficacy and safety of Bufei Huoxue capsules in the management of convalescent patients with COVID-19 infection: A multicentre, double-blind, and randomised controlled trial.J. Ethnopharmacol.202228411483010.1016/j.jep.2021.11483034763045
    [Google Scholar]
  7. JingY. ZhangH. CaiZ. ZhaoY. WuY. ZhengX. LiuY. QinY. GuM. JinJ. Bufei Huoxue Capsule Attenuates PM2.5-Induced Pulmonary Inflammation in Mice.Evid. Based Complement. Alternat. Med.2017201711210.1155/2017/157579328337225
    [Google Scholar]
  8. MenW. ChengL. ChenM. ZhangX. ZhangY. ZhouK. Study on pharmacokinetics of eight active compounds from Bufei-Huoxue Capsule based on UHPLC-MS/MS.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021118412297410.1016/j.jchromb.2021.12297434655890
    [Google Scholar]
  9. HungY.L. FangS.H. WangS.C. ChengW.C. LiuP.L. SuC.C. ChenC.S. HuangM.Y. HuaK.F. ShenK.H. WangY.T. SuzukiK. LiC.Y. Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response.Sci. Rep.2017714629910.1038/srep4629928397806
    [Google Scholar]
  10. HungY.L. WangS.C. SuzukiK. FangS.H. ChenC.S. ChengW.C. SuC.C. YehH.C. TuH.P. LiuP.L. HuangM.Y. LiC.Y. Bavachin attenuates LPS-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages.Phytomedicine20195915278510.1016/j.phymed.2018.12.00831009850
    [Google Scholar]
  11. CaiZ. LiuJ. BianH. CaiJ. Astragaloside IV ameliorates necrotizing enterocolitis by attenuating oxidative stress and suppressing inflammation via the vitamin D3-upregulated protein 1/NF-κB signaling pathway.Exp. Ther. Med.20161242702270810.3892/etm.2016.362927698775
    [Google Scholar]
  12. ZhangW.J. FreiB. Astragaloside IV inhibits NF- κ B activation and inflammatory gene expression in LPS-treated mice.Mediators Inflamm.2015201511110.1155/2015/27431425960613
    [Google Scholar]
  13. ZhaoL. HanJ. LiuJ. FanK. YuanT. HanJ. ChenL. ZhangS. ZhaoM. DuanJ. A novel formononetin derivative promotes anti-ischemic effects on acute ischemic injury in mice.Front. Microbiol.20211278646410.3389/fmicb.2021.78646434970243
    [Google Scholar]
  14. HuangJ. ChenX. XieA. Formononetin ameliorates IL‑13‑induced inflammation and mucus formation in human nasal epithelial cells by activating the SIRT1/Nrf2 signaling pathway.Mol. Med. Rep.202124683210.3892/mmr.2021.1247234590155
    [Google Scholar]
  15. GuoW. HuangJ. WangN. TanH.Y. CheungF. ChenF. FengY. Integrating network pharmacology and pharmacological evaluation for deciphering the action mechanism of herbal formula zuojin pill in suppressing hepatocellular carcinoma.Front. Pharmacol.201910118510.3389/fphar.2019.0118531649545
    [Google Scholar]
  16. DavisA.P. GrondinC.J. JohnsonR.J. SciakyD. WiegersJ. WiegersT.C. MattinglyC.J. Comparative Toxicogenomics Database (CTD): update 2021.Nucleic Acids Res.202149D1D1138D114310.1093/nar/gkaa89133068428
    [Google Scholar]
  17. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  18. XuH.Y. ZhangY.Q. LiuZ.M. ChenT. LvC.Y. TangS.H. ZhangX.B. ZhangW. LiZ.Y. ZhouR.R. YangH.J. WangX.J. HuangL.Q. ETCM: An encyclopaedia of traditional Chinese medicine.Nucleic Acids Res.201947D1D976D98210.1093/nar/gky98730365030
    [Google Scholar]
