Skip to content
2000
Volume 28, Issue 10
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aims

Sevoflurane and propofol are the most commonly used anesthetics in surgery. In this study, we aim to explore and clarify the function of sevoflurane and propofol in colorectal cancer.

Methods

Cell counting kit-8, colony formation, western blot, and transwell assays were performed to determine cell proliferation, apoptosis, ferroptosis, invasion, and migration. We performed overexpression experiments to detect the underlying molecular mechanism of sevoflurane and propofol. The genes related to epithelial-mesenchymal transition were measured by western blot.

Results

We discovered that sevoflurane and propofol co-treatment exerted more anti-tumor activities than just sevoflurane or propofol treatment in colorectal cancer cells . Mechanistically, our data showed that sevoflurane and propofol-induced apoptosis and ferroptosis and inhibited cell proliferation, invasion, and migration. Additionally, TM2D1 was considered a target of sevoflurane and propofol, and TM2D1 overexpression reversed the effect of sevoflurane and propofol on colorectal cancer cell biology behaviors.

Conclusion

Our results showed a novel anti-tumor mechanism of sevoflurane and propofol in colorectal cancer cells, and TM2D1 might be an underlying therapeutic target for treating colorectal cancer patients.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073281046240527165415
2024-06-12
2025-08-21
Loading full text...

Full text loading...

