Skip to content
2000
Volume 28, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Ovarian carcinoma is an aggressive gynecological malignancy. Kirenol, a diterpene compound, has recently gained attention for its potential anticancer properties. However, its exact anti-tumor mechanism remains largely unexplored.

Objective

In this study, we explored the inhibitory effects of Kirenol on ovarian cancer using network pharmacology and experiments and elucidated its underlying mechanisms.

Methods

Through the utilization of molecular docking, we established a network of protein-protein interactions (PPI), which unveiled CDK4 as an essential target. Additionally, gene enrichment and pathway analysis highlighted the significance of the PI3K/AKT pathway. The viability of ovarian cancer cells and normal ovarian epithelial cells was evaluated using CCK8 assays to determine the effect of Kirenol. Following tests, cell colony formation, wound healing, flow cytometry, and Western blotting were conducted to assess its impact on cell proliferation, metastasis, apoptosis, and the cell cycle.

Results

Kirenol significantly reduced the viability of ovarian cancer cells (SKOV3 and A2780) compared to normal ovarian epithelial cells (IOSE-80). Moreover, Kirenol efficiently suppressed the growth and movement, caused a cell cycle halt, and stimulated programmed cell death in SKOV3 and A2780 cells. Through molecular analysis, it was observed that Kirenol increased the expression of Bax while decreasing the expression of MMP2, MMP9, and Bcl-2. It also attenuated the phosphorylation of PI3K, AKT, and RB and downregulated CDK4 and CCND1 expression. Notably, co-treatment with the PI3K pathway inhibitor LY294002 enhanced the inhibitory effect of Kirenol on ovarian cancer cells.

Conclusion

In summary, the combined results of our network pharmacology analysis and tests emphasized that Kirenol hinders the growth of ovarian cancer cells, causes cell cycle arrest, enhances apoptosis, and hampers migration, possibly by regulating the PI3K/AKT/CDK4 signaling pathway.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073289977240216075724
2024-02-26
2025-09-23
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/5/CCHTS-28-5-07.html?itemId=/content/journals/cchts/10.2174/0113862073289977240216075724&mimeType=html&fmt=ahah