  19. SzklarczykD. SantosA. von MeringC. JensenL.J. BorkP. KuhnM. STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data.Nucleic Acids Res.201644D1D380D38410.1093/nar/gkv127726590256
    [Google Scholar]
  20. BarrettT. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. HolkoM. YefanovA. LeeH. ZhangN. RobertsonC.L. SerovaN. DavisS. SobolevaA. NCBI GEO: archive for functional genomics data sets--update.Nucleic Acids Res.201341Database issueD991D99510.1093/nar/gks119323193258
    [Google Scholar]
  21. XuY. WuG. LiJ. LiJ. RuanN. MaL. HanX. WeiY. LiL. ZhangH. ChenY. XiaQ. Screening and Identification of Key Biomarkers for Bladder Cancer: A Study Based on TCGA and GEO Data.BioMed Res. Int.2020202012010.1155/2020/828340132047816
    [Google Scholar]
  22. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  23. ZhouG. SoufanO. EwaldJ. HancockR.E.W. BasuN. XiaJ. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis.Nucleic Acids Res.201947W1W234W24110.1093/nar/gkz24030931480
    [Google Scholar]
  24. ConsortiumE.P. ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome.Nature20124897414577410.1038/nature1124722955616
    [Google Scholar]
  25. HuangH.Y. LinY.C. LiJ. HuangK.Y. ShresthaS. HongH.C. TangY. ChenY.G. JinC.N. YuY. XuJ.T. LiY.M. CaiX.X. ZhouZ.Y. ChenX.H. PeiY.Y. HuL. SuJ.J. CuiS.D. WangF. XieY.Y. DingS.Y. LuoM.F. ChouC.H. ChangN.W. ChenK.W. ChengY.H. WanX.H. HsuW.L. LeeT.Y. WeiF.X. HuangH.D. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database.Nucleic Acids Res.202048D1D148D15431647101
    [Google Scholar]
  26. PiñeroJ. BravoÀ. Queralt-RosinachN. Gutiérrez-SacristánA. Deu-PonsJ. CentenoE. García-GarcíaJ. SanzF. FurlongL.I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants.Nucleic Acids Res.201745D1D833D83910.1093/nar/gkw94327924018
    [Google Scholar]
  27. RaudvereU. KolbergL. KuzminI. ArakT. AdlerP. PetersonH. ViloJ. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update).Nucleic Acids Res.201947W1W191W19810.1093/nar/gkz36931066453
    [Google Scholar]
  28. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  29. RoseP.W. PrlićA. AltunkayaA. BiC. BradleyA.R. ChristieC.H. CostanzoL.D. DuarteJ.M. DuttaS. FengZ. GreenR.K. GoodsellD.S. HudsonB. KalroT. LoweR. PeisachE. RandleC. RoseA.S. ShaoC. TaoY.P. ValasatavaY. VoigtM. WestbrookJ.D. WooJ. YangH. YoungJ.Y. ZardeckiC. BermanH.M. BurleyS.K. The RCSB protein data bank: integrative view of protein, gene and 3D structural information.Nucleic Acids Res.201745D1D271D28110.1093/nar/gkw100027794042
    [Google Scholar]
  30. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  31. TsampasianV. ElghazalyH. ChattopadhyayR. DebskiM. NaingT.K.P. GargP. ClarkA. NtatsakiE. VassiliouV.S. Risk Factors Associated With Post−COVID-19 Condition.JAMA Intern. Med.2023183656658010.1001/jamainternmed.2023.075036951832
    [Google Scholar]
  32. TroforA. Robu PopaD. MelinteO. TroforL. VicolC. Grosu-CreangăI. Crișan DabijaR. CernomazA. Looking at the Data on Smoking and Post-COVID-19 Syndrome—A Literature Review.J. Pers. Med.20241419710.3390/jpm1401009738248798
    [Google Scholar]
