Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Uncontrolled inflammation plays an important role in the initiation and progression of tumors. The repeated circulation and continuous stimulation of gallbladder epithelium caused by gallstones is an important risk factor for gallbladder cancer.

Methods

To study pathogenesis, samples were collected for chronic cholecystitis caused by gallstones and early and advanced gallbladder cancer with gallstones and subjected to RNA-seq analysis. Gene Ontology and Kyoto Gene and Genome Encyclopedia analyses were used to elucidate the protein–protein interaction network and identify differentially expressed genes.

Results

Nine potential molecular markers, , and , with elevated expression gradients in cholecystitis and early and advanced gallbladder cancer, were identified. Using qPCR and immunohistochemistry on clinical tissues, we confirmed three factors, , and , to be worthy of further research. To demonstrate that these three genes are potential molecular markers for gallbladder cancer, their cellular biological functions were confirmed in gallbladder cancer cell lines through siRNA transfection.

Conclusion

The potential molecular markers , and for cholecystitis and different stages of gallbladder cancer were identified. Further studies on differentially expressed genes vital in gallbladder cancer progression can help provide potential targets for the early diagnosis and treatment of gallbladder cancer.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073287686240409082130
2024-04-23
2025-09-15
Loading full text...

Full text loading...

References

  1. ValleJ.W. KelleyR.K. NerviB. OhD.Y. ZhuA.X. Biliary tract cancer.Lancet20213971027242844410.1016/S0140‑6736(21)00153‑7 33516341
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.31937 30350310
    [Google Scholar]
  4. ShafferE. HundalR. Gallbladder cancer: Epidemiology and outcome.Clin. Epidemiol.201469910910.2147/CLEP.S37357 24634588
    [Google Scholar]
  5. SongX. HuY. LiY. ShaoR. LiuF. LiuY. Overview of current targeted therapy in gallbladder cancer.Signal Transduct. Target. Ther.20205123010.1038/s41392‑020‑00324‑2 33028805
    [Google Scholar]
  6. KamA.E. MasoodA. ShroffR.T. Current and emerging therapies for advanced biliary tract cancers.Lancet Gastroenterol. Hepatol.202161195696910.1016/S2468‑1253(21)00171‑0 34626563
    [Google Scholar]
  7. RawlaP. SunkaraT. ThandraK.C. BarsoukA. Epidemiology of gallbladder cancer.Clin. Exp. Hepatol.2019529310210.5114/ceh.2019.85166 31501784
    [Google Scholar]
  8. TiwariP.K. Epigenetic biomarkers in gallbladder cancer.Trends Cancer20206754054310.1016/j.trecan.2020.03.003 32291238
    [Google Scholar]
  9. LiJ. WeiQ. WuX. SimaJ. XuQ. WuM. WangF. MouH. HuH. ZhaoJ. LiD. HuJ. ZhangL. ZhuX. ChenL. LuoC. YanJ. HeJ. MaY. ShaoY. WuW. YingJ. Integrative clinical and molecular analysis of advanced biliary tract cancers on immune checkpoint blockade reveals potential markers of response.Clin. Transl. Med.2020104e11810.1002/ctm2.118 32898339
    [Google Scholar]