References

  1. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202070431310.3322/caac.21609 32767693
    [Google Scholar]
  2. KimD. NamH.J. PARP inhibitors: Clinical limitations and recent attempts to overcome them.Int. J. Mol. Sci.20222315841210.3390/ijms23158412 35955544
    [Google Scholar]
  3. WangF. ChengX.L. LiY.J. ShiS. LiuJ.K. ent-Pimarane diterpenoids from Siegesbeckia orientalis and structure revision of a related compound.J. Nat. Prod.200972112005200810.1021/np900449r 19813758
    [Google Scholar]
  4. XiaoJ. ShenX. KouR. WangK. ZhaiL. DingL. ChenH. MaoC. Kirenol inhibits inflammation challenged by lipopolysaccharide through the AMPK-mTOR-ULK1 autophagy pathway.Int. Immunopharmacol.202311610973410.1016/j.intimp.2023.109734 36706589
    [Google Scholar]
  5. WuJ. LiQ. JinL. QuY. LiangB.B. ZhuX.T. DuH.Y. JieL.G. YuQ.H. Kirenol inhibits the function and inflammation of fibroblast-like synoviocytes in rheumatoid arthritis in vitro and in vivo.Front. Immunol.201910130410.3389/fimmu.2019.01304 31244849
    [Google Scholar]
  6. AlzahraniA.M. RajendranP. VeeraraghavanV.P. HaniehH. Cardiac protective effect of kirenol against doxorubicin-induced cardiac hypertrophy in H9c2 cells through Nrf2 signaling via PI3K/AKT pathways.Int. J. Mol. Sci.2021226326910.3390/ijms22063269 33806909
    [Google Scholar]
  7. ZouB. ZhengJ. DengW. TanY. JieL. QuY. YangQ. KeM. DingZ. ChenY. YuQ. LiX. Kirenol inhibits RANKL-induced osteoclastogenesis and prevents ovariectomized-induced osteoporosis via suppressing the Ca2+-NFATc1 and Cav-1 signaling pathways.Phytomedicine20218015337710.1016/j.phymed.2020.153377 33126167
    [Google Scholar]
  8. ShimS.Y. LeeY.E. LeeM. Antioxidant compounds, kirenol and methyl ent-16α, 17-dihydroxy-kauran-19-oate bioactivity-guided isolated from siegesbeckia glabrescens attenuates MITF-mediated melanogenesis via inhibition of intracellular ROS production.Molecules2021267194010.3390/molecules26071940 33808322
    [Google Scholar]
  9. WangY. XuJ. AlarifiS. WangH. Kirenol inhibited the cell survival and induced apoptosis in human thyroid cancer cells by altering PI3K/AKT and MAP kinase signaling pathways.Environ. Toxicol.202136581182010.1002/tox.23083 33331091
    [Google Scholar]
  10. TorreL.A. TrabertB. DeSantisC.E. MillerK.D. SamimiG. RunowiczC.D. GaudetM.M. JemalA. SiegelR.L. Ovarian cancer statistics, 2018.CA Cancer J. Clin.201868428429610.3322/caac.21456 29809280
    [Google Scholar]
  11. BrayF.C.M. MeryL. PiñerosM. ZnaorA. ZanettiR. FerlayJ. Cancer incidence in five continents, Vol. XI (electronic version). In: IARC Scientific Publication No. 166; International Agency for Research on Cancer, 2020
    [Google Scholar]
  12. HackerN.F. RaoA. Surgery for advanced epithelial ovarian cancer.Best Pract. Res. Clin. Obstet. Gynaecol.201741718710.1016/j.bpobgyn.2016.10.007 27884789
    [Google Scholar]
  13. BuechelM. HerzogT.J. WestinS.N. ColemanR.L. MonkB.J. MooreK.N. Treatment of patients with recurrent epithelial ovarian cancer for whom platinum is still an option.Ann. Oncol.201930572173210.1093/annonc/mdz104 30887020
    [Google Scholar]
  14. EmmingsE. MullanyS. ChangZ. LandenC.N.Jr LinderS. BazzaroM. Targeting mitochondria for treatment of chemoresistant ovarian cancer.Int. J. Mol. Sci.201920122910.3390/ijms20010229 30626133
    [Google Scholar]
  15. IbrahimS.R.M. AltyarA.E. SindiI.A. El-AgamyD.S. AbdallahH.M. MohamedS.G.A. MohamedG.A. Kirenol: A promising bioactive metabolite from siegesbeckia species: A detailed review.J. Ethnopharmacol.202128111455210.1016/j.jep.2021.114552 34438028
    [Google Scholar]
  16. RenJ. WuY. ZhuZ. ChenR. ZhangL. Biosynthesis and regulation of diterpenoids in medicinal plants.Chin. J. Nat. Med.2022201076177210.1016/S1875‑5364(22)60214‑0 36307198
    [Google Scholar]
  17. KimK.N. HamY.M. MoonJ.Y. KimM.J. JungY.H. JeonY.J. LeeN.H. KangN. YangH.M. KimD. HyunC.G. Acanthoic acid induces cell apoptosis through activation of the p38 MAPK pathway in HL-60 human promyelocytic leukaemia.Food Chem.201213532112211710.1016/j.foodchem.2012.05.067 22953963
    [Google Scholar]
  18. PortoT.S. FurtadoN.A.J.C. HelenoV.C.G. MartinsC.H.G. Da CostaF.B. SeverianoM.E. SilvaA.N. VenezianiR.C.S. AmbrósioS.R. Antimicrobial ent-pimarane diterpenes from viguiera arenaria against gram-positive bacteria.Fitoterapia200980743243610.1016/j.fitote.2009.06.003 19524643
    [Google Scholar]
  19. LiuW. LiY. LiC. Kirenol exhibits the protective role against N-methyl-N-nitrosourea-induced gastric cancer in rats via modulating the oxidative stress and inflammatory markers.J. Environ. Pathol. Toxicol. Oncol.202039434535510.1615/JEnvironPatholToxicolOncol.2020035475 33389906
    [Google Scholar]
  20. DobbinZ. LandenC. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer.Int. J. Mol. Sci.20131448213822710.3390/ijms14048213 23591839
    [Google Scholar]
  21. DicksonM.A. Molecular pathways: CDK4 inhibitors for cancer therapy.Clin. Cancer Res.201420133379338310.1158/1078‑0432.CCR‑13‑1551 24795392
    [Google Scholar]
  22. BantieL. TadesseS. LikisaJ. YuM. NollB. HeinemannG. LokmanN.A. RicciardelliC. OehlerM.K. BeckA. PradhanR. MilneR. AlbrechtH. WangS. A first-in-class CDK4 inhibitor demonstrates in vitro, ex-vivo and in vivo efficacy against ovarian cancer.Gynecol. Oncol.2020159382783810.1016/j.ygyno.2020.09.012 32958271
    [Google Scholar]
  23. GaoY. ShenJ. ChoyE. MankinH. HornicekF. DuanZ. Inhibition of CDK4 sensitizes multidrug resistant ovarian cancer cells to paclitaxel by increasing apoptosiss.Cell. Oncol.201740320921810.1007/s13402‑017‑0316‑x 28243976
    [Google Scholar]
  24. LiT. ZhaoX. MoZ. HuangW. YanH. LingZ. YeY. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells.Cell. Physiol. Biochem.20143441351135810.1159/000366342 25301361
    [Google Scholar]
  25. ShimuraT. NomaN. OikawaT. OchiaiY. KakudaS. KuwaharaY. TakaiY. TakahashiA. FukumotoM. Activation of the AKT/cyclin D1/Cdk4 survival signaling pathway in radioresistant cancer stem cells.Oncogenesis201216e1210.1038/oncsis.2012.12 23552696
    [Google Scholar]
  26. ConlonG.A. MurrayG.I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis.J. Pathol.2019247562964010.1002/path.5225 30582157
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073289977240216075724
Loading
/content/journals/cchts/10.2174/0113862073289977240216075724
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): apoptosis; cell cycle; Kiren; metastasis; ovarian carcinoma; PI3K/AKT/CDK4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test