Skip to content
2000
Volume 28, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Hepatocellular carcinoma (HCC) has high morbidity and mortality worldwide. Excision repair cross-complement 3 (), a key functional gene in the nucleotide excision repair (NER) pathway, is commonly mutated or overexpressed in cancers and is thought to be a key gene contributing to the development of HCC. The characteristics of immune cell infiltration in the global tumor microenvironment (TME) mediated by and its related key genes in HCC are still unclear. The aim of this study was to integrate the role of -related key genes in assessing the TME cell infiltration characteristics, immunotherapy efficacy, and prognosis of HCC patients. This study provides a theoretical basis for the study of immunological mechanisms and prognosis prediction in HCC.

Methods

The HCC cohort from the TCGA database included 50 normal samples and 374 tumor samples to compare the differences in -related gene expression and prognosis between liver tumor tissues and normal liver tissues and to analyze the extent to which different genes infiltrated TME cells by quantifying the relative abundance of 24 cells through single-sample genome enrichment analysis (ssGSEA). A risk score associated with the gene was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression model.

Results

The expression of 11 -related genes was significantly upregulated in HCC tumor tissues compared to normal liver tissues, and high expression of these genes was significantly associated with poor prognosis in HCC patients. The key genes (11 -related genes) were closely associated with the nucleic acid reduction signaling pathway in nucleic acid metabolism and the viral oncogenic pathway, suggesting that these key genes may play a role in tumor cell proliferation, migration, and invasion, as well as in the pathogenesis of virus-associated HCC. In addition, the infiltration characteristics of TME immune cells in normal and tumor tissues were different. Immune and mesenchymal activity was significantly lower in tumor tissues than in healthy liver tissues. This study revealed that key genes were significantly positively correlated with CTLA4 and enriched in central memory CD4 T cells, effector memory CD4 T cells, activated CD4 T cells, and type 2 T helper cells. The prognostic model constructed by regression analysis could better distinguish patients into high-risk and low-risk groups, and the survival analysis showed that the survival time of patients with high-risk score subtypes was significantly lower than that of patients with low-risk scores and that the high-risk group contained higher levels of immune-suppressive cells, which may be a mediator of immune escape. Moreover, multivariate analyses showed that the risk score profile is a reliable and unbiased biomarker for assessing the prognosis of HCC patients, and its value in predicting the outcome of immunotherapy was also confirmed.

Conclusion

This study revealed a novel genetic signature that is significantly associated with TME cell infiltration and prognosis in HCC patients. It demonstrated that the combined action of multiple key genes associated with plays a crucial role in shaping the diversity and complexity of TME cell infiltrates. Evaluating the combined characteristics of multiple key genes associated with can help predict the outcome of immunotherapy in patients and provide new potential targets for immuno-individualized therapeutic studies on HCC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073288597240522064027
2024-06-07
2025-09-22
Loading full text...

Full text loading...