  10. AleksandrovaK. BoeingH. NöthlingsU. JenabM. FedirkoV. KaaksR. LukanovaA. TrichopoulouA. TrichopoulosD. BoffettaP. TrepoE. WesthpalS. SallesD.T. StepienM. OvervadK. TjønnelandA. HalkjærJ. RuaultB.M.C. DossusL. RacineA. LagiouP. BamiaC. BenetouV. AgnoliC. PalliD. PanicoS. TuminoR. VineisP. de-MesquitaB.B. PeetersP.H. GramI.T. LundE. WeiderpassE. QuirósJ.R. AgudoA. SánchezM.J. GavrilaD. BarricarteA. DorronsoroM. OhlssonB. LindkvistB. JohanssonA. SundM. KhawK.T. WarehamN. TravisR.C. RiboliE. PischonT. Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer.Hepatology201460385887110.1002/hep.27016 24443059
    [Google Scholar]
  11. GiraldoN.A. DrillE. SatravadaB.A. DikaI.E. BrannonA.R. DermawanJ. MohantyA. OzcanK. ChakravartyD. BenayedR. VakianiE. AlfaA.G.K. KundraR. SchultzN. LiB.T. BergerM.F. HardingJ.J. LadanyiM. O’ReillyE.M. JarnaginW. VanderbiltC. BasturkO. ArcilaM.E. Comprehensive molecular characterization of gallbladder carcinoma and potential targets for intervention.Clin. Cancer Res.202228245359536710.1158/1078‑0432.CCR‑22‑1954 36228155
    [Google Scholar]
  12. SerhanC.N. SavillJ. Resolution of inflammation: The beginning programs the end.Nat. Immunol.20056121191119710.1038/ni1276 16369558
    [Google Scholar]
  13. RoaI. IbacacheG. RoaJ. ArayaJ. de AretxabalaX. MuñozS. Gallstones and gallbladder cancer‐volume and weight of gallstones are associated with gallbladder cancer: A case‐control study.J. Surg. Oncol.200693862462810.1002/jso.20528 16724353
    [Google Scholar]
  14. FengH. QinZ. ZhangX. Opportunities and methods for studying alternative splicing in cancer with RNA-Seq.Cancer Lett.2013340217919110.1016/j.canlet.2012.11.010 23196057
    [Google Scholar]
  15. ZhangY. YouW.H. LiX. WangP. ShaB. LiangY. QiuJ. ZhouJ. HuH. LuL. Single-cell RNA-seq reveals transcriptional landscape and intratumor heterogenicity in gallbladder cancer liver metastasis microenvironment.Ann. Transl. Med.202191088910.21037/atm‑21‑2227 34164523
    [Google Scholar]
  16. PandeyA. StawiskiE.W. DurinckS. GowdaH. GoldsteinL.D. BarbhuiyaM.A. SchröderM.S. SreenivasamurthyS.K. KimS.W. PhalkeS. SuryamohanK. LeeK. ChakrabortyP. KodeV. ShiX. ChatterjeeA. DattaK. KhanA.A. SubbannayyaT. WangJ. ChaudhuriS. GuptaS. ShrivastavB.R. JaiswalB.S. PoojaryS.S. BhuniaS. GarciaP. BizamaC. RosaL. KwonW. KimH. HanY. YadavT.D. RamprasadV.L. ChaudhuriA. ModrusanZ. RoaJ.C. TiwariP.K. JangJ.Y. SeshagiriS. Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate.Nat. Commun.2020111422510.1038/s41467‑020‑17880‑4 32839463
    [Google Scholar]
  17. DixitR. PandeyM. RajputM. ShuklaV.K. Unravelling of the comparative transcriptomic profile of gallbladder cancer using mRNA sequencing.Mol. Biol. Rep.20224976395640310.1007/s11033‑022‑07448‑4 35469389
    [Google Scholar]
  18. RoaJ.C. GarcíaP. KapoorV.K. MaithelS.K. JavleM. KoshiolJ. Gallbladder cancer.Nat. Rev. Dis. Primers2022816910.1038/s41572‑022‑00398‑y 36302789
    [Google Scholar]
  19. SchmittM. GretenF.R. The inflammatory pathogenesis of colorectal cancer.Nat. Rev. Immunol.2021211065366710.1038/s41577‑021‑00534‑x 33911231
    [Google Scholar]
  20. MangerichA. KnutsonC.G. ParryN.M. MuthupalaniS. YeW. PrestwichE. CuiL. McFalineJ.L. MobleyM. GeZ. TaghizadehK. WishnokJ.S. WoganG.N. FoxJ.G. TannenbaumS.R. DedonP.C. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer.Proc. Natl. Acad. Sci.201210927E1820E182910.1073/pnas.1207829109 22689960
    [Google Scholar]
