Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is a rare disease that is characterized by autoinflammatory lesions on both bones and skin. The diverse manifestations and limited understanding of its etiology have hindered the diagnosis and treatment of this condition. SAPHO syndrome is also classified as a primary inflammatory osteitis. The onset of osteoarticular involvement in this disease is typically gradual, and the identification of associated biomarkers may be crucial for accurate diagnosis, effective treatment, and a better understanding of its underlying mechanisms.

Methods

We enrolled a total of 6 SAPHO patients and 3 healthy volunteers for this study. The miRNA expression profile in circulating exosomes was analyzed using next-generation sequencing. A total of 45 miRNAs were found to be differentially expressed in SAPHO patients. Linear discriminant analysis effect size analysis and Wilcoxon rank-sum test were employed to identify biomarkers based on these differentially expressed miRNAs. Among them, we selected 4 miRNAs as biomarkers for SAPHO syndrome, resulting in an area under the receiver operating characteristic curve of 1.

Results

The differentially expressed miRNAs indicated enrichment in immune system and endocrine system-related KEGG pathways, as well as infectious diseases and cancers. Furthermore, the most significantly enriched molecular functions in GO analysis were protein binding and catalytic activity.

Conclusion

The exosomal miRNA profile in SAPHO syndrome exhibited significant changes, suggesting its potential as a candidate biomarker for diagnostic assistance, although further investigation is warranted to elucidate their role in the pathology.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073289083240425114858
2025-05-01
2025-10-25
Loading full text...

Full text loading...

References

  1. McGonagleD. McDermottM.F. A proposed classification of the immunological diseases.PLoS Med200638e29710.1371/journal.pmed.003029716942393
    [Google Scholar]
  2. XuP. YiG. LiJ. SAPHO syndrome.Rheumatology2022617e205e20610.1093/rheumatology/keab76034626118
    [Google Scholar]
  3. SternS.M. FergusonP.J. Autoinflammatory bone diseases.Rheum. Dis. Clin. North Am.201339473574910.1016/j.rdc.2013.05.00224182852
    [Google Scholar]
  4. BaisyaR. GavaliM. TyagiM. DevarasettiP.K. A case of SAPHO syndrome complicated by uveitis with good response to both TNF inhibitor and JAKinib.Case Rep. Rheumatol.202320231710.1155/2023/620188736712597
    [Google Scholar]
  5. YangQ. ZhaoY. LiC. LuoY. HaoW. ZhangW. Case report.Medicine20189725e1114910.1097/MD.000000000001114929924019
    [Google Scholar]
  6. KlicmanR. SimoniP. RobinsonP. TehJ. JurikA. SAPHO and CRMO: The value of imaging.Semin. Musculoskelet. Radiol.201822220722410.1055/s‑0038‑163946929672809
    [Google Scholar]
  7. HwangG.J.H. ClyneR.K. Long non-coding RNA and ribosomal protein genes in a yeast ageing model: An investigation for undergraduate research-based learning.Essays Biochem.202367589390110.1042/EBC2023001037655454
    [Google Scholar]
