Skip to content
2000
Volume 28, Issue 10
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Objectives

Acute pancreatitis (AP) is a common digestive tract disease, often accompanied by severe metabolic disorders, but there are no specific markers and treatment methods, and the potential metabolic pathways behind it remain to be explored.

Methods

Establish mild acute pancreatitis and severe acute pancreatitis models in rats and intervene with antioxidant NAC. Analyze serum oxidative stress indicators and pathological changes in pancreatic tissue. In addition, non-targeted metabolomics analysis of serum differential metabolites between groups was conducted based on the LC/MS system.

Results

The pathological score of the model group rats increased, and the levels of oxidative stress factors ROS and MDA significantly increased, while the activity of the antioxidant enzyme SOD decreased. After NAC intervention, oxidative stress damage in rats was alleviated. Non-targeted metabolomics experiments suggest significant differences in serum metabolic profiles among different groups of rats.

Conclusion

Metabolomics results show that the obtained differential metabolites are expected to become serum biomarkers for AP.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073291605240525144749
2024-06-12
2025-09-15
Loading full text...

Full text loading...

References

  1. LiF. ZhangF. WanX. WuK. LiuQ. QiuC. YinH. LyuJ. Infections in acute pancreatitis: Organisms, resistance-patterns and effect on mortality.Dig. Dis. Sci.202368263064310.1007/s10620‑022‑07793‑136562889
    [Google Scholar]
  2. OlandG.L. HinesO.J. New guidelines for the treatment of severe acute pancreatitis.Hepatobiliary Surg. Nutr.202211691391610.21037/hbsn‑22‑53236523947
    [Google Scholar]
  3. Mhatre S. VelisettyP. Trends and recent developments in pharmacotherapy of acute pancreatitis.Postgrad. Med.2022202211110.1080/00325481.2022.2136390
    [Google Scholar]
  4. PortelliM. JonesC.D. Severe acute pancreatitis:Pathogenesis, diagnosis and surgical management.Hepatobiliary Pancreat. Dis. Int.201716215515910.1016/S1499‑3872(16)60163‑728381378
    [Google Scholar]
  5. MalheiroF. Ângelo-DiasM. LopesT. MartinsCG. BorregoLM. Cytokine dynamics in acute pancreatitis: The quest for biomarkers from acute disease to disease resolution.J Clin Med.2024138228710.3390/jcm13082287
    [Google Scholar]
  6. GuptaD. MandalN.S. AroraJ.K. SoniR.K. Comparative evaluation of Harmless Acute Pancreatitis Score (HAPS) and bedside index of severity in acute pancreatitis (BISAP) scoring system in the stratification of prognosis in acute pancreatitis.Cureus.20221412e3254010.7759/cureus.32540
    [Google Scholar]
  7. VahapoğluA. ÇalikM. A comparison of scoring systems and biomarkers to predict the severity of acute pancreatitis in patients referring to the emergency clinic.Medicine202410317e3796410.1097/MD.000000000003796438669403
    [Google Scholar]
  8. SongY. LeeSH. Recent treatment strategies for acute pancreatitis.J. Clin. Med.202413497810.3390/jcm13040978
    [Google Scholar]
  9. JiangY. WuH. PengY. HeP. QianS. LinH. ChenH. QianR. WangD. ChuM. JiW. GuoX. ShanX. Gastrodin ameliorates acute pancreatitis by modulating macrophage inflammation cascade via inhibition the p38/NF-κB pathway.Int. Immunopharmacol.202412911159310.1016/j.intimp.2024.11159338290206
    [Google Scholar]
  10. SalujaA. DudejaV. DawraR. SahR.P. Early intra-acinar events in pathogenesis of pancreatitis.Gastroenterology201915671979199310.1053/j.gastro.2019.01.26830776339