References

  1. BaidounF. ElshiwyK. ElkeraieY. MerjanehZ. KhoudariG. SarminiM.T. GadM. Al-HusseiniM. SaadA. Colorectal cancer epidemiology: Recent trends and impact on outcomes.Curr. Drug Targets2021229998100910.2174/18735592MTEx9NTk2y33208072
    [Google Scholar]
  2. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  3. WallT. SherwinA. MaD. BuggyD.J. Influence of perioperative anaesthetic and analgesic interventions on oncological outcomes: A narrative review.Br. J. Anaesth.2019123213515010.1016/j.bja.2019.04.06231255291
    [Google Scholar]
  4. SalibasicM. PusinaS. BicakcicE. PasicA. GavricI. KulovicE. RovcaninA. BeslijaS. Colorectal cancer surgical treatment, our experience.Med. Arh.201973641241410.5455/medarh.2019.73.412‑41432082011
    [Google Scholar]
  5. BuggyD.J. HemmingsH.C. Special issue on anaesthesia and cancer.Br. J. Anaesth.2014113Suppl. 1i1i310.1093/bja/aeu26125052940
    [Google Scholar]
  6. LeeJ.H. KangS.H. KimY. KimH.A. KimB.S. Effects of propofol-based total intravenous anesthesia on recurrence and overall survival in patients after modified radical mastectomy: A retrospective study.Korean J. Anesthesiol.201669212613210.4097/kjae.2016.69.2.12627066202
    [Google Scholar]
  7. YanR. SongT. WangW. TianJ. MaX. Immunomodulatory roles of propofol and sevoflurane in murine models of breast cancer.Immunopharmacol. Immunotoxicol.20221736073191
    [Google Scholar]
  8. LeeS PyoDH SimWS Early and long-term outcomes after propofol-and sevoflurane-based anesthesia in colorectal cancer surgery: A retrospective study.J Clin Med.2022119264810.3390/jcm11092648
    [Google Scholar]
  9. TakeyamaE. MiyoM. MatsumotoH. TatsumiK. AmanoE. HiraoM. ShibuyaH. Long-term survival differences between sevoflurane and propofol use in general anesthesia for gynecologic cancer surgery.J. Anesth.202135449550410.1007/s00540‑021‑02941‑934008073
    [Google Scholar]
  10. KangX. LiX. LiY. Sevoflurane suppresses the proliferation, migration and invasion of colorectal cancer through regulating Circ_0000423/miR-525-5p/SGPP1 network.Cell. Mol. Bioeng.202215221923010.1007/s12195‑021‑00717‑535401845
    [Google Scholar]
  11. SunS.Q. RenL.J. LiuJ. WangP. ShanS.M. Sevoflurane inhibits migration and invasion of colorectal cancer cells by regulating microRNA-34a/ADAM10 axis.Neoplasma201966688789510.4149/neo_2018_181213N96231305122
    [Google Scholar]
  12. ZhaoX. ChenF. Propofol induces the ferroptosis of colorectal cancer cells by downregulating STAT3 expression.Oncol. Lett.202122576710.3892/ol.2021.1302834589146
    [Google Scholar]
  13. LeeY. ChangD.J. LeeY.S. ChangK.A. KimH. YoonJ.S. LeeS. SuhY.H. KaangB.K. β‐amyloid peptide binding protein does not couple to G protein in a heterologous Xenopus expression system.J. Neurosci. Res.200373225525910.1002/jnr.1065212836168
    [Google Scholar]
  14. HuJ.W. YinY. GaoY. NieY.Y. FuP.Y. CaiJ.B. ZhuK. HuangC. HuangX.W. YangX.R. CaoY. QiuS.J. FanJ. ZhouJ. TM2D1 contributes the epithelial-mesenchymal transition of hepatocellular carcinoma via modulating AKT/β-catenin axis.Am. J. Cancer Res.20211141557157133948373
    [Google Scholar]
  15. SunC. LiuP. PeiL. ZhaoM. HuangY. Propofol inhibits proliferation and augments the anti-tumor effect of doxorubicin and paclitaxel partly through promoting ferroptosis in triple-negative breast cancer cells.Front. Oncol.20221283797410.3389/fonc.2022.83797435419287
    [Google Scholar]
  16. KangK. WangY. Sevoflurane inhibits proliferation and invasion of human ovarian cancer cells by regulating JNK and p38 MAPK signaling pathway.Drug Des. Devel. Ther.2019134451446010.2147/DDDT.S22358132021086
    [Google Scholar]
  17. SteurerM. SchläpferM. SteurerM. Z’graggenB.R. BooyC. ReyesL. SpahnD.R. Beck-SchimmerB. The volatile anaesthetic sevoflurane attenuates lipopolysaccharide-induced injury in alveolar macrophages.Clin. Exp. Immunol.2009155222423010.1111/j.1365‑2249.2008.03807.x19032551
    [Google Scholar]
  18. SunL. MaW. GaoW. XingY. ChenL. XiaZ. ZhangZ. DaiZ. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome.Cell Death Dis.201910854210.1038/s41419‑019‑1761‑431316052
    [Google Scholar]
  19. D’ArcyM.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy.Cell Biol. Int.201943658259210.1002/cbin.1113730958602
    [Google Scholar]
  20. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/0192623070132033717562483
    [Google Scholar]
  21. MaQ. HuL. LuoY. WangM. YuS. LuA. ZhangL. ZengH. Identification of apoptosis-related key genes and the associated regulation mechanism in thoracic aortic aneurysm.BMC Cardiovasc. Disord.202323148110.1186/s12872‑023‑03516‑037770840
    [Google Scholar]
  22. ChenY. ZhangP. ChenW. ChenG. Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway.Immunol. Lett.202022591510.1016/j.imlet.2020.06.00532540488
    [Google Scholar]
  23. WangJ. LiS. ZhangG. HanH. Sevoflurane inhibits malignant progression of colorectal cancer via hsa_circ_0000231-mediated miR-622.J. Biol. Res.20212811410.1186/s40709‑021‑00145‑634183076
    [Google Scholar]
  24. FangP. ZhouJ. XiaZ. LuY. LiuX. Effects of propofol versus sevoflurane on postoperative breast cancer prognosis: A narrative review.Front. Oncol.20221179309310.3389/fonc.2021.79309335127500
    [Google Scholar]
  25. ZhaoA. LiuY. Propofol suppresses colorectal cancer development by the circ-PABPN1/miR-638/SRSF1 axis.Anal. Biochem.202163111435410.1016/j.ab.2021.11435434453920
    [Google Scholar]
  26. CuiX. FengJ. WuJ. ZhangX. DingM. Propofol postpones colorectal cancer development through circ_0026344/miR-645/Akt/mTOR signal pathway.Open Med.202116157058010.1515/med‑2021‑025433869779
    [Google Scholar]
  27. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  28. DixonS.J. StockwellB.R. The role of iron and reactive oxygen species in cell death.Nat. Chem. Biol.201410191710.1038/nchembio.141624346035
    [Google Scholar]
  29. DixonS.J. Ferroptosis: Bug or feature?Immunol. Rev.2017277115015710.1111/imr.1253328462529
    [Google Scholar]
  30. XieY. ZhuS. SongX. SunX. FanY. LiuJ. ZhongM. YuanH. ZhangL. BilliarT.R. LotzeM.T. ZehH.J.III KangR. KroemerG. TangD. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity.Cell Rep.20172071692170410.1016/j.celrep.2017.07.05528813679
    [Google Scholar]
  31. WeiR. ZhaoY. WangJ. YangX. LiS. WangY. YangX. FeiJ. HaoX. ZhaoY. GuiL. DingX. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells.Int. J. Biol. Sci.202117112703271710.7150/ijbs.5940434345202
    [Google Scholar]
  32. YangW.S. SriRamaratnamR. WelschM.E. ShimadaK. SkoutaR. ViswanathanV.S. CheahJ.H. ClemonsP.A. ShamjiA.F. ClishC.B. BrownL.M. GirottiA.W. CornishV.W. SchreiberS.L. StockwellB.R. Regulation of ferroptotic cancer cell death by GPX4.Cell20141561-231733110.1016/j.cell.2013.12.01024439385
    [Google Scholar]
  33. TeschkeR. Aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc: Molecular aspects in experimental liver injury.Int. J. Mol. Sci.202223201221310.3390/ijms23201221336293069
    [Google Scholar]
  34. TanZ. SunW. LiY. JiaoX. ZhuM. ZhangJ. QingC. JiaY. Current progress of EMT: A new direction of targeted therapy for colorectal cancer with invasion and metastasis.Biomolecules20221212172310.3390/biom1212172336551152
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073281046240527165415
Loading
/content/journals/cchts/10.2174/0113862073281046240527165415
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Colorectal cancer; ferroptosis; propofol; sevoflurane; TM2 domain containing 1; tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test