  8. BartelD.P. MicroRNAs: Target recognition and regulatory functions.Cell2009136221523310.1016/j.cell.2009.01.00219167326
    [Google Scholar]
  9. van NielG. D’AngeloG. RaposoG. Shedding light on the cell biology of extracellular vesicles.Nat. Rev. Mol. Cell Biol.201819421322810.1038/nrm.2017.12529339798
    [Google Scholar]
  10. van NielG. CarterD.R.F. ClaytonA. LambertD.W. RaposoG. VaderP. Challenges and directions in studying cell–cell communication by extracellular vesicles.Nat. Rev. Mol. Cell Biol.202223536938210.1038/s41580‑022‑00460‑335260831
    [Google Scholar]
  11. BuzasE.I. The roles of extracellular vesicles in the immune system.Nat. Rev. Immunol.202323423625010.1038/s41577‑022‑00763‑835927511
    [Google Scholar]
  12. GrangeC. BussolatiB. Extracellular vesicles in kidney disease.Nat. Rev. Nephrol.202218849951310.1038/s41581‑022‑00586‑935641620
    [Google Scholar]
  13. HadeM.D. SuireC.N. MossellJ. SuoZ. Extracellular vesicles: Emerging frontiers in wound healing.Med. Res. Rev.20224262102212510.1002/med.2191835757979
    [Google Scholar]
  14. CortezM.A. RamosB.C. FerdinJ. BeresteinL.G. SoodA.K. CalinG.A. MicroRNAs in body fluids—the mix of hormones and biomarkers.Nat. Rev. Clin. Oncol.20118846747710.1038/nrclinonc.2011.7621647195
    [Google Scholar]
  15. ManierS. LiuC.J. Avet-LoiseauH. ParkJ. ShiJ. CampigottoF. SalemK.Z. HuynhD. GlaveyS.V. RivottoB. SaccoA. RoccaroA.M. BouyssouJ. MinvielleS. MoreauP. FaconT. LeleuX. WellerE. TrippaL. GhobrialI.M. Prognostic role of circulating exosomal miRNAs in multiple myeloma.Blood2017129172429243610.1182/blood‑2016‑09‑74229628213378
    [Google Scholar]
  16. ZhangG. ChenL. GuoX. WangH. ChenW. WuG. GuB. MiaoW. KongJ. JinX. YiG. YouY. SuX. GuN. Comparative analysis of microRNA expression profiles of exosomes derived from normal and hypoxic preconditioning human neural stem cells by next generation sequencing.J. Biomed. Nanotechnol.20181461075108910.1166/jbn.2018.256729843872
    [Google Scholar]
  17. SunY. LiC. ZhuM. ZhangS. CaoY. YangQ. ZhaoP. HuangG. XuA. Enhanced migration and adhesion of peripheral blood neutrophils from SAPHO patients revealed by RNA-Seq.Orphanet J. Rare Dis.201914119210.1186/s13023‑019‑1169‑331395074
    [Google Scholar]
  18. SehgalR. VirataA.R. BansalP. HartM. Metastatic carcinoma of prostate as a mimicker of SAPHO syndrome.Clin. Med. Res.202119314114710.3121/cmr.2021.153933985979
    [Google Scholar]
  19. TüfekciK.U. ÖnerM.G. MeuwissenR.L.J. GençŞ. The role of microRNAs in human diseases.Methods Mol. Biol.20141107335010.1007/978‑1‑62703‑748‑8_324272430
    [Google Scholar]
  20. ParsamaneshN. PoudinehM. SiamiH. ButlerA.E. AlmahmeedW. SahebkarA. RNA interference-based therapies for atherosclerosis: Recent advances and future prospects.Prog. Mol. Biol. Transl. Sci.202420414310.1016/bs.pmbts.2023.12.00938458734
    [Google Scholar]
  21. DakroubF. KobeissyF. MondelloS. YangZ. XuH. SuraL. RossignolC. AlbayramM. RajderkarD. WangK. WeissM.D. MicroRNAs as biomarkers of brain injury in neonatal encephalopathy: An observational cohort study.Sci. Rep.2024141664510.1038/s41598‑024‑57166‑z38503820
    [Google Scholar]
