Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Atherosclerosis (AS) is the leading cause of mortality in elderly individuals worldwide. Anmeidan (AMD) is a Traditional Chinese Medicine (TCM) formula composed of many herbs, many of which have been accepted for treating AS. This study aimed to explore whether AMD can inhibit the progress of AS and its possible mechanism.

Methods

ApoE-/- mice were used to establish the AS model and evaluate the therapeutic effect of AMD on AS. Based on network pharmacology technology, the potential mechanism of AMD for treating AS was explored, and lipid metabolism pathways related to AS were mainly studied. Next, the effects of AMD on liver lipid levels, antioxidant capacity, liver tissue morphology, and gene expression related to lipid metabolism in ApoE-/- mice were investigated. Cellular experiments were performed to confirm the lipid-lowering effect of AMD. Finally, the AMD composition was determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Results

In ApoE-/- mice, AMD effectively alleviated AS by reducing serum total cholesterol, triglyceride, low-density lipoprotein levels, and plaque area, and increasing high-density lipoprotein levels. Network pharmacology indicated that AMD may suppress AS by regulating lipid metabolism pathways with multiple TCM components, which was consistent with the results of experiments and LC-MS/MS component identification. AMD significantly reduced liver lipid aggregation, intensified antioxidant enzyme activity, and upregulated the mRNA levels of ABCA1, ABCG1, and LDLR with increased cholesterol efflux. In addition, AMD decreased cholesterol levels in foam cells.

Conclusion

This study confirmed that AMD could treat AS by regulating lipid metabolism and preliminarily explored the related mechanism. These findings provide new ideas for the treatment of AS with TCM.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073281925240417062009
2024-04-25
2025-09-14
Loading full text...

Full text loading...

References

  1. ŞahinB. İlgünG. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries.Health Soc. Care Community2022301738010.1111/hsc.1315632909378
    [Google Scholar]
  2. PerrottaI. Atherosclerosis: From molecular biology to therapeutic perspective.Int. J. Mol. Sci.2022237344410.3390/ijms2307344435408804
    [Google Scholar]
  3. NicholsM. TownsendN. ScarboroughP. RaynerM. Cardiovascular disease in Europe 2014: Epidemiological update.Eur. Heart J.201435422950295910.1093/eurheartj/ehu29925381246
    [Google Scholar]
  4. GlassC.K. WitztumJ.L. Atherosclerosis.Cell2001104450351610.1016/S0092‑8674(01)00238‑011239408
    [Google Scholar]
  5. LuS.X. WuT.W. ChouC.L. ChengC.F. WangL.Y. Combined effects of hypertension, hyperlipidemia, and diabetes mellitus on the presence and severity of carotid atherosclerosis in community-dwelling elders: A community-based study.J. Chin. Med. Assoc.202386222022610.1097/JCMA.000000000000083936652568
    [Google Scholar]
  6. UedaK. SakaiC. IshidaT. MoritaK. KobayashiY. HorikoshiY. BabaA. OkazakiY. YoshizumiM. TashiroS. IshidaM. Cigarette smoke induces mitochondrial DNA damage and activates cGAS-STING pathway: Application to a biomarker for atherosclerosis.Clin. Sci. (Lond.)2023137216318010.1042/CS2022052536598778
