Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Alzheimer's disease (AD) is a prevalent neurodegenerative condition among the elderly population and the most common form of dementia, however, we lack potent interventions to arrest its inherent pathogenic vectors. Robust evidence indicates thermoregulatory perturbations during and before the onset of symptoms. Therefore, temperature-regulated biomarkers may offer clues to therapeutic targets during the presymptomatic stage.

Objective

The purpose of this study is to develop and assess a thermoregulation-related gene prediction model for Alzheimer's Disease diagnosis.

Methods

This study aims to utilize microarray bioinformatic analysis to identify the potential biomarkers of AD by analyzing four microarray datasets (GSE48350, GSE5281, GSE122063, and GSE181279) of AD patients. Furthermore, thermoregulation-associated hub genes were identified, and the expression patterns in the brain were explored. In addition, we explored the infiltration of immune cells with thermoregulation-related hub genes. Diagnostic marker validation was then performed at the single-cell level. Finally, the prediction of targeted drugs was performed based on the hub genes.

Results

Through the analysis of four datasets pertaining to AD, a total of five genes associated with temperature regulation were identified. Notably, CCK, CXCR4, SLC27A4, and SLC17A6 emerged as diagnostic markers indicative of AD-related brain injury. Furthermore, in the examination of peripheral blood samples from AD patients, SLC27A4 and CXCR4 were identified as pivotal diagnostic indicators. Regrettably, animal experimentation was not pursued to validate the data; rather, an assessment of temperature regulation-related genes was conducted. Future investigations will be undertaken to establish the correlation between these genes and AD pathology.

Conclusion

Overall, CCK, CXCR4, SLC27A4, and SLC17A6 can be considered pivotal biomarkers for diagnosing the pathogenesis and molecular functions of AD.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073291279240409035856
2024-05-13
2025-09-15
Loading full text...

Full text loading...

References

  1. BondiM.W. EdmondsE.C. SalmonD.P. Alzheimer’s disease: Past, present, and future.J. Int. Neuropsychol. Soc.2017239-1081883110.1017/S135561771700100X 29198280
    [Google Scholar]
  2. SuL. ChenS. ZhengC. WeiH. SongX. Meta-analysis of gene expression and identification of biological regulatory mechanisms in alzheimer’s disease.Front. Neurosci.20191363310.3389/fnins.2019.00633 31333395
    [Google Scholar]
  3. GormleyM. YarmolinskyJ. DuddingT. BurrowsK. MartinR.M. ThomasS. TyrrellJ. BrennanP. PringM. BocciaS. OlshanA.F. DiergaardeB. HungR.J. LiuG. LeggeD. TajaraE.H. SeverinoP. LackoM. NessA.R. Davey SmithG. VincentE.E. RichmondR.C. Using genetic variants to evaluate the causal effect of cholesterol lowering on head and neck cancer risk: A Mendelian randomization study.PLoS Genet.2021174e100952510.1371/journal.pgen.1009525 33886544
    [Google Scholar]
  4. KuangT.M.T. XirasagarS. LeeW.Y. ChengY.F. KuoN.W. LinH.C. Absence of an association between macular degeneration and young-onset dementia.J. Pers. Med.202212229110.3390/jpm12020291 35207778
