Skip to content
2000
Volume 28, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Bufei decoction (BFD) is used in clinical practice to treat bronchial asthma (BA), although its molecular mechanism of action remains unclear.

Objective

This study aimed to explore the molecular mechanism of BFD for treating BA.

Methods

Network pharmacology and molecular docking predicted the molecular mechanism and the analysis results were verified using the ELISA kit and RT-qPCR.

Results

There were 58 main active components and 121 potential targets in the BFD from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), and 11 core targets were obtained from the protein-protein interactions(PPI) network. The gene ontology (GO) analysis found that the treatment of BA with BFD was mainly related to inflammatory reaction, membrane raft, cytokine activity, . The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that it was mainly related to interleukin (IL)-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, PI3K-Akt signaling pathway, . The molecular docking results showed that the main active ingredients had strong binding ability with core targets. BFD significantly reduced the TNF-α, IL-6, and IL-1β and increased the level of IL-10 in rats with BA. BFD also significantly reduced the mRNA level of PI3K, AKT1, and VEGFA while increasing the mRNA level of TP53 in rats.

Conclusion

This study used network pharmacology methods to predict the potential active ingredients, targets, and pathways of BFD in treating BA and explore its possible molecular mechanism, which provided a theoretical basis for further study.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073285566240223144925
2024-03-06
2025-12-10
Loading full text...

Full text loading...