  22. NotarteK.I. SenanayakeS. MacaranasI. AlbanoP.M. MundoL. FennellE. LeonciniL. MurrayP. MicroRNA and other non-coding RNAs in epstein–barr virus-associated cancers.Cancers20211315390910.3390/cancers1315390934359809
    [Google Scholar]
  23. ChenD.P. WangJ.C. LiuZ.Y. LiP.L. ChanK.W. WuX.N. YaoW.D.X. YaoT. KuangD.M. WeiY. miRNome targeting NF-κB signaling orchestrates macrophage-triggered cancer metastasis and recurrence.Mol. Ther.2024S1525-0016(24)00078-910.1016/j.ymthe.2024.02.00938341612
    [Google Scholar]
  24. BozzarelliI. OrsiniA. IsidoriF. MastracciL. MalviD. LugaresiM. FittipaldiS. GozzellinoL. AstolfiA. RäsänenJ. D’ErricoA. RosatiR. FioccaR. SeriM. KrishnadathK.K. BonoraE. MattioliS. miRNA–221 and miRNA–483–3p dysregulation in esophageal adenocarcinoma.Cancers202416359110.3390/cancers1603059138339342
    [Google Scholar]
  25. YeX. YangY. YaoJ. WangM. LiuY. XieG. ZengZ. ZhangX. ZhouH. Nuclear receptor RXRα binds the precursor of miR-103 to inhibit its maturation.BMC Biol.202321119710.1186/s12915‑023‑01701‑337735649
    [Google Scholar]
  26. NapoletanoS. BattistaE. MartoneN. NettiP.A. CausaF. Direct, precise, enzyme-free detection of miR-103–3p in real samples by microgels with highly specific molecular beacons.Talanta202325912446810.1016/j.talanta.2023.12446837011564
    [Google Scholar]
  27. WangZ. MaoJ.W. LiuG.Y. WangF.G. JuZ.S. ZhouD. WangR.Y. MicroRNA‐372 enhances radiosensitivity while inhibiting cell invasion and metastasis in nasopharyngeal carcinoma through activating the PBK‐dependent p53 signaling pathway.Cancer Med.20198271272810.1002/cam4.192430656832
    [Google Scholar]
  28. ZhaoY.X. LiuH.C. YingW.Y. WangC.Y. YuY.J. SunW.J. LiuJ.F. microRNA-372 inhibits proliferation and induces apoptosis in human breast cancer cells by directly targeting E2F1.Mol. Med. Rep.20171668069807510.3892/mmr.2017.759128944922
    [Google Scholar]
  29. YangJ. XiangH. ChengM. JiangX. ChenY. ZhengL. YanS. ZhangS. ZhangC. ChenW. ChenD. microRNA-15a-5p suppresses hypoxia-induced tumor growth and chemoresistance in bladder cancer by binding to eIF5A2.Neoplasma2024711606910.4149/neo_2024_230915N48938506035
    [Google Scholar]
  30. AggarwalA. SinglaN. KonarM. KaurM. SharmaK. JainK. ModiM. SharmaS. Role of MicroRNAs as post transcription regulators of matrix metalloproteinases and their association in tuberculous meningitis.Tuberculosis202414610250110.1016/j.tube.2024.10250138490030
    [Google Scholar]
  31. AkeS. KamilaS. WangG. Quantification of MicroRNAs or viral RNAs with microelectrode sensors enabled by electrochemical signal amplification.Methods Mol. Biol.2023263011713310.1007/978‑1‑0716‑2982‑6_936689180
    [Google Scholar]
  32. RashidF. ZaongoS.D. SongF. ChenY. The diverse roles of miRNAs in HIV pathogenesis: Current understanding and future perspectives.Front. Immunol.202313109154310.3389/fimmu.2022.109154336685589
    [Google Scholar]
  33. GholizadehO. AkbarzadehS. MoeinM. YasaminehS. HosseiniP. AfkhamiH. AminiP. DadashpourM. TahavvoriA. EslamiM. TaherianH.M. PoortahmasebiV. The role of non-coding RNAs in the diagnosis of different stages (HCC, CHB, OBI) of hepatitis B infection.Microb. Pathog.202317610599510.1016/j.micpath.2023.10599536681203