  21. ShalapourS. LinX.J. BastianI.N. BrainJ. BurtA.D. AksenovA.A. VrbanacA.F. LiW. PerkinsA. MatsutaniT. ZhongZ. DharD. MolinaN.J.A. XuJ. LoombaR. DownesM. YuR.T. EvansR.M. DorresteinP.C. KnightR. BennerC. AnsteeQ.M. KarinM. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity.Nature2017551768034034510.1038/nature24302 29144460
    [Google Scholar]
  22. AiJ. TangQ. WuY. XuY. FengT. ZhouR. ChenY. GaoX. ZhuQ. YueX. PanQ. XuS. LiJ. HuangM. HoltropD.J. HeY. XuH.E. FanJ. DingJ. GengM. The role of polymeric immunoglobulin receptor in inflammation-induced tumor metastasis of human hepatocellular carcinoma.J. Natl. Cancer Inst.2011103221696171210.1093/jnci/djr360 22025622
    [Google Scholar]
  23. ScriptureC.D. SparreboomA. FiggW.D. Modulation of cytochrome P450 activity: Implications for cancer therapy.Lancet Oncol.200561078078910.1016/S1470‑2045(05)70388‑0 16198984
    [Google Scholar]
  24. HuW. FengP. ZhangM. TianT. WangS. ZhaoB. LiY. WangS. WuC. Endotoxins induced ECM-receptor interaction pathway signal effect on the function of MUC2 in Caco2/HT29 Co-culture cells.Front. Immunol.20221391693310.3389/fimmu.2022.916933 35757703
    [Google Scholar]
  25. de VisserK.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.016 36917948
    [Google Scholar]
  26. AhmadI. MuiE. GalbraithL. PatelR. TanE.H. SaljiM. RustA.G. RepiscakP. HedleyA. MarkertE. LoveridgeC. van der WeydenL. EdwardsJ. SansomO.J. AdamsD.J. LeungH.Y. Sleeping beauty screen reveals pparg activation in metastatic prostate cancer.Proc. Natl. Acad. Sci.2016113298290829510.1073/pnas.1601571113 27357679
    [Google Scholar]
  27. NgV.Y. HuangY. ReddyL.M. FalckJ.R. LinE.T. KroetzD.L. Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor alpha.Drug Metab. Dispos.20073571126113410.1124/dmd.106.013839 17431031
    [Google Scholar]
  28. KimJ.H. KimH.N. LeeK.T. LeeJ.K. ChoiS.H. PaikS.W. RheeJ.C. LoweA.W. Gene expression profiles in gallbladder cancer: the close genetic similarity seen for early and advanced gallbladder cancers may explain the poor prognosis.Tumour Biol.2008291414910.1159/000132570 18497548
    [Google Scholar]
  29. CascorbiI. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs.Pharmacol. Ther.2006112254747310.1016/j.pharmthera.2006.04.009
    [Google Scholar]
  30. KimH.S. KimN.C. ChaeK.H. KimG. ParkW.S. ParkY.K. KimY.W. Expression of multidrug resistance-associated protein 2 in human gallbladder carcinoma.BioMed Res. Int.201320131710.1155/2013/527534 23841074
    [Google Scholar]
  31. YangC. ChenJ. YuZ. LuoJ. LiX. ZhouB. JiangN. Mining of RNA methylation-related genes and elucidation of their molecular biology in gallbladder carcinoma.Front. Oncol.20211162180610.3389/fonc.2021.621806 33718182
    [Google Scholar]
  32. GarattiniE. TeraoM. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery.Drug Metab. Rev.201143337438610.3109/03602532.2011.560606 21428696
    [Google Scholar]
  33. HielscherA. GerechtS. Hypoxia and free radicals: Role in tumor progression and the use of engineering-based platforms to address these relationships.Free Radic. Biol. Med.20157928129110.1016/j.freeradbiomed.2014.09.015 25257256
    [Google Scholar]