References

  1. DasguptaP. HenshawC. YouldenD.R. ClarkP.J. AitkenJ.F. BaadeP.D. Global trends in incidence rates of primary adult liver cancers: A systematic review and meta-analysis.Front. Oncol.20201017110.3389/fonc.2020.00171 32185125
    [Google Scholar]
  2. NahonP. RossiZ.J. Single nucleotide polymorphisms and risk of hepatocellular carcinoma in cirrhosis.J. Hepatol.201257366367410.1016/j.jhep.2012.02.035 22609306
    [Google Scholar]
  3. EftekhariA. HasanzadehA. KhalilovR. HosainzadeganH. AhmadianE. EghbalM.A. Hepatoprotective role of berberine against paraquat-induced liver toxicity in rat.Environ. Sci. Pollut. Res. Int.20202754969497510.1007/s11356‑019‑07232‑1 31845254
    [Google Scholar]
  4. AhmadianE. BabaeiH. NayebiM.A. EftekhariA. EghbalM.A. Mechanistic approach for toxic effects of bupropion in primary rat hepatocytes.Drug Res. 201767421722210.1055/s‑0042‑123034 28118671
    [Google Scholar]
  5. European Association for the study of the L. Corrigendum to 'EASL recommendations on treatment of hepatitis C: Final update of the series.J. Hepatol. 202378452 [J] Hepatol 73 (2020) 1170-1218].10.1016/j.jhep.2022.10.006
    [Google Scholar]
  6. MarreroJ.A. KulikL.M. SirlinC.B. ZhuA.X. FinnR.S. AbecassisM.M. RobertsL.R. HeimbachJ.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice guidance by the American association for the study of liver diseases.Hepatology201868272375010.1002/hep.29913 29624699
    [Google Scholar]
  7. RenzulliM. GolfieriR. Proposal of a new diagnostic algorithm for hepatocellular carcinoma based on the Japanese guidelines but adapted to the W estern world for patients under surveillance for chronic liver disease.J. Gastroenterol. Hepatol.2016311698010.1111/jgh.13150 26312574
    [Google Scholar]
  8. RenzulliM. PecorelliA. BrandiN. BrocchiS. TovoliF. GranitoA. CarrafielloG. IerardiA.M. GolfieriR. The feasibility of liver biopsy for undefined nodules in patients under surveillance for hepatocellular carcinoma: Is biopsy really a useful tool?J. Clin. Med.20221115439910.3390/jcm11154399 35956016
    [Google Scholar]
  9. CucchettiA. PiscagliaF. CesconM. ColecchiaA. ErcolaniG. BolondiL. PinnaA.D. Cost-effectiveness of hepatic resection versus percutaneous radiofrequency ablation for early hepatocellular carcinoma.J. Hepatol.201359230030710.1016/j.jhep.2013.04.009 23603669
    [Google Scholar]
  10. GolfieriR. GarzilloG. AscanioS. RenzulliM. Focal lesions in the cirrhotic liver: Their pivotal role in gadoxetic acid-enhanced MRI and recognition by the Western guidelines.Dig. Dis.201432669670410.1159/000368002 25376286
    [Google Scholar]
  11. GuarinoM. ViganòL. PonzianiF.R. GianniniE.G. LaiQ. MoriscoF. VitaleA. RussoF.P. CilloU. BurraP. MescoliC. GambatoM. SessaA. CabibboG. ViganòM. GalatiG. VillaE. IavaroneM. BrancaccioG. RendinaM. LupoL.G. LositoF. FucilliF. PersicoM. D’AmbrosioR. SangiovanniA. CucchettiA e Matteo RenzulliT.F. MieleL. GriecoA. RapacciniL.G. PompiliM. GasbarriniA. SandriB.L.G. MelandroF. RossiM. LenciI. ManziaT.M. TortoraR. CostanzoD.G.G. SaccoR. GhinolfiD. RrekaE. CarraiP. SimonettiN. SpositoC. BhooriS. di SandroS. FoschiF.G. GardiniC.A. NicoliniD. MazzocatoS. KostandiniA. VioliP. BaccaraniU. PravisaniR. VincenziV. Recurrence of hepatocellular carcinoma after direct acting antiviral treatment for hepatitis C virus infection: Literature review and risk analysis.Dig. Liver Dis.201850111105111410.1016/j.dld.2018.08.001 30170908
    [Google Scholar]
  12. SenthebaneD.A. RoweA. ThomfordN.E. ShipangaH. MunroD. MazeediM.A.M.A. AlmazyadiH.A.M. KallmeyerK. DandaraC. PepperM.S. ParkerM.I. DzoboK. The role of tumor microenvironment in chemoresistance: To survive, keep your enemies closer.Int. J. Mol. Sci.2017187158610.3390/ijms18071586 28754000
    [Google Scholar]
  13. LiI. NabetB.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance.Mol. Cancer20191813210.1186/s12943‑019‑0975‑5 30823926