    [Google Scholar]
  5. BerenteD.B. KamondiA. HorvathA.A. The assessment of visuospatial skills and verbal fluency in the diagnosis of alzheimer’s disease.Front. Aging Neurosci.20221373710410.3389/fnagi.2021.737104 35126086
    [Google Scholar]
  6. XiaoS. LuY. WuQ. YangJ. ChenJ. ZhongS. EliezerD. TanQ. WuC. Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands.Int. J. Biol. Macromol.202117838139310.1016/j.ijbiomac.2021.02.210 33662414
    [Google Scholar]
  7. da CostaI.M. de Moura FreireM.A. de Paiva CavalcantiJ.R.L. de AraújoD.P. NorraraB. Moreira RosaI.M.M. de AzevedoE.P. do RegoA.C.M. FilhoI.A. GuzenF.P. Supplementation with curcuma longa reverses neurotoxic and behavioral damage in models of alzheimer’s disease: A systematic review.Curr. Neuropharmacol.201917540642110.2174/0929867325666180117112610 29338678
    [Google Scholar]
  8. LingH. MorrisH.R. NealJ.W. LeesA.J. HardyJ. HoltonJ.L. ReveszT. WilliamsD.D.R. Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players.Acta Neuropathol.2017133333735210.1007/s00401‑017‑1680‑3 28205009
    [Google Scholar]
  9. IttnerA. IttnerL.M. Dendritic tau in alzheimer’s disease.Neuron2018991132710.1016/j.neuron.2018.06.003 30001506
    [Google Scholar]
  10. TorresA.K. JaraC. Park-KangH.S. PolancoC.M. TapiaD. AlarcónF. de la PeñaA. LlanquinaoJ. Vargas-MardonesG. IndoJ.A. InestrosaN.C. Tapia-RojasC. Synaptic mitochondria: An early target of amyloid-β and tau in alzheimer’s disease.J. Alzheimers Dis.20218441391141410.3233/JAD‑215139 34719499
    [Google Scholar]
  11. YuW. YuW. YangY. LüY. Exploring the key genes and identification of potential diagnosis biomarkers in alzheimer’s disease using bioinformatics analysis.Front. Aging Neurosci.20211360278110.3389/fnagi.2021.602781 34194312
    [Google Scholar]
  12. ZhuR. LeiY. ShiF. TianQ. ZhouX. Arginine reduces glycation in γ2 subunit of AMPK and pathologies in alzheimer’s disease model mice.Cells20221121352010.3390/cells11213520 36359916
    [Google Scholar]
  13. Oudin ÅströmD. BertilF. JoacimR. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies.Maturitas20116929910510.1016/j.maturitas.2011.03.008 21477954
    [Google Scholar]
  14. LucasR.A.I. SarmaS. SchladerZ.J. PearsonJ. CrandallC.G. Age‐related changes to cardiac systolic and diastolic function during whole‐body passive hyperthermia.Exp. Physiol.2015100442243410.1113/expphysiol.2014.083014 25641368
    [Google Scholar]
  15. VandalM. WhiteP.J. TournissacM. TremblayC. St-AmourI. Drouin-OuelletJ. BousquetM. TraversyM.T. PlanelE. MaretteA. CalonF. Impaired thermoregulation and beneficial effects of thermoneutrality in the 3×Tg-AD model of Alzheimer’s disease.Neurobiol. Aging201643475710.1016/j.neurobiolaging.2016.03.024 27255814
    [Google Scholar]
  16. SatyanarayanaA. KlarmannK.D. GavrilovaO. KellerJ.R. Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis.FASEB J.201226130932310.1096/fj.11‑190892 21990377
    [Google Scholar]
  17. FarmerB.C. WilliamsH.C. DevanneyN.A. PironM.A. NationG.K. CarterD.J. WalshA.E. KhanalR. YoungL.E.A. KluemperJ.C. HernandezG. AllengerE.J. MooneyR. GoldenL.R. SmithC.T. BrandonJ.A. GuptaV.A. KernP.A. GentryM.S. MorgantiJ.M. SunR.C. JohnsonL.A. APOE4 lowers energy expenditure in females and impairs glucose oxidation by increasing flux through aerobic glycolysis.Mol. Neurodegener.20211616210.1186/s13024‑021‑00483‑y 34488832