    [Google Scholar]
  34. ZulianV. FisconG. PaciP. GarbugliaA.R. Hepatitis B virus and microRNAs: A bioinformatics approach.Int. J. Mol. Sci.202324241722410.3390/ijms24241722438139051
    [Google Scholar]
  35. SunT. HuangJ. ZhuL. WuS. ZhaoL. KangY. Integrative mRNA-miRNA interaction analysis associated with the immune response in the head kidney of rainbow trout (Oncorhynchus mykiss) after infectious hematopoietic necrosis virus infection.Fish Shellfish Immunol.202314210914010.1016/j.fsi.2023.10914037797868
    [Google Scholar]
  36. CairoliV. MillaresV.D. OrellanoT.M.C. LuqueD. RyanP. DominguezL. CarboneroM.L. De los SantosI. De MatteoE. AmeigeirasB. BrizV. CasciatoP. PreciadoM.V. ValvaP. RodríguezF.A. MicroRNA signature from extracellular vesicles of HCV/HIV co-infected individuals differs from HCV mono-infected.J. Mol. Med.2023101111409142010.1007/s00109‑023‑02367‑837704856
    [Google Scholar]
  37. XuL. PaineA.C. BarbeauD.J. AlencastroF. DuncanA.W. McElroyA.K. Limiting viral replication in hepatocytes alters Rift Valley fever virus disease manifestations.J. Virol.2023979e00853-2310.1128/jvi.00853‑2337695055
    [Google Scholar]
  38. ZhouB. WangS. MayrC. BartelD.P. LodishH.F. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely.Proc. Natl. Acad. Sci.2007104177080708510.1073/pnas.070240910417438277
    [Google Scholar]
  39. HondaN. JinninM. Kira-EtohT. MakinoK. KajiharaI. MakinoT. FukushimaS. InoueY. OkamotoY. HasegawaM. FujimotoM. IhnH. miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin β3.Am. J. Pathol.2013182120621610.1016/j.ajpath.2012.09.02323159943
    [Google Scholar]
  40. LiY. QiW. ShiY. miR‑150‑5p inhibits osteogenic differentiation of fibroblasts in ankylosing spondylitis by targeting VDR.Exp. Ther. Med.202223428310.3892/etm.2022.1121335317439
    [Google Scholar]
  41. SanchezP.C. UgaldeF.P. LimonR.P. PedreraL.C. VillegasC.M.C. AguileraA.M.C. BarbarrojaN. de la RosaA.I. MontillaL.M.D. ContrerasE.A. MedinaL.C. EstevezC.E. GomezJ.Y. Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients.Hum. Mol. Genet.201827587589010.1093/hmg/ddy00829329380
    [Google Scholar]
  42. HongJ. GarfoloR. KabreS. HummlC. VelanacV. RouéC. BeckB. JeanetteH. HaslamS. BachM. AroraS. AchetaJ. NaveK.A. SchwabM.H. Jourd’heuilD. PoitelonY. BelinS. PMP2 regulates myelin thickening and ATP production during remyelination.Glia202472588589810.1002/glia.2450838311982
    [Google Scholar]
  43. JinX. XuH. HuQ. YinY. QinM. XiaZ. Early growth response 2, a novel target of pelvic organ prolapse, is highly expressed in anterior vaginal wall tissues with pelvic organ prolapse.Histochem. Cell Biol.2024161219520510.1007/s00418‑023‑02240‑237874337
    [Google Scholar]
  44. VermaA. SinghA. SinghM.P. NengrooM.A. SainiK.K. SatrusalS.R. KhanM.A. ChaturvediP. SinhaA. MeenaS. SinghA.K. DattaD. EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis.Nat. Commun.2022131734410.1038/s41467‑022‑35059‑x36446780
    [Google Scholar]
  45. XieY. PengX. LiP. MIWE: detecting the critical states of complex biological systems by the mutual information weighted entropy.BMC Bioinformat.20242514410.1186/s12859‑024‑05667‑z38280998