    [Google Scholar]
  7. MitraS. DeshmukhA. SachdevaR. LuJ. MehtaJ.L. Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy.Am. J. Med. Sci.2011342213514210.1097/MAJ.0b013e318224a14721747278
    [Google Scholar]
  8. LibbyP. Atherosclerosis.Nat. Rev. Dis. Primers20195456
    [Google Scholar]
  9. LinC.S. LiuP.Y. LianC.H. LinC.H. LaiJ.H. HoL.J. YangS.P. ChengS.M. Gentiana scabra Reduces SR-A Expression and Oxidized-LDL Uptake in Human Macrophages.Zhonghua Minguo Xinzangxue Hui Zazhi201632446046627471359
    [Google Scholar]
  10. RosensonR.S. BrewerH.B.Jr DavidsonW.S. FayadZ.A. FusterV. GoldsteinJ. HellersteinM. JiangX.C. PhillipsM.C. RaderD.J. RemaleyA.T. RothblatG.H. TallA.R. Yvan-CharvetL. Cholesterol efflux and atheroprotection: Advancing the concept of reverse cholesterol transport.Circulation2012125151905191910.1161/CIRCULATIONAHA.111.06658922508840
    [Google Scholar]
  11. ZhouH. TanK.C.B. ShiuS.W.M. WongY. Cellular cholesterol efflux to serum is impaired in diabetic nephropathy.Diabetes Metab. Res. Rev.200824861762310.1002/dmrr.89518802933
    [Google Scholar]
  12. YuX.H. TangC.K. ABCA1, ABCG1, and Cholesterol Homeostasis.Adv. Exp. Med. Biol.202213779510710.1007/978‑981‑19‑1592‑5_735575923
    [Google Scholar]
  13. ZhengS. HuangH. LiY. WangY. ZhengY. LiangJ. ZhangS. LiuM. FangZ. Yin-xing-tong-mai decoction attenuates atherosclerosis via activating PPARγ-LXRα-ABCA1/ABCG1 pathway.Pharmacol. Res.202116910563910.1016/j.phrs.2021.10563933932607
    [Google Scholar]
  14. DaiT. HeW. TuS. HanJ. YuanB. YaoC. RenW. WuA. Black TiO2 nanoprobe-mediated mild phototherapy reduces intracellular lipid levels in atherosclerotic foam cells via cholesterol regulation pathways instead of apoptosis.Bioact. Mater.202217182810.1016/j.bioactmat.2022.01.01335386468
    [Google Scholar]
  15. LiuH. ZhangJ. YanX. AnD. LeiH. The Anti-atherosclerosis Mechanism of Ziziphora clinopodioides Lam.Cell Biochem. Biophys.202381351553210.1007/s12013‑023‑01151‑237523140
    [Google Scholar]
  16. PengL. LiM. XuY. ZhangG. YangC. ZhouY. LiL. ZhangJ. Effect of Si-Miao-Yong-An on the stability of atherosclerotic plaque in a diet-induced rabbit model.J. Ethnopharmacol.2012143124124810.1016/j.jep.2012.06.03022750436
    [Google Scholar]
  17. LiH. YangW. CaoW. YuZ. ZhangG. LongL. GuoH. QuH. FuC. ChenK. Effects and mechanism of Kedaling tablets for atherosclerosis treatment based on network pharmacology, molecular docking and experimental study.J. Ethnopharmacol.2024319Pt 111710810.1016/j.jep.2023.11710837657772
    [Google Scholar]
  18. FengjinC. PengZ. GuoyingL.I. WeizhiZ. YanyanZ. DaiyinP. GuangliangC. Taohong Siwu decoction ameliorates atherosclerosis in rats possibly through toll-like receptor 4/myeloid differentiation primary response protein 88/nuclear factor-κB signal pathway.J. Tradit. Chin. Med.202444110311238213245
    [Google Scholar]
  19. WangX. SharmaA. LiuY. WangX. KainthR. KumariD. Evaluation of flavonoid-rich fraction of portulaca grandiflora aerial part extract in atherogenic diet-induced atherosclerosis.Comb Chem High Throughput Screen20232023Online ahead of print062407