    [Google Scholar]
  18. JungC.G. YamashitaH. KatoR. ZhouC. MatsushitaH. TakeuchiT. AbdelhamidM. ChenY. MichikawaM. Deletion of UCP1 in Tg2576 mice increases body temperature and exacerbates alzheimer’s disease-related pathologies.Int. J. Mol. Sci.2023243274110.3390/ijms24032741 36769062
    [Google Scholar]
  19. TouitouY. ReinbergA. BogdanA. AuzébyA. BeckH. TouitouC. Age-related changes in both circadian and seasonal rhythms of rectal temperature with special reference to senile dementia of Alzheimer type.Gerontology198632211011810.1159/000212774 3710170
    [Google Scholar]
  20. El KhouryN.B. GratuzeM. PetryF. PaponM.A. JulienC. MarcouillerF. MorinF. NichollsS.B. CalonF. HébertS.S. MaretteA. PlanelE. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice.Neurobiol. Dis.201688556510.1016/j.nbd.2016.01.005 26777665
    [Google Scholar]
  21. SiM. ZhangJ. CaoJ. XieZ. ShuS. ZhuY. LangJ. Integrated analysis to identify molecular biomarkers of high-grade serous ovarian cancer.OncoTargets Ther.201912100571007510.2147/OTT.S228678 31819501
    [Google Scholar]
  22. LiL. FengT. ZhangW. GaoS. WangR. LvW. ZhuT. YuH. QianB. MicroRNA biomarker hsa-miR-195-5p for detecting the risk of lung cancer.Int. J. Genomics202020201910.1155/2020/7415909 31976313
    [Google Scholar]
  23. EdgarR. DomrachevM. LashA.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.Nucleic Acids Res.200230120721010.1093/nar/30.1.207 11752295
    [Google Scholar]
  24. WenC. GeQ. DaiB. LiJ. YangF. MengJ. GaoS. FanS. ZhangL. Signature for prostate cancer based on autophagy-related genes and a nomogram for quantitative risk stratification.Dis. Markers2022202212210.1155/2022/7598942 35860692
    [Google Scholar]
  25. Carmona-SáezP. VarelaN. LuqueM.J. Toro-DomínguezD. Martorell-MaruganJ. Alarcón-RiquelmeM.E. MarañónC. Metagene projection characterizes GEN2.2 and CAL-1 as relevant human plasmacytoid dendritic cell models.Bioinformatics201733233691369510.1093/bioinformatics/btx502 28961902
    [Google Scholar]
  26. FanZ. PengW. WangZ. ZhangL. LiuK. Identification of biomarkers associated with metabolic cardiovascular disease using mRNA-SNP-miRNA regulatory network analysis.BMC Cardiovasc. Disord.202121135110.1186/s12872‑021‑02166‑4 34301176
    [Google Scholar]
  27. LiF. MaZ. LiuH. ZhangQ. CaiX. QuY. XuM. LuL. Y-box protein-1 regulates the expression of collagen i in hepatic progenitor cells via PDGFR- β/ERK/p90RSK signalling.Stem Cells Int.2017201711110.1155/2017/6193106 28928774
    [Google Scholar]
  28. TanY. TangW. XiaoW. HuangR. LiX. PengW. YanK. CaoY. ZengY. KangJ. lncRNA-associated ceRNA network revealing the potential regulatory roles of ferroptosis and immune infiltration in Alzheimer’s disease.Front. Aging Neurosci.202315110569010.3389/fnagi.2023.1105690 36875702
    [Google Scholar]
  29. LiL. ZhangL. TianY. ZhangT. DuanG. LiuY. YinY. HuaD. QiX. MaoY. Serum chemokine CXCL7 as a diagnostic biomarker for colorectal cancer.Front. Oncol.2019992110.3389/fonc.2019.00921 31649870
    [Google Scholar]