    [Google Scholar]
  46. MishraA. KumarA. NaikL. PatelS. DasM. BehuraA. NayakD.K. MishraA. BhutiaS.K. SinghR. DhimanR. Soybean lectin-triggered IL-6 secretion induces autophagy to kill intracellular mycobacteria through P2RX7 dependent activation of the JAK2/STAT3/Mcl-1 pathway.Cytokine202317115636610.1016/j.cyto.2023.15636637716189
    [Google Scholar]
  47. HeZ. ZhangX. WangS. DaiX. WangQ. LuQ. LuH. WuY. WangH. WangX. WangH. LiuY. The predictive value of prognosis and therapeutic response for STAT family in pancreatic cancer.Heliyon202395e1615010.1016/j.heliyon.2023.e1615037215832
    [Google Scholar]
  48. YangW. ChenH. MaL. WeiM. XueX. LiY. JinZ. dongJ. XiaoH. The oncogene MYBL2 promotes the malignant phenotype and suppresses apoptosis through hedgehog signaling pathway in clear cell renal cell carcinoma.Heliyon2024106e2777210.1016/j.heliyon.2024.e2777238510035
    [Google Scholar]
  49. OsakabeM. YamadaN. SugimotoR. UesugiN. NakaoE. HondaM. YanagawaN. SugaiT. The pattern-based interpretation of p53 immunohistochemical expression as a surrogate marker for TP53 mutations in colorectal cancer.Virchows Arch.202410.1007/s00428‑024‑03790‑z38512505
    [Google Scholar]
  50. BankeT.G. ChaplanS.R. WickendenA.D. Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation.Am. J. Physiol. Cell Physiol.20102986C1457C146810.1152/ajpcell.00489.200920457836
    [Google Scholar]
  51. ZhangL. LuoL. LiuC. LiZ. Novel KMT2B gene mutation in MUC4 positive low-grade fibromyxoid sarcoma.Diagn. Pathol.20241913010.1186/s13000‑024‑01458‑538347522
    [Google Scholar]
  52. ChenH. ZhengQ. LvY. YangZ. FuQ. CUL4A‐mediated ZEB1/microRNA‐340‐5p/HMGB1 axis promotes the development of osteoporosis.J. Biochem. Mol. Toxicol.2023378e2337310.1002/jbt.2337337253097
    [Google Scholar]
  53. WuT. ZhouH. HongY. LiJ. JiangX. HuangH. miR-30 family members negatively regulate osteoblast differentiation.J. Biol. Chem.2012287107503751110.1074/jbc.M111.29272222253433
    [Google Scholar]
  54. ZhuB. ChenH. ZhangX. PanY. JingR. ShenL. WangX. JuS. JinC. CongH. Serum miR-30d as a novel biomarker for multiple myeloma and its antitumor role in U266 cells through the targeting of the MTDH/PI3K/Akt signaling pathway.Int. J. Oncol.20185352131214410.3892/ijo.2018.453230132507
    [Google Scholar]
  55. HuangJ. LiY. ZhuS. WangL. YangL. HeC. MiR-30 family: A novel avenue for treating bone and joint diseases?Int. J. Med. Sci.202320449350410.7150/ijms.8199037057210
    [Google Scholar]
  56. WeiglM. KocijanR. FergusonJ. LeinfellnerG. HeimelP. FeichtingerX. PietschmannP. GrillariJ. ZwerinaJ. RedlH. HacklM. Longitudinal changes of circulating miRNAs during bisphosphonate and teriparatide treatment in an animal model of postmenopausal osteoporosis.J. Bone Miner. Res.20203661131114410.1002/jbmr.427633598975
    [Google Scholar]
  57. HongQ. LiuZ.X. LiangH.F. WuD.G. ChenY. YuB. Inhibition of HOXD11 promotes cartilage degradation and induces osteoarthritis development.J. Orthop. Surg. Res.202419111110.1186/s13018‑024‑04573‑738308324
    [Google Scholar]