  33. PaulE. FancourtD. Health behaviours the month prior to COVID-19 infection and the development of self-reported long COVID and specific long COVID symptoms: a longitudinal analysis of 1581 UK adults.BMC Public Health2022221171610.1186/s12889‑022‑14123‑736085055
    [Google Scholar]
  34. ChujanS. NakareangritW. SuriyoT. SatayavivadJ. Integrated Transcriptomics and Network Analysis of Potential Mechanisms and Health Effects of Convalescent COVID-19 Patients.Bioinform. Biol. Insights2023171177932223120668410.1177/1177932223120668437881207
    [Google Scholar]
  35. ØstergaardL. SARS CoV‐2 related microvascular damage and symptoms during and after COVID‐19: Consequences of capillary transit‐time changes, tissue hypoxia and inflammation.Physiol. Rep.202193e1472610.14814/phy2.1472633523608
    [Google Scholar]
  36. AfshariR. AkhavanO. HamblinM.R. VarmaR.S. Review of Oxygenation with Nanobubbles: Possible Treatment for Hypoxic COVID-19 Patients.ACS Appl. Nano Mater.2021411113861141210.1021/acsanm.1c0190737556289
    [Google Scholar]
  37. LiW. YangJ. ChenR. WangZ. Clinical efficacy study of Bufei Huoxue Capsules in treatment of SARS-CoV-2 infection recovery phase with qi deficiency and blood stasis syndrome.Chin. Tradit. Herbal Drugs20245503872881
    [Google Scholar]
  38. MaghsoudiS. Taghavi ShahrakiB. RamehF. NazarabiM. FatahiY. AkhavanO. RabieeM. MostafaviE. LimaE.C. SaebM.R. RabieeN. A review on computer‐aided chemogenomics and drug repositioning for rational COVID ‐19 drug discovery.Chem. Biol. Drug Des.2022100569972110.1111/cbdd.1413636002440
    [Google Scholar]
  39. KieslichC.A. AlimirzaeiF. SongH. DoM. HallP. Data-driven prediction of antiviral peptides based on periodicities of amino acid properties.Computer-Aided Chem. Eng.2021502019202410.1016/B978‑0‑323‑88506‑5.50312‑0
    [Google Scholar]
  40. MaX. SongM. YanY. RenG. HouJ. QinG. WangW. LiZ. Albiflorin alleviates cognitive dysfunction in STZ-induced rats.Aging (Albany NY)20211314182871829710.18632/aging.20327434319254
    [Google Scholar]
  41. WangQ.S. YanK. LiK.D. GaoL.N. WangX. LiuH. ZhangZ. LiK. CuiY.L. Targeting hippocampal phospholipid and tryptophan metabolism for antidepressant-like effects of albiflorin.Phytomedicine20219215373510.1016/j.phymed.2021.15373534601221
    [Google Scholar]
  42. CaiZ. LiuJ. BianH. CaiJ. Albiflorin alleviates ovalbumin (OVA)-induced pulmonary inflammation in asthmatic mice.Am. J. Transl. Res.201911127300730931934279
    [Google Scholar]
  43. LiX. YangQ. LiX. ChengQ. ZhangK. HanJ. ZhaoJ. LiuG. ZhaoM. Estrogen-like neuroprotection of isopsoralen against spinal cord injury through estrogen receptor ERα.Metab. Brain Dis.201732125926510.1007/s11011‑016‑9913‑z27670769
    [Google Scholar]
  44. HanY. WangJ. LiS. LiY. ZhangY. ZhangR. ZhangY. FanH. ShiH. PanJ. SongG. GeL. WangL. Isopsoralen ameliorates rheumatoid arthritis by targeting MIF.Arthritis Res. Ther.202123124310.1186/s13075‑021‑02619‑334535196
    [Google Scholar]
  45. SzliszkaE. SkabaD. CzubaZ.P. KrolW. Inhibition of inflammatory mediators by neobavaisoflavone in activated RAW264.7 macrophages.Molecules20111653701371210.3390/molecules1605370121540797
    [Google Scholar]