  30. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards version 3: The human gene integrator.Database20102010baq02010.1093/database/baq020 20689021
    [Google Scholar]
  31. NavaniS. Manual evaluation of tissue microarrays in a high‐throughput research project: The contribution of indian surgical pathology to the human protein atlas (HPA) project.Proteomics20161681266127010.1002/pmic.201500409 26748468
    [Google Scholar]
  32. HuangH. WangJ. ChenS. HeH. ShangY. GuoX. LouG. JiJ. GuoM. ChenH. YuS. SLC15A4 serves as a novel prognostic biomarker and target for lung adenocarcinoma.Front. Genet.20211266660710.3389/fgene.2021.666607 34168674
    [Google Scholar]
  33. ShenC. LuoC. XuZ. LiangQ. CaiY. PengB. YanY. XiaF. Molecular patterns based on immunogenomic signatures stratify the prognosis of colon cancer.Front. Bioeng. Biotechnol.20221082009210.3389/fbioe.2022.820092 35237578
    [Google Scholar]
  34. HuangR. WuC. WenJ. YuJ. ZhuH. YuJ. ZouZ. DIAPH3 is a prognostic biomarker and inhibit colorectal cancer progression through maintaining EGFR degradation.Cancer Med.202211234688470210.1002/cam4.4793 35538918
    [Google Scholar]
  35. JoutsaJ. HornA. HsuJ. FoxM.D. Localizing parkinsonism based on focal brain lesions.Brain201814182445245610.1093/brain/awy161 29982424
    [Google Scholar]
  36. LiY. MengL. ShiT. RenJ. DengQ. Diagnosis and prognosis potential of four gene promoter hypermethylation in prostate cancer.Cell Biol. Int.202145111712610.1002/cbin.11474 32991011
    [Google Scholar]
  37. WuY. ZhaoZ. ZhangJ. WangY. SongX. Identification of hub genes and biological pathways in inclusion body myositis using bioinformatics analysis.Int. J. Gen. Med.2022151281129310.2147/IJGM.S346965 35173467
    [Google Scholar]
  38. GaoS. FanJ. WangZ. Diagnostic value of serum baseline tryptase levels in childhood asthma and its correlation with disease severity.Int. Arch. Allergy Immunol.20161713-419420210.1159/000452624 28049209
    [Google Scholar]
  39. de Sousa LopesL. MendesL.W. AntunesJ.E.L. de Souza OliveiraL.M. MeloV.M.M. de Araujo PereiraA.P. da CostaA.F. de Paula OliveiraJ. MartínezC.R. FigueiredoM.V.B. AraujoA.S.F. Distinct bacterial community structure and composition along different cowpea producing ecoregions in Northeastern Brazil.Sci. Rep.202111183110.1038/s41598‑020‑80840‑x 33437021
    [Google Scholar]
  40. DingL. LongF. AnD. LiuJ. ZhangG. Construction and validation of molecular subtypes of coronary artery disease based on ferroptosis-related genes.BMC Cardiovasc. Disord.202222128310.1186/s12872‑022‑02719‑1 35733129
    [Google Scholar]
  41. XiaF. LiQ. LuoX. WuJ. Identification for heavy metals exposure on osteoarthritis among aging people and machine learning for prediction: A study based on NHANES 2011-2020.Front. Public Health20221090677410.3389/fpubh.2022.906774 35979456
    [Google Scholar]
  42. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with CIBERSORT.Methods Mol. Biol.2018171124325910.1007/978‑1‑4939‑7493‑1_12 29344893
    [Google Scholar]
  43. LiaoY. LiuZ. YeW. HuangZ. WangJ. Exploring the characteristics of monkeypox-related genes in pan-cancer.Cells20221123390910.3390/cells11233909 36497164
    [Google Scholar]