    [Google Scholar]
  11. WeiH. ZhaoH. ChengD. ZhuZ. XiaZ. LuD. YuJ. DongR. YueJ. miR-148a and miR-551b-5p regulate inflammatory responses via regulating autophagy in acute pancreatitis.Int. Immunopharmacol.202412711143810.1016/j.intimp.2023.11143838159552
    [Google Scholar]
  12. CaiY. CaoQ. LiJ. LiuT. Targeting and functional effects of biomaterials-based nanoagents for acute pancreatitis treatment.Front. Bioeng. Biotechnol.202310112261910.3389/fbioe.2022.112261936704304
    [Google Scholar]
  13. KotanR. PetoK. DeakA. SzentkeresztyZ. NemethN. Hemorheological and microcirculatory relations of acute pancreatitis.Metabolites2022131410.3390/metabo1301000436676930
    [Google Scholar]
  14. ZhangD. LiL. LiJ. WeiY. TangJ. ManX. LiuF. Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats.Biomed. Pharmacother.202215311346110.1016/j.biopha.2022.11346136076491
    [Google Scholar]
  15. MinatiMA. LibertM. DahouH. JacqueminP. AssiM. N-acetylcysteine reduces the pro-oxidant and inflammatory responses during pancreatitis and pancreas tumorigenesis.Antioxidants2021107110710.3390/antiox10071107
    [Google Scholar]
  16. WenE. XinG. SuW. LiS. ZhangY. DongY. YangX. WanC. ChenZ. YuX. ZhangK. NiuH. HuangW. Activation of TLR4 induces severe acute pancreatitis-associated spleen injury via ROS-disrupted mitophagy pathway.Mol. Immunol.2022142637510.1016/j.molimm.2021.12.01234965485
    [Google Scholar]
  17. GuW. TongZ. Clinical application of metabolomics in pancreatic diseases: A mini-review.Lab. Med.2019512lmz04610.1093/labmed/lmz04631340007
    [Google Scholar]
  18. XiaoH. HuangJ. ZhangX. AhmedR. XieQ. LiB. ZhuY. CaiX. PengQ. QinY. HuangH. WangW. Identification of potential diagnostic biomarkers of acute pancreatitis by serum metabolomic profiles.Pancreatology201717454354910.1016/j.pan.2017.04.01528487129
    [Google Scholar]
  19. LouD. ShiK. LiHP. Quantitative metabolic analysis of plasma extracellular vesicles for the diagnosis of severe acute pancreatitis.J. Nanobiotechnol.20222015210.1186/s12951‑022‑01239‑6
    [Google Scholar]
  20. WengT.I. WuH.Y. ChenB.L. LiuS.H. Honokiol attenuates the severity of acute pancreatitis and associated lung injury via acceleration of acinar cell apoptosis.Shock201237547848410.1097/SHK.0b013e31824653be22258232
    [Google Scholar]
  21. LerchM.M. GorelickF.S. Models of acute and chronic pancreatitis.Gastroenterology201314461180119310.1053/j.gastro.2012.12.04323622127
    [Google Scholar]
  22. ZhanX. WangF. BiY. JiB. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis.Am. J. Physiol. Gastrointest. Liver Physiol.20163113G343G35510.1152/ajpgi.00372.201527418683
    [Google Scholar]
  23. AbdelhafezD. AboelkomsanE. El SadikA. The role of mesenchymal stem cells with ascorbic acid and n-acetylcysteine on tnf-α, il 1β, and nf-κβ expressions in acute pancreatitis in albino rats.J. Diabetes Res.20212021622946010.1155/2021/6229460
    [Google Scholar]
  24. OnurE. PaksoyM. BacaB. AkogluH. Hyperbaric oxygen and N-acetylcysteine treatment in L-arginine-induced acute pancreatitis in rats.J. Invest. Surg.2012251202810.3109/08941939.2011.59369422047166
    [Google Scholar]
  25. MaZ. SongG. LiuD. QianD. WangY. ZhouJ. GongJ. MengH. ZhouB. YangT. SongZ. N-Acetylcysteine enhances the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation in rats with severe acute pancreatitis.Pancreatology201919225826510.1016/j.pan.2019.01.00430660392
    [Google Scholar]