  46. GuoJ QiaoC ZhouJ HuS LinX ShenY LiZ LiuJ Neobavaisoflavone-mediated T(H)9 cell differentiation ameliorates bowel inflammation.Int. Immunopharmacol.2021101Pt A108191
    [Google Scholar]
  47. YuW. ZengM. XuP. LiuJ. WangH. Effect of paeoniflorin on acute lung injury induced by influenza A virus in mice. Evidences of its mechanism of action.Phytomedicine20219215372410.1016/j.phymed.2021.15372434509953
    [Google Scholar]
  48. ZhangS. JiangM. YanS. LiangM. WangW. YuanB. XuQ. Network pharmacology-based and experimental identification of the effects of paeoniflorin on major depressive disorder.Front. Pharmacol.20221279301210.3389/fphar.2021.79301235185541
    [Google Scholar]
  49. WangX.Z. XiaL. ZhangX.Y. ChenQ. LiX. MouY. WangT. ZhangY.N. The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art.Biomed. Pharmacother.202214911280010.1016/j.biopha.2022.11280035279012
    [Google Scholar]
  50. RuanY LingJ YeF ChengN WuF TangZ ChengX LiuH Paeoniflorin alleviates CFA-induced inflammatory pain by inhibiting TRPV1 and succinate/SUCNR1-HIF-1α/NLPR3 pathway.Int. Immunopharmacol.2021101Pt B108364
    [Google Scholar]
  51. ZhengM. LiuC. FanY. YanP. ShiD. ZhangY. Neuroprotection by Paeoniflorin in the MPTP mouse model of Parkinson’s disease.Neuropharmacology201711641242010.1016/j.neuropharm.2017.01.00928093210
    [Google Scholar]
  52. XiaY. CaoY. SunY. HongX. TangY. YuJ. HuH. MaW. QinK. BaoR. Calycosin Alleviates Sepsis-Induced Acute Lung Injury via the Inhibition of Mitochondrial ROS-Mediated Inflammasome Activation.Front. Pharmacol.20211269054910.3389/fphar.2021.69054934737695
    [Google Scholar]
  53. ChenG. HouY. LiX. PanR. ZhaoD. Sepsis-induced acute lung injury in young rats is relieved by calycosin through inactivating the HMGB1/MyD88/NF-κB pathway and NLRP3 inflammasome.Int. Immunopharmacol.20219610762310.1016/j.intimp.2021.10762333857805
    [Google Scholar]
  54. SawaT. AkaikeT. What triggers inflammation in COVID-19?eLife202211e7623110.7554/eLife.7623135049500
    [Google Scholar]
  55. HirzelC. GrandgirardD. SurialB. WiderM.F. LeppertD. KuhleJ. WaltiL.N. SchefoldJ.C. SpinettiT. Suter-RinikerF. DijkmanR. LeibS.L. Neuro-axonal injury in COVID-19: the role of systemic inflammation and SARS-CoV-2 specific immune response.Ther. Adv. Neurol. Disord.20221510.1177/1756286422108052835299779
    [Google Scholar]
  56. YuanB. LiW. LiuH. CaiX. SongS. ZhaoJ. HuX. LiZ. ChenY. ZhangK. LiuZ. PengJ. WangC. WangJ. AnY. Correlation between immune response and self-reported depression during convalescence from COVID-19.Brain Behav. Immun.202088394310.1016/j.bbi.2020.05.06232464158
    [Google Scholar]
  57. GawishR. StarklP. PimenovL. HladikA. LakovitsK. OberndorferF. CroninS.J.F. Ohradanova-RepicA. WirnsbergerG. AgererB. EndlerL. CaprazT. PertholdJ.W. CikesD. KoglgruberR. HagelkruysA. MontserratN. MirazimiA. BoonL. StockingerH. BergthalerA. OostenbrinkC. PenningerJ.M. KnappS. ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNγ-driven immunopathology.eLife202211e7462310.7554/eLife.7462335023830
    [Google Scholar]
  58. KokkotisG. KitsouK. XynogalasI. SpoulouV. MagiorkinisG. TrontzasI. TrontzasP. PoulakouG. SyrigosK. BamiasG. Systematic review with meta‐analysis: COVID‐19 outcomes in patients receiving anti‐TNF treatments.Aliment. Pharmacol. Ther.202255215416710.1111/apt.1671734881430