  44. ChenH. ChongW. YangX. ZhangY. SangS. LiX. LuM. Age-related mutational signature negatively associated with immune activity and survival outcome in triple-negative breast cancer.OncoImmunology202091178825210.1080/2162402X.2020.1788252 32923150
    [Google Scholar]
  45. ZhongA. CaiY. ZhouY. DingN. YangG. ChaiX. Identification and analysis of hub genes and immune cells associated with the formation of acute aortic dissection.Comput. Math. Methods Med.2023202311710.1155/2023/8072369 36818541
    [Google Scholar]
  46. ZengS. LiW. OuyangH. XieY. FengX. HuangL. A novel prognostic pyroptosis-related gene signature correlates to oxidative stress and immune-related features in gliomas.Oxid. Med. Cell. Longev.2023202312810.1155/2023/4256116 36778205
    [Google Scholar]
  47. Poillet-PerezL. SharpD.W. YangY. LaddhaS.V. IbrahimM. BommareddyP.K. HuZ.S. ViethJ. HaasM. BosenbergM.W. RabinowitzJ.D. CaoJ. GuanJ.L. GanesanS. ChanC.S. MehnertJ.M. LattimeE.C. WhiteE. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response.Nat. Cancer20201992393410.1038/s43018‑020‑00110‑7 34476408
    [Google Scholar]
  48. SchieboutC. FrostH.R. CAMML with the integration of marker proteins (ChIMP).Bioinformatics202238235206521310.1093/bioinformatics/btac674 36214642
    [Google Scholar]
  49. LiJ. ZhangY. LuT. LiangR. WuZ. LiuM. QinL. ChenH. YanX. DengS. ZhengJ. LiuQ. Identification of diagnostic genes for both Alzheimer’s disease and Metabolic syndrome by the machine learning algorithm.Front. Immunol.202213103731810.3389/fimmu.2022.1037318 36405716
    [Google Scholar]
  50. SunY. SchönebergJ. ChenX. JiangT. KaplanC. XuK. PollardT.D. DrubinD.G. Direct comparison of clathrin-mediated endocytosis in budding and fission yeast reveals conserved and evolvable features.eLife20198e5074910.7554/eLife.50749 31829937
    [Google Scholar]
  51. WuY. HuangY. ZhouC. WangH. WangZ. WuJ. NieS. DengX. SunJ. GaoX. A novel necroptosis-related prognostic signature of glioblastoma based on transcriptomics analysis and single cell sequencing analysis.Brain Sci.202212898810.3390/brainsci12080988 35892430
    [Google Scholar]
  52. TuZ. HeX. ZengL. MengD. ZhuangR. ZhaoJ. DaiW. Exploration of prognostic biomarkers for lung adenocarcinoma through bioinformatics analysis.Front. Genet.20211264752110.3389/fgene.2021.647521 33968130
    [Google Scholar]
  53. Arouche-DelapercheL. CadoniS. JoffroisC. LabernedeG. ValetM. CésarQ. DégardinJ. GirardonS. GabrielC. KranticS. PicaudS. Dysfunction of the glutamatergic photoreceptor synapse in the P301S mouse model of tauopathy.Acta Neuropathol. Commun.2023111510.1186/s40478‑022‑01489‑3 36631898
    [Google Scholar]
  54. WhittingtonR.A. PaponM.A. ChouinardF. PlanelE. Hypothermia and Alzheimer’s disease neuropathogenic pathways.Curr. Alzheimer Res.20107871772510.2174/156720510793611646 20678067
    [Google Scholar]
  55. PascualyM. PetrieE.C. BrodkinK. PeskindE.R. WilkinsonC.W. RaskindM.A. Hypothalamic pituitary adrenocortical and sympathetic nervous system responses to the cold pressor test in Alzheimer’s disease.Biol. Psychiatry200048324725410.1016/S0006‑3223(00)00879‑9 10924668
    [Google Scholar]
  56. HeapG.A. TrynkaG. JansenR.C. BruinenbergM. SwertzM.A. DinesenL.C. HuntK.A. WijmengaC. vanHeelD.A. FrankeL. Complex nature of SNP genotype effects on gene expression in primary human leucocytes.BMC Med. Genomics200921110.1186/1755‑8794‑2‑1 19128478