  34. LiW. MiddhaM. BicakM. SjobergD.D. VertosickE. DahlinA. HäggströmC. HallmansG. RönnA.C. StattinP. MelanderO. UlmertD. LiljaH. KleinR.J. Genome-wide scan identifies role for AOX1 in prostate cancer survival.Eur. Urol.201874671071910.1016/j.eururo.2018.06.021 30289108
    [Google Scholar]
  35. SinghB. ShoulsonR. ChatterjeeA. RongheA. BhatN.K. DimD.C. BhatH.K. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways.Carcinogenesis20143581872188010.1093/carcin/bgu120 24894866
    [Google Scholar]
  36. SenA. TaM. Vitronectin acts as a key regulator of adhesion and migration in human umbilical cord-derived MSCs under different stress conditions.Exp. Cell Res.2023423211346710.1016/j.yexcr.2023.113467 36634744
    [Google Scholar]
  37. LianL. LiX.L. XuM.D. LiX.M. WuM.Y. ZhangY. TaoM. LiW. ShenX.M. ZhouC. JiangM. VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer.BMC Cancer201919118310.1186/s12885‑019‑5322‑0 30819137
    [Google Scholar]
  38. SmeetsE. HuangS. LeeX.Y. Van NieuwenhoveE. HelsenC. HandleF. MorisL. KharrazE.S. EerlingsR. DevliesW. WillemsenM. BückenL. PrezzemoloT. BaronH.S. VoetA. RochtusA. Van SchepdaelA. de ZegherF. ClaessensF. A disease‐associated missense mutation in CYP4F3 affects the metabolism of leukotriene B4 via disruption of electron transfer.J. Cachexia Sarcopenia Muscle20221342242225310.1002/jcsm.13022 35686338
    [Google Scholar]
  39. AntounJ. GoulitquerS. AmetY. DreanoY. SalaunJ.P. CorcosL. GautierP.E. CYP4F3B is induced by PGA1 in human liver cells: A regulation of the 20-HETE synthesis.J. Lipid Res.200849102135214110.1194/jlr.M800043‑JLR200 18566475
    [Google Scholar]
  40. SorokinA. Alexanian, Targeting 20-HETE producing enzymes in cancer – Rationale, pharmacology, and clinical potential.OncoTargets Ther.2013624325510.2147/OTT.S31586 23569388
    [Google Scholar]
  41. YuanZ. YiG. MaR. WangZ. HuJ. ZhaoW. HuY. Aldehyde oxidase 1 promotes gallbladder carcinogenesis through ROS-mediated activation of the Wnt/β-catenin pathway.Cell. Signal.202411611104210.1016/j.cellsig.2024.111042 38199597
    [Google Scholar]
  42. WeiF. WuY. TangL. HeY. ShiL. XiongF. GongZ. GuoC. LiX. LiaoQ. ZhangW. ZhouM. XiangB. LiX. LiY. LiG. XiongW. ZengZ. BPIFB1 (LPLUNC1) inhibits migration and invasion of nasopharyngeal carcinoma by interacting with VTN and VIM.Br. J. Cancer2018118223324710.1038/bjc.2017.385 29123267
    [Google Scholar]
  43. FangX. DillonJ.S. HuS. HarmonS.D. YaoJ. AnjaiahS. FalckJ.R. SpectorA.A. 20-Carboxy-arachidonic acid is a dual activator of peroxisome proliferator-activated receptors α and γ.Prostaglandins Other Lipid Mediat.2007821-417518410.1016/j.prostaglandins.2006.05.002 17164145
    [Google Scholar]
  44. SenniN. SavallM. GranadosC.D. GuerraA.M.C. SartorC. LagoutteI. GougeletA. TerrisB. GilgenkrantzH. PerretC. ColnotS. BossardP. β-catenin-activated hepatocellular carcinomas are addicted to fatty acids.Gut201968232233410.1136/gutjnl‑2017‑315448 29650531
    [Google Scholar]
  45. RobertsL.D. MurrayA.J. MenassaD. AshmoreT. NichollsA.W. GriffinJ.L. The contrasting roles of PPARδ and PPARγ in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue.Genome Biol.2011128R7510.1186/gb‑2011‑12‑8‑r75 21843327
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073287686240409082130
Loading
/content/journals/cchts/10.2174/0113862073287686240409082130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test