References

  1. KreslováM. KirchnerováO. RajdlD. SudováV. BlažekJ. SýkorováA. JehličkaP. TrefilL. SchwarzJ. PomahačováR. SýkoraJ. Bronchial asthma as a cardiovascular risk factor: A prospective observational study.Biomedicines20221010261410.3390/biomedicines10102614 36289876
    [Google Scholar]
  2. GiulioD. CristianaI. AngelaK. Overview on the treatment of severe bronchial asthma; Global Pediatrics20247100117
    [Google Scholar]
  3. SavinI.A. ZenkovaM.A. Sen’kovaA.V. Bronchial asthma, airway remodeling and lung fibrosis as successive steps of one process.Int. J. Mol. Sci.202324221604210.3390/ijms242216042 38003234
    [Google Scholar]
  4. EuiB.K. Air pollutants contribute to epithelial barrier dysfunction and allergic diseases.Ann. Allergy Asthma Immunol.2023S1081S120610.1016/j.anai.2023.11.014 38006973
    [Google Scholar]
  5. BaioumyS.A. ElgendyA. IbrahimS.M. TahaS.I. FouadS.H. Association between serum zonulin level and severity of house dust mite allergic asthma.Allergy Asthma Clin. Immunol.20211718610.1186/s13223‑021‑00586‑7 34465387
    [Google Scholar]
  6. WangR. LinJ. Analysis of the mechanism of zhichuanling oral liquid in treating bronchial asthma based on network pharmacology.Evid. Based Complement. Alternat. Med.2020202011010.1155/2020/1875980 32015750
    [Google Scholar]
  7. GaoN. ZhangL. Research progress and reflections on traditional chinese medicine in the treatment of bronchiectasis.J. Contemp. Med. Pract.2023512
    [Google Scholar]
  8. ShenL. LuJ. WangG. WangC. LiZ. Molecular mechanism of yupingfeng in the treatment of asthma based on network pharmacology and molecular docking technology.Comput. Math. Methods Med.2022202211710.1155/2022/7364126 36105239
    [Google Scholar]
  9. GongC. PanL. JiangY. SunY. HanY. WangD. WangY. Investigating the mechanism of action of Yanghe Pingchuan Granule in the treatment of bronchial asthma based on bioinformatics and experimental validation.Heliyon2023911e21936e2193610.1016/j.heliyon.2023.e21936 38027735
    [Google Scholar]
  10. CaoX.T. ChenC. AiL.N. Effect of bufei decoction on lung function in patients with chronic duration of bronchial asthma.Inner Mongolia J. Tradit. Chin. Med.20224128587
    [Google Scholar]
  11. ZouC.Y. QiuS.S. YinL.H. ChenZ.B. Study on the efficacy of Bufei Decoction in the treatment of 47 patients with chronic duration of bronchial asthma.Med. Forum2020242536693670
    [Google Scholar]
  12. ZhangY. ZhuX. ChenY.Z. Clinical and experimental progress of Bufei Decoction in the treatment of respiratory diseases.Acta Chin Med2022373535540
    [Google Scholar]
  13. ZhaoS.R. JiangH.L. LiuD.X. Genetic algorithm and drug molecular design.Huaxue Jinzhan1997047181
    [Google Scholar]
  14. RenJ. WeiJ. Application of molecular docking technology in the research of traditional Chinese medicine.Zhongguo Zhongyiyao Xinxi Zazhi20142101123125
    [Google Scholar]
  15. WangX. LiuM. LiX. ZhangM. XuF. LiuH. WuH. Utilizing molecular docking and cell validation to explore the potential mechanisms of lupenone attenuating the inflammatory response via NF‐κB pathway.Sci. Rep.202414162562510.1038/s41598‑024‑51150‑3 38182871
    [Google Scholar]
  16. DaiS. WuR. FuK. LiY. YaoC. LiuY. ZhangF. ZhangS. GuoY. YaoY. LiY. Exploring the effect and mechanism of cucurbitacin B on cholestatic liver injury based on network pharmacology and experimental verification.J. Ethnopharmacol.202432211758410.1016/j.jep.2023.117584 38104874
    [Google Scholar]
  17. XiaoJ. YuZ. HanQ. GuoY. YeJ. LianH. WangL. MaY. LiuM. The mechanism of action and experimental verification of narenmandula in the treatment of postmenopausal osteoporosis.Comb. Chem. High Throughput Screen.20242710.2174/0113862073264965231116105323 38178685
    [Google Scholar]
  18. WuW. LiG. DongS. Huihan. Chu C.; Ma, S.; Zhang, Z.; Yuan, S.; Wu, J.; Guo, Z.; Shen, Y.; Wang, J.; Tang, C. Bomidin attenuates inflammation of periodontal ligament stem cells and periodontitis in mice via inhibiting ferroptosis.Int. Immunopharmacol.202412711142310.1016/j.intimp.2023.111423 38141410
    [Google Scholar]
  19. GuoF. GuoY. ZhangD. FuZ. HanS. WanY. GuanG. Luteolin inhibits the JAK/STAT pathway to alleviate auditory cell apoptosis of acquired sensorineural hearing loss based on network pharmacology, molecular docking, molecular dynamics simulation, and experiments in vitro.Toxicol. Appl. Pharmacol.202448211679010.1016/j.taap.2023.116790 38103742