  58. MolinA.N. ContentinR. AngelozziM. KarvandeA. KcR. HaseebA. VoskampC. de CharleroyC. LefebvreV. Skeletal growth is enhanced by a shared role for SOX8 and SOX9 in promoting reserve chondrocyte commitment to columnar proliferation.Proc. Natl. Acad. Sci.20241218e231696912110.1073/pnas.231696912138346197
    [Google Scholar]
  59. YongzhenL. yanG. JingL. ChenyanR. ChuanqingM. YunS. WeihuiC. Embryonic inhibition of colony‐stimulating factor 1 receptor induces enlarged cartilaginous zone of the midpalatal suture in postnatal mice.Orthod. Craniofac. Res.202427227628610.1111/ocr.1272437904627
    [Google Scholar]
  60. ZhangY. FangQ. LiuY. ZhangD. HeY. LiuF. SunK. ChenJ. Increased FGFR3 is involved in T-2 toxin-induced lesions of hypertrophic cartilage associated with endemic osteoarthritis.Hum. Exp. Toxicol.2023420960327123121948010.1177/0960327123121948038059300
    [Google Scholar]
  61. JahnJ. Halm-PozniakA. KlutznyM. NollM. StärkeC. LohmannC.H. BertrandJ. Collagen 1 gel may improve the regenerative capacity of minced adult and preosteoarthritic cartilage.Knee Surg. Sports Traumatol. Arthrosc.2024ksa.1210110.1002/ksa.1210138415965
    [Google Scholar]
  62. TrogischF.A. AbouissaA. KelesM. BirkeA. FuhrmannM. DittrichG.M. WeinzierlN. WinkE. CorderoJ. ElsherbinyA. GarridoM.A. GreinS. HemannaS. HofmannE. NicinL. BibliS.I. AirikR. KispertA. KistR. QuanchaoS. KürschnerS.W. WinklerM. GretzN. MoglerC. KorffT. KochP.S. DimmelerS. DobrevaG. HeinekeJ. Endothelial cells drive organ fibrosis in mice by inducing expression of the transcription factor SOX9.Sci. Transl. Med.202416736eabq458110.1126/scitranslmed.abq458138416842
    [Google Scholar]
  63. LottoJ. CullumR. DrisslerS. ArosteguiM. GarsideV.C. FuglerudB.M. Clement-RanneyM. ThakurA. UnderhillT.M. HoodlessP.A. Cell diversity and plasticity during atrioventricular heart valve EMTs.Nat. Commun.2023141556710.1038/s41467‑023‑41279‑637689753
    [Google Scholar]
  64. HossainN. IgawaT. SuzukiM. TazawaI. NakaoY. HayashiT. SuzukiN. OginoH. Phenotype–genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution.Dev. Growth Differ.202365848149710.1111/dgd.1288437505799
    [Google Scholar]
  65. JiangR. DaiZ. WuJ. JiS. SunY. YangW. METTL3 stabilizes HDAC5 mRNA in an m6A-dependent manner to facilitate malignant proliferation of osteosarcoma cells.Cell Death Discov.20228117910.1038/s41420‑022‑00926‑535396379
    [Google Scholar]
  66. PohlersM. GiesS. TaenzerT. StroederR. TheobaldL. LudwigN. KimY.J. BohleR.M. SolomayerE.F. MeeseE. HartM. RückheimW.B. Th17 cells target the metabolic miR ‐142‐5p–succinate dehydrogenase subunit C/D ( SDHC / SDHD ) axis, promoting invasiveness and progression of cervical cancers.Mol. Oncol.20231878-0261.1354610.1002/1878‑0261.1354637899663
    [Google Scholar]
  67. LiF. ZhangF. WangT. XieZ. LuoH. DongW. ZhangJ. RenC. PengW. A self-amplifying loop of TP53INP1 and P53 drives oxidative stress-induced apoptosis of bone marrow mesenchymal stem cells.Apoptosis2024202410.1007/s10495‑023‑01934‑138491252
    [Google Scholar]
  68. CummingsK. DiasR.P. HartR. WelhamA. Behavioural, developmental and psychological characteristics in children with germline PTEN mutations: A carer report study.J. Intellect. Disabil. Res.2024jir.1313010.1111/jir.1313038505951