    [Google Scholar]
  59. ToraldoD.M. SatrianoF. RolloR. VerdastroG. ImbrianiG. RizzoE. ArgentieroA. FalcoA. AmbrosinoP. MianiA. PiscitelliP. COVID-19 IgG/IgM patterns, early IL-6 elevation and long-term radiological sequelae in 75 patients hospitalized due to interstitial pneumonia followed up from 3 to 12 months.PLoS One2022172e026291110.1371/journal.pone.026291135192635
    [Google Scholar]
  60. LuporiniR.L. RodolphoJ.M.A. KubotaL.T. MartinA.C.B.M. CominettiM.R. AnibalF.F. Pott-JuniorH. IL-6 and IL-10 are associated with disease severity and higher comorbidity in adults with COVID-19.Cytokine202114315550710.1016/j.cyto.2021.15550733839002
    [Google Scholar]
  61. LocatelloL.G. BrunoC. MaggioreG. CilonaM. OrlandoP. FancelloG. PiccicaM. VellereI. LagiF. TrottaM. GalloO. The prognostic role of IL-10 in non-severe COVID-19 with chemosensory dysfunction.Cytokine202114115545610.1016/j.cyto.2021.15545633561690
    [Google Scholar]
  62. LuersJ.C. RokohlA.C. LoreckN. Wawer MatosP.A. AugustinM. DewaldF. KleinF. LehmannC. HeindlL.M. Olfactory and Gustatory Dysfunction in Coronavirus Disease 2019 (COVID-19).Clin. Infect. Dis.202071162262226410.1093/cid/ciaa52532357210
    [Google Scholar]
  63. MenezS. MoledinaD.G. Thiessen-PhilbrookH. WilsonF.P. ObeidW. SimonovM. YamamotoY. Corona-VillalobosC.P. ChangC. GaribaldiB.T. ClarkeW. FarhadianS. Dela CruzC. CocaS.G. ParikhC.R. KoA. IwasakiA. FarhadianS. NelsonA. Casanovas-MassanaA. WhiteE.B. SchulzW. CoppiA. YoungP. NunezA. ShepardD. MatosI. StrongY. AnastasioK. BrowerK. KuangM. ChiorazziM. BermejoS. VijayakumarP. GengB. FournierJ. MinasyanM. MuenkerM.C. MooreA.J. NadkarniG. TRIKIC Consortium Investigators Prognostic Significance of Urinary Biomarkers in Patients Hospitalized With COVID-19.Am. J. Kidney Dis.2022792257267.e110.1053/j.ajkd.2021.09.00834710516
    [Google Scholar]
  64. LiX. GargM. JiaT. LiaoQ. YuanL. LiM. WuZ. WuW. BiY. GeorgeN. PapatheodorouI. BrazmaA. LuoH. FangS. MiaoZ. ShuY. Single-cell analysis reveals the immune characteristics of myeloid cells and memory t cells in recovered COVID-19 patients with different severities.Front. Immunol.20221278143210.3389/fimmu.2021.78143235046942
    [Google Scholar]
  65. LourdaM. DzidicM. HertwigL. BergstenH. Palma MedinaL.M. SinhaI. KvedaraiteE. ChenP. MuvvaJ.R. GorinJ.B. CornilletM. EmgårdJ. MollK. GarcíaM. MalekiK.T. KlingströmJ. MichaëlssonJ. Flodström-TullbergM. BrighentiS. BuggertM. MjösbergJ. MalmbergK.J. SandbergJ.K. HenterJ.I. FolkessonE. Gredmark-RussS. SönnerborgA. ErikssonL.I. RooyackersO. AlemanS. StrålinK. LjunggrenH.G. BjörkströmN.K. SvenssonM. PonzettaA. Norrby-TeglundA. ChambersB.J. Karolinska KI/K COVID-19 Study Group High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19.Proc. Natl. Acad. Sci. USA202111840e210912311810.1073/pnas.210912311834548411
    [Google Scholar]
  66. NeidlemanJ. LuoX. GeorgeA.F. McGregorM. YangJ. YunC. MurrayV. GillG. GreeneW.C. VasquezJ. LeeS.A. GhosnE. LynchK.L. RoanN.R. Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19.Cell Rep.202136310941410.1016/j.celrep.2021.10941434260965