    [Google Scholar]
  20. ZhengrongL. TCM theory of "Homotherapy for Heteropathy" based on network pharmacology.China Pharmaceut.202213Online ahead of print001
    [Google Scholar]
  21. ChenM.-T JiaoX. Hai-DanL. YingL.I. Mei-HuanL.I. Jie-NanL. ZhongZ. [Exploration on mechanisms of Xiaoyao Powder in treating atherosclerosis and depressive disorder with concept of “treating different diseases with same method” based on network pharmacology].Zhongguo Zhongyao Zazhi202045174099411133164394
    [Google Scholar]
  22. BoX.U. PingW. Exploration and research evaluation of the source and flow formula of Anmei Dan.Zhonghua Zhongyiyao Zazhi20223743304333
    [Google Scholar]
  23. WangC. NiimiM. WatanabeT. WangY. LiangJ. FanJ. Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries.Atherosclerosis201827713614410.1016/j.atherosclerosis.2018.08.03930212682
    [Google Scholar]
  24. ZhangJ. LiangR. WangL. YangB. Effects and mechanisms of Danshen-Shanzha herb-pair for atherosclerosis treatment using network pharmacology and experimental pharmacology.J. Ethnopharmacol.201922910411410.1016/j.jep.2018.10.00430312741
    [Google Scholar]
  25. LiZ. XuS. LiuP. Salvia miltiorrhizaBurge (Danshen): A golden herbal medicine in cardiovascular therapeutics.Acta Pharmacol. Sin.201839580282410.1038/aps.2017.19329698387
    [Google Scholar]
  26. JuS. ChangX. WangJ. ZouX. ZhaoZ. HuangZ. WangY. YuB. Sini decoction intervention on atherosclerosis via PPARγ-LXRα-ABCA1 pathway in rabbits.Open Life Sci.201813144645510.1515/biol‑2018‑005333817113
    [Google Scholar]
  27. HouX. FanJ. The mechanism of anti-atherosclerosis of Panax ginseng and Panax notoginseng based on network pharmacology.Modern J. Integr. Trad. Chin. Westem Med.20224540545
    [Google Scholar]
  28. KamatoD. IlyasI. XuS. LittleP.J. Non-mouse models of atherosclerosis: Approaches to exploring the translational potential of new therapies.Int. J. Mol. Sci.202223211296410.3390/ijms23211296436361754
    [Google Scholar]
  29. DingH. LiuJ. ChenZ. HuangS. YanC. KwekE. HeZ. ZhuH. ChenZ.Y. Protocatechuic acid alleviates TMAO-aggravated atherosclerosis via mitigating inflammation, regulating lipid metabolism, and reshaping gut microbiota.Food Funct.202415288189310.1039/D3FO04396G38165856
    [Google Scholar]
  30. YangX. ChiC. LiW. ZhangY. YangS. XuR. LiuR. Metabolomics and lipidomics combined with serum pharmacochemistry uncover the potential mechanism of Huang-Lian-Jie-Du decoction alleviates atherosclerosis in ApoE−/− mice.J. Ethnopharmacol.202432411774810.1016/j.jep.2024.11774838216103
    [Google Scholar]
  31. HouC. JiangX. ShengW. ZhangY. LinQ. HongS. ZhaoJ. WangT. YeX. Xinmaikang (XMK) tablets alleviate atherosclerosis by regulating the SREBP2-mediated NLRP3/ASC/Caspase-1 signaling pathway.J. Ethnopharmacol.2024319Pt 211724010.1016/j.jep.2023.11724037777030
    [Google Scholar]
  32. ChaiH. QuH. HeS. SongL. YangY. HuangH. ShiD. Zedoarondiol inhibits atherosclerosis by regulating monocyte migration and adhesion via CXCL12/CXCR4 pathway.Pharmacol Res.20221821096-1186106328
    [Google Scholar]