    [Google Scholar]
  14. DarraghL.B. OweidaA.J. KaramS.D. Overcoming resistance to combination radiation-immunotherapy: A focus on contributing pathways within the tumor microenvironment.Front. Immunol.20199315410.3389/fimmu.2018.03154 30766539
    [Google Scholar]
  15. ChengA.L. QinS. IkedaM. GalleP.R. DucreuxM. KimT.Y. LimH.Y. KudoM. BrederV. MerleP. KasebA.O. LiD. VerretW. MaN. NicholasA. WangY. LiL. ZhuA.X. FinnR.S. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma.J. Hepatol.202276486287310.1016/j.jhep.2021.11.030 34902530
    [Google Scholar]
  16. FinnR.S. QinS. IkedaM. GalleP.R. DucreuxM. KimT.Y. KudoM. BrederV. MerleP. KasebA.O. LiD. VerretW. XuD.Z. HernandezS. LiuJ. HuangC. MullaS. WangY. LimH.Y. ZhuA.X. ChengA.L. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma.N. Engl. J. Med.2020382201894190510.1056/NEJMoa1915745 32402160
    [Google Scholar]
  17. KelleyR.K. SangroB. HarrisW. IkedaM. OkusakaT. KangY.K. QinS. TaiD.W.M. LimH.Y. YauT. YongW.P. ChengA.L. GasbarriniA. DamianS. BruixJ. BoradM. BendellJ. KimT.Y. StandiferN. HeP. MakowskyM. NegroA. KudoM. Abou-AlfaG.K. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: Randomized expansion of a phase I/II study.J. Clin. Oncol.202139272991300110.1200/JCO.20.03555 34292792
    [Google Scholar]
  18. XingR. GaoJ. CuiQ. WangQ. Strategies to improve the antitumor effect of immunotherapy for hepatocellular carcinoma.Front. Immunol.20211278323610.3389/fimmu.2021.783236 34899747
    [Google Scholar]
  19. Le MayN. EglyJ.M. CoinF. True lies: The double life of the nucleotide excision repair factors in transcription and DNA repair.J. Nucleic Acids2010201011010.4061/2010/616342 20725631
    [Google Scholar]
  20. HouS.M. FältS. AngeliniS. YangK. NybergF. LambertB. HemminkiK. The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk.Carcinogenesis200223459960310.1093/carcin/23.4.599 11960912
    [Google Scholar]
  21. KarahalilB. BohrV.A. WilsonD.M. III Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk.Hum. Exp. Toxicol.20123110981100510.1177/0960327112444476 23023028
    [Google Scholar]
  22. ZhaoM. LiS. ZhouL. ShenQ. ZhuH. ZhuX. Prognostic values of excision repair cross-complementing genes mRNA expression in ovarian cancer patients.Life Sci.2018194343910.1016/j.lfs.2017.12.018 29247747
    [Google Scholar]
  23. QinX. YaoW. LiW. FengX. HuoX. YangS. ZhaoH. GuX. ERCC1 and BRCA1 mRNA expressions are associated with clinical outcome of non-small cell lung cancer treated with platinum-based chemotherapy.Tumour Biol.20143554697470410.1007/s13277‑014‑1615‑8 24443257
    [Google Scholar]
  24. SunJ.M. AhnM.J. ParkM.J. LeeH.Y. AhnJ.S. LeeS. KangG. HanJ. SonY.I. BaekC.H. AhnY.C. ParkK. Expression of excision repair cross-complementation group 1 as predictive marker for nasopharyngeal cancer treated with concurrent chemoradiotherapy.Int. J. Radiat. Oncol. Biol. Phys.201180365566010.1016/j.ijrobp.2010.02.061 21621119
    [Google Scholar]
  25. GrimmingerP.P. Shi, M.; Barrett, C.; Lebwohl, D.; Danenberg, K.D.; Brabender, J.; Vigen, C.L.P.; Danenberg, P.V.; Winder, T.; Lenz, H-J. TS and ERCC-1 mRNA expressions and clinical outcome in patients with metastatic colon cancer in CONFIRM-1 and -2 clinical trials.Pharmacogenomics J.201212540441110.1038/tpj.2011.29 21788964
    [Google Scholar]
  26. JungS.W. ParkN.H. ShinJ.W. ParkB.R. KimC.J. LeeJ.E. ShinE.S. KimJ.A. ChungY.H. Polymorphisms of DNA repair genes in Korean hepatocellular carcinoma patients with chronic hepatitis B: Possible implications on survival.J. Hepatol.201257362162710.1016/j.jhep.2012.04.039 22659345
    [Google Scholar]
  27. SakuradaT. YoshikawaM. SunagaM. KobayashiE. SatohN. YokosukaO. UedaS. Expression of drug-resistant factor genes in hepatocellular carcinoma patients undergoing chemotherapy with platinum complex by arterial infusion.Pharmaceutics20102330031210.3390/pharmaceutics2030300 27721358