    [Google Scholar]
  69. ZhuY. TaoL.F. LiuJ.Y. WangY.X. HuangH. JiangY.N. QianW.F. Construction of a prognostic model for triple‐negative breast cancer based on immune‐related genes, and associations between the tumor immune microenvironment and immunological therapy.Cancer Med.20231214157041571910.1002/cam4.617637306188
    [Google Scholar]
  70. DongM. XuT. LiH. LiX. LINC00052 promotes breast cancer cell progression and metastasis by sponging miR‑145‑5p to modulate TGFBR2 expression.Oncol. Lett.202121536810.3892/ol.2021.1262933777194
    [Google Scholar]
  71. HanF. ChenS. ZhangK. ZhangK. WangM. WangP. Single-cell transcriptomic sequencing data reveal aberrant DNA methylation in SMAD3 promoter region in tumor-associated fibroblasts affecting molecular mechanism of radiosensitivity in non-small cell lung cancer.J. Transl. Med.202422128810.1186/s12967‑024‑05057‑238493128
    [Google Scholar]
  72. LiN. LiuL. LiuY. LuoS. SongY. FangB. miR-144-3p suppresses osteogenic differentiation of BMSCs from patients with aplastic anemia through repression of TET2.Mol. Ther. Nucleic Acids20201961962610.1016/j.omtn.2019.12.01731945725
    [Google Scholar]
  73. CarrerasJ. IkomaH. KikutiY.Y. MiyaokaM. HiraiwaS. TomitaS. KondoY. ItoA. NagaseS. MiuraH. KawadaH. RoncadorG. CampoE. HamoudiR. NakamuraN. Mutational, immune microenvironment, and clinicopathological profiles of diffuse large B-cell lymphoma and follicular lymphoma with BCL6 rearrangement.Virchows Arch.2024202410.1007/s00428‑024‑03774‑z38462571
    [Google Scholar]
  74. HuangJ. YinQ. WangY. ZhouX. GuoY. TangY. ChengR. YuX. ZhangJ. HuangC. HuangZ. ZhangJ. GuoZ. HuoX. SunY. LiY. WangH. YangJ. XueL. EZH2 inhibition enhances PD‐L1 protein stability through USP22‐mediated deubiquitination in colorectal cancer.Adv. Sci.2024e2308045230804510.1002/advs.20230804538520088
    [Google Scholar]
  75. GhoreshiZ.A.S. RukerdR.Z.M. AskarpourH. VakilabadK.A.A. NakhaieM. AfsharA.M.J. BehboudiE. CharostadJ. ArefiniaN. The role of epstein–barr virus (EBV) infected gastric cancer in increasing microRNA124 (miR-124) promoter methylation and enhancer of zeste homolog 2 (EZH2) gene expression.Medicine202410312e3653410.1097/MD.000000000003653438517989
    [Google Scholar]
  76. LinT. GuoX. DuQ. LiuW. ZhongX. WangS. CaoL. MicroRNA let-7c-5p alleviates in hepatocellular carcinoma by targeting enhancer of zeste homolog 2: A study intersecting bioinformatic analysis and validated experiments.Crit. Rev. Immunol.2024444233910.1615/CritRevImmunol.202405151938505919
    [Google Scholar]
  77. FurerV. KishimotoM. TomitaT. ElkayamO. HelliwellP.S. Pro and contra: Is synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) a spondyloarthritis variant?Curr. Opin. Rheumatol.202234420921710.1097/BOR.000000000000088435699334
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073289083240425114858
Loading
/content/journals/cchts/10.2174/0113862073289083240425114858
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): exosome; miRNA; pathology; RNA sequencing; SAPHO syndrome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test