  33. LeeA. Y. ParkW. KangT. W. ChaM. H. ChunJ. M. Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis.J Ethnopharmacol.20182211872-757315115910.1016/j.jep.2018.04.027
    [Google Scholar]
  34. LiuZ. GuoF. WangY. LiC. ZhangX. LiH. DiaoL. GuJ. WangW. LiD. HeF. BATMAN-TCM: A bioinformatics analysis tool for molecular mechANism of Traditional Chinese Medicine.Sci. Rep.2016612114610.1038/srep2114626879404
    [Google Scholar]
  35. LagorceD. BouslamaL. BecotJ. MitevaM.A. VilloutreixB.O. FAF-Drugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery.Bioinformatics201733223658366010.1093/bioinformatics/btx49128961788
    [Google Scholar]
  36. UniProt ConsortiumT. UniProt: The universal protein knowledgebase.Nucleic Acids Res.2018465269910.1093/nar/gky09229425356
    [Google Scholar]
  37. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  38. JeongH. MasonS.P. BarabásiA.L. OltvaiZ.N. Lethality and centrality in protein networks.Nature20014116833414210.1038/3507513811333967
    [Google Scholar]
  39. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  40. Fau-ChenC. CytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S11
    [Google Scholar]
  41. LiY. JiangH.T. HanL.B. XiaoL. GanJ.H. MiR-195 regulates CD40 to maintain Th17/Treg balance in rats with non-alcoholic fatty liver disease.Biomed. Pharmacother.202012410993010.1016/j.biopha.2020.10993031991386
    [Google Scholar]
  42. ZhengG. ZhaoY. LiZ. HuaY. ZhangJ. MiaoY. GuoY. LiL. ShiJ. DongZ. YangS. FanG. MaC. GLSP and GLSP-derived triterpenes attenuate atherosclerosis and aortic calcification by stimulating ABCA1/G1-mediated macrophage cholesterol efflux and inactivating RUNX2-mediated VSMC osteogenesis.Theranostics20231341325134110.7150/thno.8025036923537
    [Google Scholar]
  43. PfafflM.W. A new mathematical model for relative quantification in real-time RT-PCR.Nucleic Acids Res.2001299e4510.1093/nar/29.9.e4511328886
    [Google Scholar]
  44. PoznyakA. GrechkoA. V. PoggioP. A.-O. MyasoedovaV. A.-O. AlfieriV. OrekhovA. A.-O. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation.Int. J. Mol. Sci.2020211422-00671835
    [Google Scholar]
  45. WolfM.P. HunzikerP. Atherosclerosis: Insights into vascular pathobiology and outlook to novel treatments.J. Cardiovasc. Transl. Res.202013574475710.1007/s12265‑020‑09961‑y32072564
    [Google Scholar]
  46. LiF. ZhangT. HeY. GuW. YangX. ZhaoR. YuJ. Inflammation inhibition and gut microbiota regulation by TSG to combat atherosclerosis in ApoE-/- mice.J Ethnopharmacol.20202471872-7573112232
    [Google Scholar]
  47. MaC. ZhangJ. YangS. HuaY. SuJ. ShangY. WangZ. FengK. ZhangJ. YangX. ZhangH. MaoJ. FanG. Astragalus Flavone ameliorates atherosclerosis and hepatic steatosis via inhibiting lipid-disorder and inflammation in apoE-/- mice.Front Pharmacol.2020111663-9812610550
    [Google Scholar]
  48. ZhangY. DuM. WangJ. LiuP. AstragalosideI.V. Astragaloside IV Relieves Atherosclerosis and Hepatic Steatosis via MAPK/NF-κB Signaling Pathway in LDLR−/− Mice.Front. Pharmacol.20221382816110.3389/fphar.2022.82816135264962
    [Google Scholar]
  49. ChenF.X. WangL.K. [Effect of ferulic acid on cholesterol efflux in macrophage foam cell formation and potential mechanism].Zhongguo Zhongyao Zazhi201540353353726084183