    [Google Scholar]
  67. HaljasmägiL. SalumetsA. RummA.P. JürgensonM. KrassohhinaE. RemmA. SeinH. KareinenL. VapalahtiO. SironenT. PetersonH. MilaniL. TammA. HaydayA. KisandK. PetersonP. Longitudinal proteomic profiling reveals increased early inflammation and sustained apoptosis proteins in severe COVID-19.Sci. Rep.20201012053310.1038/s41598‑020‑77525‑w33239683
    [Google Scholar]
  68. GhanemM. Homps-LegrandM. GarnierM. MorerL. GolettoT. Frija-MassonJ. WickyP.H. JaquetP. BancalC. Hurtado-NedelecM. de ChaisemartinL. JailletM. MailleuxA. QuesnelC. PotéN. DebrayM.P. de MontmollinE. NeukirchC. BorieR. TailléC. CrestaniB. French COVID Cohort Study Group Blood fibrocytes are associated with severity and prognosis in COVID-19 pneumonia.Am. J. Physiol. Lung Cell. Mol. Physiol.20213215L847L85810.1152/ajplung.00105.202134496650
    [Google Scholar]
  69. MinuzziL.G. SeelaenderM. SilvaB.S.D.A. CunhaE.B.B. DeusM.D.C. VasconcellosF.T.F. MarquezeL.F.B. GadottiA.C. BaenaC.P. PereiraT. KrügerK. AmaralA.N.M. PinhoR.A. LiraF.S. COVID-19 Outcome Relates With Circulating BDNF, According to Patient Adiposity and Age.Front. Nutr.2021878442910.3389/fnut.2021.78442934957187
    [Google Scholar]
  70. LorkiewiczP. WaszkiewiczN. Biomarkers of Post-COVID Depression.J. Clin. Med.20211018414210.3390/jcm1018414234575258
    [Google Scholar]
  71. DeMarcoJ.K. RoyalJ.M. SeversonW.E. GabbardJ.D. HumeS. MortonJ. SwopeK. SimpsonC.A. ShepherdJ.W. BratcherB. PalmerK.E. PogueG.P. CoV-RBD121-NP Vaccine Candidate Protects against Symptomatic Disease following SARS-CoV-2 Challenge in K18-hACE2 Mice and Induces Protective Responses That Prevent COVID-19-Associated Immunopathology.Vaccines (Basel)2021911134610.3390/vaccines911134634835277
    [Google Scholar]
  72. Pérez-GarcíaF. Martin-VicenteM. Rojas-GarcíaR.L. Castilla-GarcíaL. Muñoz-GomezM.J. Hervás FernándezI. González VentosaV. Vidal-AlcántaraE.J. Cuadros-GonzálezJ. Bermejo-MartinJ.F. ResinoS. MartínezI. High SARS-CoV-2 Viral Load and Low CCL5 Expression Levels in the Upper Respiratory Tract Are Associated With COVID-19 Severity.J. Infect. Dis.2022225697798210.1093/infdis/jiab60434910814
    [Google Scholar]
  73. OlivarriaG. LaneT.E. Evaluating the role of chemokines and chemokine receptors involved in coronavirus infection.Expert Rev. Clin. Immunol.2022181576610.1080/1744666X.2022.201728234964406
    [Google Scholar]
  74. TangH. GaoY. LiZ. MiaoY. HuangZ. LiuX. XieL. LiH. WenW. ZhengY. SuW. The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID‐19.Clin. Transl. Med.2020106e20010.1002/ctm2.20033135345
    [Google Scholar]
  75. MajumdarS. MurphyP.M. Chemokine Regulation During Epidemic Coronavirus Infection.Front. Pharmacol.20211160036910.3389/fphar.2020.60036933613280
    [Google Scholar]
  76. HasegawaT. NakagawaA. SuzukiK. YamashitaK. YamashitaS. IwanagaN. TamadaE. NodaK. TomiiK. Type 1 inflammatory endotype relates to low compliance, lung fibrosis, and severe complications in COVID-19.Cytokine202114815561810.1016/j.cyto.2021.15561834127355
    [Google Scholar]
  77. InuiN. SakaiS. KitagawaM. Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway.Int. J. Mol. Sci.20212211610710.3390/ijms2211610734198949