    [Google Scholar]
  57. MatsumuraK. BabaM. NagayasuK. YamamotoK. KondoM. KitagawaK. TakemotoT. SeirikiK. KasaiA. AgoY. Hayata-TakanoA. ShintaniN. KuriuT. IguchiT. SatoM. TakumaK. HashimotoR. HashimotoH. NakazawaT. Autism-associated protein kinase D2 regulates embryonic cortical neuron development.Biochem. Biophys. Res. Commun.2019519362663210.1016/j.bbrc.2019.09.048 31540692
    [Google Scholar]
  58. UelandP.M. UlvikA. Rios-AvilaL. MidttunØ. GregoryJ.F. Direct and functional biomarkers of vitamin B6 status.Annu. Rev. Nutr.2015351337010.1146/annurev‑nutr‑071714‑034330 25974692
    [Google Scholar]
  59. DahlinA. RoyallJ. HohmannJ.G. WangJ. Expression profiling of the solute carrier gene family in the mouse brain.J. Pharmacol. Exp. Ther.2009329255857010.1124/jpet.108.149831 19179540
    [Google Scholar]
  60. QuR. HeK. YangY. FanT. SunB. KhanA.U. HuangW. OuyangJ. PanX. DaiJ. The role of serum amyloid A1 in the adipogenic differentiation of human adipose-derived stem cells basing on single-cell RNA sequencing analysis.Stem Cell Res. Ther.202213118710.1186/s13287‑022‑02873‑5 35525990
    [Google Scholar]
  61. SinhaD. KumarA. KumarH. BandyopadhyayS. SenguptaD. dropClust: Efficient clustering of ultra-large scRNA-seq data.Nucleic Acids Res.2018466e3610.1093/nar/gky007 29361178
    [Google Scholar]
  62. XuW. WuH. ShangL. Identification of novel candidate indicators for assessing zinc status during pregnancy in mice from microarray data.BMC Pharmacol. Toxicol.20192011210.1186/s40360‑019‑0288‑8 30770772
    [Google Scholar]
  63. LiuS. FanM. XuJ.X. YangL.J. QiC.C. XiaQ.R. GeJ.F. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology.J. Neuroinflammation20221913510.1186/s12974‑022‑02393‑2 35130907
    [Google Scholar]
  64. BlessingE.M. ParekhA. BetenskyR.A. BabbJ. SabaN. DebureL. VargaA.W. AyappaI. RapoportD.M. ButlerT.A. de LeonM.J. WisniewskiT. LoprestiB.J. OsorioR.S. Association between lower body temperature and increased tau pathology in cognitively normal older adults.Neurobiol. Dis.202217110574810.1016/j.nbd.2022.105748 35550158
    [Google Scholar]
  65. BrettevilleA. MarcouillerF. JulienC. El KhouryN.B. PetryF.R. PoitrasI. MouginotD. LévesqueG. HébertS.S. PlanelE. Hypothermia-induced hyperphosphorylation: A new model to study tau kinase inhibitors.Sci. Rep.20122148010.1038/srep00480 22761989
    [Google Scholar]
  66. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  67. HitrecT. SquarcioF. CerriM. MartelliD. OcchinegroA. PiscitielloE. TuponeD. AmiciR. LuppiM. Reversible tau phosphorylation induced by synthetic torpor in the spinal cord of the rat.Front. Neuroanat.20211559228810.3389/fnana.2021.592288 33603651
    [Google Scholar]
  68. RanaT. BehlT. SehgalA. SinghS. SharmaN. AbdeenA. IbrahimS.F. ManiV. IqbalM.S. BhatiaS. Abdel DaimM.M. BungauS. Exploring the role of neuropeptides in depression and anxiety.Prog. Neuropsychopharmacol. Biol. Psychiatry202211411047810.1016/j.pnpbp.2021.110478 34801611
    [Google Scholar]
  69. BeinfeldM.C. PalkovitsM. Distribution of cholecystokinin (CCK) in the rat lower brain stem nuclei.Brain Res.1982238126026510.1016/0006‑8993(82)90794‑6 7083020