  26. PădureanuV. FlorescuD. PădureanuR. GheneaA. GheoneaD. OanceaC. Role of antioxidants and oxidative stress in the evolution of acute pancreatitis (Review).Exp. Ther. Med.202223319710.3892/etm.2022.1112035126700
    [Google Scholar]
  27. GuoJ. LiX. WangD. GuoY. CaoT. Exploring metabolic biomarkers and regulation pathways of acute pancreatitis using ultra-performance liquid chromatography combined with a mass spectrometry-based metabolomics strategy.RSC Adv.2019921121621217310.1039/C9RA02186H
    [Google Scholar]
  28. HuangJ. HeD. ChenL. DongC. ZhangS. QinY. YuR. AhmedR. KuangJ. ZhangX. GC-MS based metabolomics strategy to distinguish three types of acute pancreatitis.Pancreatology201919563063710.1016/j.pan.2019.05.45631262499
    [Google Scholar]
  29. LusczekE.R. PauloJ.A. SaltzmanJ.R. Urinary 1H-NMR metabolomics can distinguish pancreatitis patients from healthy controls.JOP.201314216117010.6092/1590‑8577/1294
    [Google Scholar]
  30. HanX. Lipidomics for studying metabolism.Nat. Rev. Endocrinol.2016121166867910.1038/nrendo.2016.9827469345
    [Google Scholar]
  31. YangY. WuL. LvY. LC-MS/MS based untargeted lipidomics uncovers lipid signatures of late-onset preeclampsia.Biochimie.2022208465510.1016/j.biochi.2022.12.002
    [Google Scholar]
  32. GuoY. LiuF. ChenM. TianQ. TianX. XiongQ. HuangC. Huangjinsan ameliorates adenine‐induced chronic kidney disease by regulating metabolic profiling.J. Sep. Sci.202144244384439410.1002/jssc.20210054234688222
    [Google Scholar]
  33. VijayanM.M. RaptisS. SathiyaaR. Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout.Gen. Comp. Endocrinol.2003132225626310.1016/S0016‑6480(03)00092‑312812773
    [Google Scholar]
  34. CalderP.C. Polyunsaturated fatty acids, inflammation, and immunity.Lipids20013691007102410.1007/s11745‑001‑0812‑711724453
    [Google Scholar]
  35. PietznerM. KaulA. HenningA.K. KastenmüllerG. ArtatiA. LerchM.M. AdamskiJ. NauckM. FriedrichN. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals.BMC Med.201715121010.1186/s12916‑017‑0974‑629187192
    [Google Scholar]
  36. ZhengT. SuS. DaiX. ZhangL. DuanJA. Ou-YangZ. Metabolomic analysis of biochemical changes in the serum and urine of freund's adjuvant-induced arthritis in rats after treatment with silkworm excrement.Molecules.2018236149010.3390/molecules23061490
    [Google Scholar]
  37. ZhangH. GuoW. LiX. Supplementation with tribulus terrestris extract exhibits protective effects on mcao rats via modulating inflammation-related metabolic and signaling pathways.ACS Omega.2023822306231410.1021/acsomega.2c06625
    [Google Scholar]
  38. ChenYL. LinMT. WangWH. YehSL. YehCL. Intravenous arginine administration attenuates the inflammatory response and improves metabolic profiles in diet-induced obese mice after sleeve gastrectomy.Metabolites202212215310.3390/metabo12020153
    [Google Scholar]
  39. MammedovaJ.T. SokolovA.V. BurovaL.A. KarasevaA.B. GrudininaN.A. GorbunovN.P. MalashichevaA.B. SemenovaD.S. KiselevaE.P. StarikovaE.A. Streptococcal arginine deiminase regulates endothelial inflammation, mTOR pathway and autophagy.Immunobiology2023228215234410.1016/j.imbio.2023.15234436746072
    [Google Scholar]
  40. WangS. WeiY. HuC. LiuF. Proteomic analysis reveals proteins and pathways associated with declined testosterone production in male obese mice after chronic high-altitude exposure.Front Endocrinol.202213104690110.3389/fendo.2022.1046901
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073291605240525144749
Loading
/content/journals/cchts/10.2174/0113862073291605240525144749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test