    [Google Scholar]
  78. GeorgeP.M. WellsA.U. JenkinsR.G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy.Lancet Respir. Med.20208880781510.1016/S2213‑2600(20)30225‑332422178
    [Google Scholar]
  79. Vaz de PaulaC.B. NagashimaS. LiberalessoV. ColleteM. da SilvaF.P.G. OricilA.G.G. BarbosaG.S. da SilvaG.V.C. WiedmerD.B. da Silva DezidérioF. NoronhaL. COVID-19: Immunohistochemical Analysis of TGF-β Signaling Pathways in Pulmonary Fibrosis.Int. J. Mol. Sci.202123116810.3390/ijms2301016835008594
    [Google Scholar]
  80. ColarussoC. MaglioA. TerlizziM. VitaleC. MolinoA. PintoA. VatrellaA. SorrentinoR. Post-COVID-19 Patients Who Develop Lung Fibrotic-like Changes Have Lower Circulating Levels of IFN-β but Higher Levels of IL-1α and TGF-β.Biomedicines2021912193110.3390/biomedicines912193134944747
    [Google Scholar]
  81. PachaO. SallmanM.A. EvansS.E. COVID-19: a case for inhibiting IL-17?Nat. Rev. Immunol.202020634534610.1038/s41577‑020‑0328‑z32358580
    [Google Scholar]
  82. DyavarSR SinghR EmaniR PawarGP ChaudhariVD PodanyAT AvedissianSN FletcherCV SalunkeDB Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options.Biomed pharmacoth.202114111179410.1016/j.biopha.2021.11179434153851
    [Google Scholar]
  83. HanH. MaQ. LiC. LiuR. ZhaoL. WangW. ZhangP. LiuX. GaoG. LiuF. JiangY. ChengX. ZhuC. XiaY. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors.Emerg. Microbes Infect.2020911123113010.1080/22221751.2020.177012932475230
    [Google Scholar]
  84. ManneB.K. DenormeF. MiddletonE.A. PortierI. RowleyJ.W. StubbenC. PetreyA.C. TolleyN.D. GuoL. CodyM. WeyrichA.S. YostC.C. RondinaM.T. CampbellR.A. Platelet gene expression and function in patients with COVID-19.Blood2020136111317132910.1182/blood.202000721432573711
    [Google Scholar]
  85. ShimJ. DeanL.E. KarabayasM. JonesG.T. MacfarlaneG.J. BasuN. Quantifying and predicting the effect of anti-TNF therapy on axSpA-related fatigue: results from the BSRBR-AS registry and meta-analysis.Rheumatology (Oxford)202059113408341410.1093/rheumatology/keaa13232337555
    [Google Scholar]
  86. DruceK.L. JonesG.T. MacfarlaneG.J. BasuN. Patients receiving anti-TNF therapies experience clinically important improvements in RA-related fatigue: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis.Rheumatology (Oxford)201554696497110.1093/rheumatology/keu39025313148
    [Google Scholar]
  87. ChenY.C. HsuP.Y. SuM.C. ChinC.H. LiouC.W. WangT.Y. LinY.Y. LeeC.P. LinM.C. HsiaoC.C. miR-21-5p Under-Expression in Patients with Obstructive Sleep Apnea Modulates Intermittent Hypoxia with Re-Oxygenation-Induced-Cell Apoptosis and Cytotoxicity by Targeting Pro-Inflammatory TNF-α-TLR4 Signaling.Int. J. Mol. Sci.202021399910.3390/ijms2103099932028672
    [Google Scholar]
  88. AtzeniF. NuceraV. MasalaI.F. Sarzi-PuttiniP. BonittaG. Il-6 Involvement in pain, fatigue and mood disorders in rheumatoid arthritis and the effects of Il-6 inhibitor sarilumab.Pharmacol. Res.201914910440210.1016/j.phrs.2019.10440231536783
    [Google Scholar]