    [Google Scholar]
  20. ShahaneK. KshirsagarM. TambeS. JainD. RoutS. FerreiraM.K.M. MaliS. AminP. SrivastavP.P. CruzJ. LimaR.R. An updated review on the multifaceted therapeutic potential of calendula officinalis L.Pharmaceuticals202316461110.3390/ph16040611 37111369
    [Google Scholar]
  21. KrishnanK. A.; George Valavi, S.; Joy, A. Identification of novel EGFR inhibitors for the targeted therapy of colorectal cancer using pharmacophore modelling, docking, molecular dynamic simulation and biological activity predictionn.Anticancer. Agents Med. Chem.202424426327910.2174/0118715206275566231206094645 38173208
    [Google Scholar]
  22. ZhangB.B. ZengM.N. ZhangQ.Q. WangR. JiaJ.F. GuoP.L. LiuM. FengW.S. ZhengX.K. Mechanism of “ephedrae herba-descurainiae semen lepidii semen” combination in treatment of bronchial asthma based on network pharmacology and experimental verification.Zhongguo Zhongyao Zazhi2022471849965007 36164910
    [Google Scholar]
  23. ShenJ. ZhuX. ChenY. LiW. LiuH. ChuC. ZhangY. XuC. TongP. YuX. YangG. DengY. Bufei decoction improves lung-qi deficiency syndrome of chronic obstructive pulmonary disease in rats by regulating the balance of Th17/Treg cells.Evid. Based Complement. Alternat. Med.202220221910.1155/2022/1459232 36034952
    [Google Scholar]
  24. HaoH. GuoZ. LiZ. LiJ. JiangS. FuJ. JiaoY. DengX. HanS. LiP. Modified Bu-Fei decoction inhibits lung metastasis via suppressing angiopoietin-like 4.Phytomedicine202210615440910.1016/j.phymed.2022.154409 36070661
    [Google Scholar]
  25. AlvesF.S. CruzJ.N. de Farias RamosI.N. do Nascimento BrandãoD.L. QueirozR.N. da SilvaG.V. da SilvaG.V. DolabelaM.F. da CostaM.L. KhayatA.S. de Arimatéia Rodrigues do RegoJ. do Socorro Barros BrasilD. Evaluation of antimicrobial activity and cytotoxicity effects of extracts of piper nigrum L. and piperine.Separations2022101212110.3390/separations10010021
    [Google Scholar]
  26. CarmoB.M.L. SilvaSilva, JV.; Neves, CJ.; Palheta, DSAR.; BentaberryRosa, AA.; Da, CRG.; De, SSJE.; CoelhoFerreira, MR.; Percario, S.; Santana, BMP.; Marinho, AMDR.; De, OBM.; Dolabela, MF. Alkaloid from Geissospermum sericeum Benth. Hook.f. ex Miers (Apocynaceae) induce apoptosis by caspase pathway in human gastric cancer cells.Pharmaceuticals2023165765
    [Google Scholar]
  27. RamosI.N.F. da SilvaM.F. LopesJ.M.S. CruzJ.N. AlvesF.S. do RegoJ.A.R. CostaM.L. AssumpçãoP.P. Barros BrasilD.S. KhayatA.S. Extraction, characterization, and evaluation of the cytotoxic activity of piperine in its isolated form and in combination with chemotherapeutics against gastric cancer.Molecules20232814558710.3390/molecules28145587 37513459
    [Google Scholar]
  28. LuZ. WangH. IshfaqM. HanY. ZhangX. LiX. WangB. LuX. GaoB. Quercetin and AMPK: A dynamic duo in alleviating MG-induced inflammation via the AMPK/SIRT1/NF-κB pathway.Molecules20232821738810.3390/molecules28217388
    [Google Scholar]
  29. PengC. AiQ. ZhaoF. LiH. SunY. TangK. YangY. ChenN. LiuF. Quercetin attenuates cerebral ischemic injury by inhibiting ferroptosis via Nrf2/HO-1 signaling pathway.Eur. J. Pharmacol.202496317626410.1016/j.ejphar.2023.176264 38123006
    [Google Scholar]
  30. LinZ. LiuY. GongX. NieF. XuJ. GuoY. Construction of quercetin-fucoidan nanoparticles and their application in cancer chemo-immunotherapy treatment.Int. J. Biol. Macromol.2024256Pt 112805712805710.1016/j.ijbiomac.2023.128057 37956805
    [Google Scholar]
  31. GeorgiouN. KakavaM.G. RoutsiE.A. PetsasE. StavridisN. FrerisC. ZoupanouN. MoschovouK. KiriakidiS. MavromoustakosT. Quercetin: A potential polydynamic drug.Molecules20232824814110.3390/molecules28248141 38138630
    [Google Scholar]
  32. XuC.C. XuT.Z. ZhangM. DongC.G. The effect of quercetin on bronchial asthma mice through NLRP3/Caspase-1 pathway.Zhongyao Xinyao Yu Linchuang Yaoli2019308899903
    [Google Scholar]
  33. ZhuX. XiaoY.B. YiX.L. Inhibitory effect of quercetin on airway inflammation in mice with bronchial asthma. Chin J.Mod. Med.202030131922
    [Google Scholar]
  34. JanR. KhanM. AsafS. Lubna AsifS. KimK.M. Bioactivity and therapeutic potential of kaempferol and quercetin: New insights for plant and human health.Plants20221119262310.3390/plants11192623 36235488
    [Google Scholar]