    [Google Scholar]
  50. ZhuY.S. C. J., Effect and mechanism of liquiritin on atherosclerosis in rats.Guangdong Yixue2015363365
    [Google Scholar]
  51. YueJ. LiB. JingQ. GuanQ. Salvianolic acid B accelerated ABCA1-dependent cholesterol efflux by targeting PPAR-γ and LXRα.Biochem. Biophys. Res. Commun.2015462323323810.1016/j.bbrc.2015.04.12225956064
    [Google Scholar]
  52. KimM. K. HanK. KimH. S. ParkY. M. KwonH. S. YoonK. H. LeeS. H. Cholesterol variability and the risk of mortality, myocardial infarction, and stroke: A nationwide population-based study.Eur Heart J.2017381522-96453560356610.1093/eurheartj/ehx585
    [Google Scholar]
  53. ZhangS. HongF. MaC. YangS. Hepatic lipid metabolism disorder and atherosclerosis..Endocr Metab Immune Disord Drug Targets.2022222212-387359060010.2174/1871530322666211220110810
    [Google Scholar]
  54. KhalilY.A. RabèsJ.P. BoileauC. VarretM. APOE gene variants in primary dyslipidemia.Atherosclerosis2021328112210.1016/j.atherosclerosis.2021.05.00734058468
    [Google Scholar]
  55. MineoC. Lipoprotein receptor signalling in atherosclerosis.Cardiovasc Res.20201161755-32451254127410.1093/cvr/cvz338
    [Google Scholar]
  56. FurbeeJ. W.Jr FranconeO In vivo contribution of LCAT to apolipoprotein B lipoprotein cholesteryl esters in LDL receptor and apolipoprotein E knockout mice.J Lipid Res.2020430022-2275428437
    [Google Scholar]
  57. Von EckardsteinA. LDL Contributes to Reverse Cholesterol Transport.Circ Res.20201271524-457179379510.1161/CIRCRESAHA.120.317721
    [Google Scholar]
  58. ZhengL. LinG. LiR. GanH. HuangX. YaoN. CaiD. ZhaoZ. HuZ. LiM. XuH. LiL. PengS. ZhaoX. LaiY. ChenY. HuangD. Isochlorogenic Acid C Alleviates High-Fat Diet-Induced Hyperlipemia by Promoting Cholesterol Reverse Transport.Front. Pharmacol.20221388107810.3389/fphar.2022.88107835959429
    [Google Scholar]
  59. RenK. LiH. ZhouH. F. LiangY. TongM. ChenL. ZhengX. L. ZhaoG. J. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1.Aging (Albany NY).2019111945-4589109921100910.18632/aging.102498
    [Google Scholar]
  60. OuimetM. BarrettT. J. FisherE. A. HDL and reverse cholesterol transport.Circ Res.20191241524-45711505151810.1161/CIRCRESAHA.119.312617
    [Google Scholar]
  61. OguraM. HDL, cholesterol efflux, and ABCA1: Free from good and evil dualism.J. Pharmacol. Sci.20221502818910.1016/j.jphs.2022.07.00436055755
    [Google Scholar]
  62. ZhangM. HouL. TangW. LeiW. LinH. WangY. LongH. LinS. ChenZ. WangG. ZhaoG. Oridonin attenuates atherosclerosis by inhibiting foam macrophage formation and inflammation through FABP4/PPARγ signalling.J. Cell. Mol. Med.202327244155417010.1111/jcmm.1800037905351
    [Google Scholar]
  63. BoucherP. MatzR. L. TerrandJ. Atherosclerosis: Gone with the Wnt?Atherosclerosis2020301879-14841522
    [Google Scholar]
  64. DuanH. SongP. LiR. SuH. HeL. Attenuating lipid metabolism in atherosclerosis: The potential role of Anti-oxidative effects on low-density lipoprotein of herbal medicines.Front. Pharmacol.202314116165710.3389/fphar.2023.116165737063287
    [Google Scholar]
  65. LiY. ZhangL. RenP. YangY. LiS. QinX. ZhangM. ZhouM. LiuW. Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation.Phytomedicine20219315381210.1016/j.phymed.2021.15381234753029