    [Google Scholar]
  28. YangS-F. KuoW.H. LinC.W. YangS.F. Role of ERCC5 polymorphism in risk of hepatocellular carcinoma.Oncol. Lett.20112591191410.3892/ol.2011.325 22866149
    [Google Scholar]
  29. DrapkinR. ReardonJ.T. AnsariA. HuangJ.C. ZawelL. AhnK. SancarA. ReinbergD. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II.Nature1994368647376977210.1038/368769a0 8152490
    [Google Scholar]
  30. VijaiJ. TopkaS. VillanoD. RavichandranV. MaxwellK.N. MariaA. ThomasT. GaddamP. LincolnA. KazzazS. WenzB. CarmiS. SchraderK.A. HartS.N. LipkinS.M. NeuhausenS.L. WalshM.F. ZhangL. LejbkowiczF. RennertH. StadlerZ.K. RobsonM. WeitzelJ.N. DomchekS. DalyM.J. CouchF.J. NathansonK.L. NortonL. RennertG. OffitK. A recurrent ERCC3 truncating mutation confers moderate risk for breast cancer.Cancer Discov.20166111267127510.1158/2159‑8290.CD‑16‑0487 27655433
    [Google Scholar]
  31. HuZ. XuL. ShaoM. YuanJ. WangY. WangF. YuanW. QianJ. MaH. WangY. LiuH. ChenW. YangL. JingG. HuoX. ChenF. JinL. WeiQ. WuT. LuD. HuangW. ShenH. Polymorphisms in the two helicases ERCC2/XPD and ERCC3/XPB of the transcription factor IIH complex and risk of lung cancer: A case-control analysis in a Chinese population.Cancer Epidemiol. Biomarkers Prev.20061571336134010.1158/1055‑9965.EPI‑06‑0194 16835333
    [Google Scholar]
  32. XuQ. ZhangZ. SunW. HuB. Haplotype analysis on relationship of ERCC2 and ERCC3 gene polymorphisms with osteosarcoma risk in Chinese young population.Mamm. Genome2017285-622723310.1007/s00335‑017‑9693‑8 28474168
    [Google Scholar]
  33. Feki-TounsiM. KhlifiR. LouatiI. FouratiM. MhiriM.N. ChaffaiH.A. RebaiA. Polymorphisms in XRCC1, ERCC2, and ERCC3 DNA repair genes, CYP1A1 xenobiotic metabolism gene, and tobacco are associated with bladder cancer susceptibility in Tunisian population.Environ. Sci. Pollut. Res. Int.20172428224762248410.1007/s11356‑017‑9767‑x 28803404
    [Google Scholar]
  34. YuJ. FuP. ZhuH. ReedE. RemickS.C. PetrosW. MuellerM.D. YuJ.J. Correlations among ERCC1, XPB, UBE2I, EGF, TAL2 and ILF3 revealed by gene signatures of histological subtypes of patients with epithelial ovarian cancer.Oncol. Rep.201127128629210.3892/or.2011.1483 21971700
    [Google Scholar]
  35. WangS. LiuW. NiY. WangL. ZhuY. ShiQ. YiZ. WangW. LiuL. YangL. KuangY. ZhuY. ZhangQ. YangZ. Overexpression of ERCC3 is associated with poor prognosis in patients with pancreatic cancer.J. Cancer20211292550255910.7150/jca.54576 33854616
    [Google Scholar]
  36. XieQ.H. HeX.X. ChangY. SunS. JiangX. LiP.Y. LinJ.S. MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells.Biochem. Biophys. Res. Commun.2011410344044510.1016/j.bbrc.2011.05.153 21672525
    [Google Scholar]
  37. ZhangJ. HuangJ.Z. ZhangY.Q. ZhangX. ZhaoL.Y. LiC.G. ZhouY.F. WeiH. YuJ. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3.EBioMedicine20205310270110.1016/j.ebiom.2020.102701 32151798
    [Google Scholar]
  38. HeZ. SheX. LiuZ. GaoX. LuL. HuangJ. LuC. LinY. LiangR. YeJ. Advances in post-operative prognostic models for hepatocellular carcinoma.J. Zhejiang Univ. Sci. B202324319120610.1631/jzus.B2200067 36915996
    [Google Scholar]
  39. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  40. HothornT. ZeileisA. Generalized maximally selected statistics.Biometrics20086441263126910.1111/j.1541‑0420.2008.00995.x 18325074
    [Google Scholar]
  41. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. 200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  42. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.3337 25822800
    [Google Scholar]
  43. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.019 28052254
    [Google Scholar]
  44. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms3612 24113773
    [Google Scholar]
  45. GaoJ. KwanP.W. ShiD. Sparse kernel learning with LASSO and Bayesian inference algorithm.Neural Netw.201023225726410.1016/j.neunet.2009.07.001 19604671