    [Google Scholar]
  70. WenD. SunD. ZangG. HaoL. LiuX. YuF. MaC. CongB. Cholecystokinin octapeptide induces endogenous opioid-dependent anxiolytic effects in morphine-withdrawal rats.Neuroscience2014277142510.1016/j.neuroscience.2014.06.048 24993476
    [Google Scholar]
  71. PlagmanA. HoscheidtS. McLimansK.E. KlinedinstB. PappasC. AnantharamV. KanthasamyA. WilletteA.A. Cholecystokinin and Alzheimer’s disease: A biomarker of metabolic function, neural integrity, and cognitive performance.Neurobiol. Aging20197620120710.1016/j.neurobiolaging.2019.01.002 30739077
    [Google Scholar]
  72. AllenJ.A. RothB.L. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors.Annu. Rev. Pharmacol. Toxicol.201151111714410.1146/annurev‑pharmtox‑010510‑100553 20868273
    [Google Scholar]
  73. SolomonB. GavrielY. Rabinovich-NikitinI. Inhibition of CXCR4/CXCL12 signaling: A translational perspective for Alzheimer’s disease treatment.Neural Regen. Res.202217110810910.4103/1673‑5374.314303 34100443
    [Google Scholar]
  74. WangR. LiH. A focus on CXCR4 in Alzheimer’s disease.Brain Circ.20173419920310.4103/bc.bc_13_17 30276325
    [Google Scholar]
  75. MaekawaM. IwayamaY. OhnishiT. ToyoshimaM. ShimamotoC. HisanoY. ToyotaT. BalanS. MatsuzakiH. IwataY. TakagaiS. YamadaK. OtaM. FukuchiS. OkadaY. AkamatsuW. TsujiiM. KojimaN. OwadaY. OkanoH. MoriN. YoshikawaT. Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism.Sci. Rep.2015511623910.1038/srep16239 26548558
    [Google Scholar]
  76. JugeN. YoshidaY. YatsushiroS. OmoteH. MoriyamaY. Vesicular glutamate transporter contains two independent transport machineries.J. Biol. Chem.200628151394993950610.1074/jbc.M607670200 17046815
    [Google Scholar]
  77. SchallierA. SmoldersI. Van DamD. LoyensE. De DeynP.P. MichotteA. MichotteY. MassieA. Region- and age-specific changes in glutamate transport in the AβPP23 mouse model for Alzheimer’s disease.J. Alzheimers Dis.201124228730010.3233/JAD‑2011‑101005 21297271
    [Google Scholar]
  78. LiF. ZhouS. ZengX. LiZ. YangR. WangX. MengB. PeiW. LuL. Activation of the TREK-1 potassium channel improved cognitive deficits in a mouse model of alzheimer’s disease by modulating glutamate metabolism.Mol. Neurobiol.20225985193520610.1007/s12035‑022‑02776‑9 35678977
    [Google Scholar]
  79. SokolowS. LuuS.H. NandyK. MillerC.A. VintersH.V. PoonW.W. GylysK.H. Preferential accumulation of amyloid-beta in presynaptic glutamatergic terminals (VGluT1 and VGluT2) in Alzheimer’s disease cortex.Neurobiol. Dis.201245138138710.1016/j.nbd.2011.08.027 21914482
    [Google Scholar]
  80. KashaniA. LepicardÈ. PoirelO. VideauC. DavidJ.P. Fallet-BiancoC. SimonA. DelacourteA. GirosB. EpelbaumJ. BetancurC. El MestikawyS. Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease.Neurobiol. Aging200829111619163010.1016/j.neurobiolaging.2007.04.010 17531353
    [Google Scholar]
  81. AsmannY.W. WallaceM.B. ThompsonE.A. Transcriptome profiling using next-generation sequencing.Gastroenterology200813551466146810.1053/j.gastro.2008.09.042 18848555
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073291279240409035856
Loading
/content/journals/cchts/10.2174/0113862073291279240409035856
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test