    [Google Scholar]
  66. PhangS.W. OoiB.K. AhemadN. YapW.H. Maslinic acid suppresses macrophage foam cells formation: Regulation of monocyte recruitment and macrophage lipids homeostasis.Vascul. Pharmacol.2020128-12910667510.1016/j.vph.2020.10667532200116
    [Google Scholar]
  67. DengW.Y. ZhouC.L. ZengM.Y. Gypenoside XVII inhibits ox-LDL-induced macrophage inflammatory responses and promotes cholesterol efflux through activating the miR-182-5p/HDAC9 signaling pathway.J. Ethnopharmacol.2024319Pt 111707010.1016/j.jep.2023.11707037625608
    [Google Scholar]
  68. HanW. ZhangD. ZhangP. TaoQ. DuX. YuC. DongP. ZhuY. Danlou Recipe promotes cholesterol efflux in macrophages RAW264.7 and reverses cholesterol transport in mice with hyperlipidemia induced by P407.BMC Complement. Med. Ther.202323144510.1186/s12906‑023‑04253‑938066464
    [Google Scholar]
  69. AshryN.A. AbdelazizR.R. SuddekG.M. The potential effect of imatinib against hypercholesterolemia induced atherosclerosis, endothelial dysfunction and hepatic injury in rabbits.Life Sci.202024311727510.1016/j.lfs.2020.11727531926242
    [Google Scholar]
  70. MoreS.S. PriyaaG.H. Antioxidant, anti-proliferative, and anti-atherosclerotic effect of phytochemicals isolated from Trachyspermum ammi with honey in RAW 264.7 and THP-1 cells.Pharmacogn. Mag.2022187714315110.4103/pm.pm_436_21
    [Google Scholar]
  71. HeZ. KwekE. HaoW. ZhuH. LiuJ. MaK. Y. ChenZ. A.-O. Hawthorn fruit extract reduced trimethylamine-N-oxide (TMAO)-exacerbated atherogenesis in mice via anti-inflammation and anti-oxidation.Nutr Metab (Lond)20211816
    [Google Scholar]
  72. LiW. YangC. A.-O. MeiX. HuangR. ZhangS. TangY. DongQ. ZhouC. Effect of the polyphenol-rich extract from Allium cepa on hyperlipidemic sprague-dawley rats.J Food Biochem.2021451e1356510.1111/jfbc.13565
    [Google Scholar]
  73. ShaoX. ZengW. WangQ. LiuS. GuoQ. LuoD. LuoQ. WangD. WangL. ZhangY. DiaoH. PiaoS. YanM. GuoJ. Fufang Zhenzhu Tiaozhi (FTZ) suppression of macrophage pyroptosis: Key to stabilizing rupture-prone plaques.J. Ethnopharmacol.202432411770510.1016/j.jep.2024.11770538219878
    [Google Scholar]
  74. SimonF. Larena-AvellanedaA. WipperS. Experimental atherosclerosis research on large and small animal models in vascular surgery.J. Vasc. Res.202259422122810.1159/00052479535760040
    [Google Scholar]
  75. Martínez-MartínezA.B. Torres-PerezE. DevanneyN. Del MoralR. JohnsonL.A. Arbones-MainarJ.M. Beyond the CNS: The many peripheral roles of APOE.Neurobiol. Dis.202013810480910.1016/j.nbd.2020.10480932087284
    [Google Scholar]
  76. IlyasI. LittleP.J. LiuZ. XuY. KamatoD. BerkB.C. WengJ. XuS. Mouse models of atherosclerosis in translational research.Trends Pharmacol. Sci.2022431192093910.1016/j.tips.2022.06.00935902281
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073281925240417062009
Loading
/content/journals/cchts/10.2174/0113862073281925240417062009
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Anmeidan; atherosclerosis; cholesterol; LC-MS/MS; lipid metabolism; network pharmacology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test