  89. DolsenE.A. HarveyA.G. IL-6, sTNF-R2, and CRP in the context of sleep, circadian preference, and health in adolescents with eveningness chronotype: Cross-sectional and longitudinal treatment effects.Psychoneuroendocrinology202112910524110.1016/j.psyneuen.2021.10524133932814
    [Google Scholar]
  90. SmithS.E.P. MausR.L.G. DavisT.R. SundbergJ.P. GilD. SchrumA.G. Maternal IL ‐6 can cause T‐cell‐mediated juvenile alopecia by non‐scarring follicular dystrophy in mice.Exp. Dermatol.201625322322810.1111/exd.1291426660334
    [Google Scholar]
  91. KangH. WuW.Y. YuM. ShapiroJ. McElweeK.J. Increased expression of TLR7 and TLR9 in alopecia areata.Exp. Dermatol.202029325425810.1111/exd.1404331571275
    [Google Scholar]
  92. Piñol-JuradoP. Suárez-CalvetX. Fernández-SimónE. GallardoE. de la OlivaN. Martínez-MurianaA. Gómez-GálvezP. EscuderoL.M. Pérez-PeiróM. WollinL. de LunaN. NavarroX. IllaI. Díaz-ManeraJ. Nintedanib decreases muscle fibrosis and improves muscle function in a murine model of dystrophinopathy.Cell Death Dis.20189777610.1038/s41419‑018‑0792‑629991677
    [Google Scholar]
  93. LiS. ChenJ. ChenF. WangC. GuoX. WangC. FanY. WangY. PengY. LiW. Liposomal honokiol promotes hair growth via activating Wnt3a/β-catenin signaling pathway and down regulating TGF-β1 in C57BL/6N mice.Biomed. Pharmacother.202114111179310.1016/j.biopha.2021.11179334098216
    [Google Scholar]
  94. AulD.R. GatesD.J. DraperD.A. DunleavyD.A. RuickbieD.S. MeredithD.H. WaltersD.N. van ZellerD.C. TaylorD.V. BridgettD.M. DunwoodyD.R. GrubnicD.S. JacobD.T. Ean OngD.Y. Complications after discharge with COVID-19 infection and risk factors associated with development of post-COVID pulmonary fibrosis.Respir. Med.202118810660210.1016/j.rmed.2021.10660234536697
    [Google Scholar]
  95. MylvaganamRJ BaileyJI SznajderJI SalaMA Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection.an off j Euro Respiratory Soc.20213016221019410.1183/16000617.0194‑202134911696
    [Google Scholar]
  96. PuellesV.G. LütgehetmannM. LindenmeyerM.T. SperhakeJ.P. WongM.N. AllweissL. ChillaS. HeinemannA. WannerN. LiuS. BraunF. LuS. PfefferleS. SchröderA.S. EdlerC. GrossO. GlatzelM. WichmannD. WiechT. KlugeS. PueschelK. AepfelbacherM. HuberT.B. Multiorgan and Renal Tropism of SARS-CoV-2.N. Engl. J. Med.2020383659059210.1056/NEJMc201140032402155
    [Google Scholar]
  97. AkpekM. Does COVID-19 Cause Hypertension?Angiology202273768268710.1177/0003319721105390334889662
    [Google Scholar]
  98. WuC. QuG. WangL. CaoS. XiaD. WangB. FanX. WangC. Clinical Characteristics and Inflammatory Immune Responses in COVID-19 Patients With Hypertension: A Retrospective Study.Front. Pharmacol.20211272176910.3389/fphar.2021.72176934759820
    [Google Scholar]
  99. DalyM. RobinsonE. Depression and anxiety during COVID-19.Lancet20223991032451810.1016/S0140‑6736(22)00187‑835123689
    [Google Scholar]
  100. TaquetM. LucianoS. GeddesJ.R. HarrisonP.J. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA.Lancet Psychiatry20218213014010.1016/S2215‑0366(20)30462‑433181098
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073296539240527064736
Loading
/content/journals/cchts/10.2174/0113862073296539240527064736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test