    [Google Scholar]
  46. HazraA. GogtayN. Biostatistics series module 3: Comparing groups: Numerical variables.Indian J. Dermatol.201661325126010.4103/0019‑5154.182416 27293244
    [Google Scholar]
  47. BinnewiesM. RobertsE.W. KerstenK. ChanV. FearonD.F. MeradM. CoussensL.M. GabrilovichD.I. RosenbergH.S. HedrickC.C. VonderheideR.H. PittetM.J. JainR.K. ZouW. HowcroftT.K. WoodhouseE.C. WeinbergR.A. KrummelM.F. Understanding the tumor immune microenvironment (TIME) for effective therapy.Nat. Med.201824554155010.1038/s41591‑018‑0014‑x 29686425
    [Google Scholar]
  48. BechtE. GiraldoN.A. LacroixL. ButtardB. ElarouciN. PetitprezF. SelvesJ. PuigL.P. FridmanS.C. FridmanW.H. de ReynièsA. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.Genome Biol.201617121810.1186/s13059‑016‑1070‑5 27765066
    [Google Scholar]
  49. BindeaG. MlecnikB. TosoliniM. KirilovskyA. WaldnerM. ObenaufA.C. AngellH. FredriksenT. LafontaineL. BergerA. BrunevalP. FridmanW.H. BeckerC. PagèsF. SpeicherM.R. TrajanoskiZ. GalonJ. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.Immunity201339478279510.1016/j.immuni.2013.10.003 24138885
    [Google Scholar]
  50. LiS. WangZ. LiX.J. Notch signaling pathway suppresses CD8+ T cells activity in patients with lung adenocarcinoma.Int. Immunopharmacol.20186312913610.1016/j.intimp.2018.07.033 30086535
    [Google Scholar]
  51. Magalhães FilhoM. Aguiar Junior P.N. AdashekJ.J. De MelloR.A. How complement activation via a C3a receptor pathway alters CD4+ T lymphocytes and mediates lung cancer progression?—future perspectives.J. Thorac. Dis.201911S3S210S21110.21037/jtd.2019.02.21 30997178
    [Google Scholar]
  52. ZhangC. DingH. HuangH. PalashatiH. MiaoY. XiongH. LuZ. TCR repertoire intratumor heterogeneity of CD4 + and CD8 + T cells in centers and margins of localized lung adenocarcinomas.Int. J. Cancer2019144481882710.1002/ijc.31760 30151844
    [Google Scholar]
  53. ThieryJ.P. Epithelial–mesenchymal transitions in tumour progression.Nat. Rev. Cancer20022644245410.1038/nrc822 12189386
    [Google Scholar]
  54. RoyR. YangJ. MosesM.A. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer.J. Clin. Oncol.200927315287529710.1200/JCO.2009.23.5556 19738110
    [Google Scholar]
  55. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  56. TaubeJ.M. GalonJ. ShollL.M. RodigS.J. CottrellT.R. GiraldoN.A. BarasA.S. PatelS.S. AndersR.A. RimmD.L. MathewsC.A. Implications of the tumor immune microenvironment for staging and therapeutics.Mod. Pathol.201831221423410.1038/modpathol.2017.156 29192647
    [Google Scholar]
  57. XuW.H. XuY. WangJ. WanF.N. WangH.K. CaoD.L. ShiG.H. QuY.Y. ZhangH.L. YeD.W. Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment.Aging 201911176999702010.18632/aging.102233 31493764
    [Google Scholar]
  58. Del PreteA. SozioF. SchioppaT. PonzettaA. VermiW. CalzaS. BugattiM. SalviV. BernardiniG. BenvenutiF. VecchiA. BottazziB. MantovaniA. SozzaniS. The atypical receptor CCRL2 is essential for lung cancer immune surveillance.Cancer Immunol. Res.20197111775178810.1158/2326‑6066.CIR‑19‑0168 31484658
    [Google Scholar]
  59. ZhouL. JiangY. LiuX. LiL. YangX. DongC. LiuX. LinY. LiY. YuJ. HeR. HuangS. LiuG. ZhangY. JeongL.S. HoffmanR.M. JiaL. Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer.Oncogene201938295792580410.1038/s41388‑019‑0840‑4 31243299
    [Google Scholar]
  60. DaiY. QiangW. LinK. GuiY. LanX. WangD. An immune-related gene signature for predicting survival and immunotherapy efficacy in hepatocellular carcinoma.Cancer Immunol. Immunother.202170496797910.1007/s00262‑020‑02743‑0 33089373
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073288597240522064027
Loading
/content/journals/cchts/10.2174/0113862073288597240522064027
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ERCC3; gene markers; HCC; immunotherapy; TME
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test