  35. ZhuX. WangX. YingT. LiX. TangY. WangY. YuT. SunM. ZhaoJ. DuY. ZhangL. Kaempferol alleviates the inflammatory response and stabilizes the pulmonary vascular endothelial barrier in LPS-induced sepsis through regulating the SphK1/S1P signaling pathway.Chem. Biol. Interact.202236811022110.1016/j.cbi.2022.110221 36243145
    [Google Scholar]
  36. WangM. XiaY. AiS. GuX. WangH.L. Kaempferol improves Pb-induced cognitive impairments via inhibiting autophagy.J. Nutr. Biochem.202412510955610955610.1016/j.jnutbio.2023.109556 38151193
    [Google Scholar]
  37. MuzammilS. Neves CruzJ. MumtazR. RasulI. HayatS. KhanM.A. KhanA.M. IjazM.U. LimaR.R. ZubairM. Effects of drying temperature and solvents on in vitro diabetic wound healing potential of moringa oleifera leaf extracts.Molecules202328271071010.3390/molecules28020710 36677768
    [Google Scholar]
  38. ZhuY. BaoG. ZhuG. ZhangK. ZhuS. HuJ. HeJ. JiangW. FanJ. DangY. Discovery and characterization of natural product luteolin as an effective inhibitor of human pyridoxal kinase.Bioorg. Chem.202414310705710.1016/j.bioorg.2023.107057 38150934
    [Google Scholar]
  39. ZhouL. JianT. WanY. HuangR. FangH. WangY. LiangC. DingX. ChenJ. Luteolin alleviates oxidative stress in chronic obstructive pulmonary disease induced by cigarette smoke via modulation of the TRPV1 and CYP2A13/NRF2 signaling pathways.Int. J. Mol. Sci.202325136910.3390/ijms25010369 38203542
    [Google Scholar]
  40. WuY. NiZ. WangS. SunY. LuoX. WangX. LiuJ. The mechanism of Sanzi Yangqin decoction for asthma treatment based on network pharmacology and experimental verification.BMC Complement. Med. Ther.202323145245210.1186/s12906‑023‑04272‑6 38093206
    [Google Scholar]
  41. JangT.Y. JungA.Y. KyungT.S. KimD.Y. HwangJ.H. KimY.H. Anti-allergic effect of luteolin in mice with allergic asthma and rhinitis.Cent. Eur. J. Immunol.201711242910.5114/ceji.2017.67315 28680328
    [Google Scholar]
  42. WangS. WuniqiemuT. TangW. TengF. BianQ. YiL. QinJ. ZhuX. WeiY. DongJ. Luteolin inhibits autophagy in allergic asthma by activating PI3K/Akt/mTOR signaling and inhibiting Beclin-1-PI3KC3 complex.Int. Immunopharmacol.20219410746010.1016/j.intimp.2021.107460 33621850
    [Google Scholar]
  43. ZengW. WuC. DaiY. Regulatory effects of luteolin on airway inflammation in asthmatic rats.Zhonghua Yi Xue Za Zhi2014943225352539 25410928
    [Google Scholar]
  44. GaoS. GaoY. CaiL. QinR. Luteolin attenuates Staphylococcus aureus -induced endometritis through inhibiting ferroptosis and inflammation via activating the Nrf2/GPX4 signaling pathway.Microbiol. Spectr.2024122e03279e2310.1128/spectrum.03279‑23 38169293
    [Google Scholar]
  45. KhanZ. NathN. RaufA. EmranT.B. MitraS. IslamF. ChandranD. BaruaJ. KhandakerM.U. IdrisA.M. WilairatanaP. ThiruvengadamM. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications.Chem. Biol. Interact.202236511011710.1016/j.cbi.2022.110117 35995256
    [Google Scholar]
  46. RossiA. BragonziA. MededeM. De FinoI. LippiG. ProsdocimiM. TamaniniA. CabriniG. Dechecchi, MC β-sitosterol ameliorates inflammation and Pseudomonas aeruginosa lung infection in a mouse model.J. Cyst. Fibros.2022221156160
    [Google Scholar]
  47. MahajanS.G. MehtaA.A. Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma.Eur. J. Pharmacol.2011650145846410.1016/j.ejphar.2010.09.075 20946894
    [Google Scholar]
  48. YachunZ. JiajiZ. ShiquanC. β-sitosterol alleviates neuropathic pain by affect microglia polarization through inhibiting TLR4/NF-κB signaling pathway.J. Neuroimmune Pharmacol.202318469070310.1007/s11481‑023‑10091‑w 38041701
    [Google Scholar]
  49. SudeshnaN. AnishN. SomanjanaK. Anticancer activity and other biomedical properties of β-sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches.Phytother. Res.202310.1002/ptr.8061 37929761
    [Google Scholar]
  50. ChenH. LouY. LinS. TanX. ZhengY. YuH. JiangR. WeiY. HuangH. QiX. ZhangR. LiuZ. WuJ. Formononetin, a bioactive isoflavonoid constituent from Astragalus membranaceus (Fisch.) Bunge, ameliorates type 1 diabetes mellitus via activation of Keap1/Nrf2 signaling pathway: An integrated study supported by network pharmacology and experimental validation.J. Ethnopharmacol.202432211757610.1016/j.jep.2023.117576 38104880
    [Google Scholar]
  51. YiL. CuiJ. WangW. TangW. TengF. ZhuX. QinJ. WuniqiemuT. SunJ. WeiY. DongJ. Formononetin attenuates airway inflammation and oxidative stress in murine allergic asthma.Front. Pharmacol.20201153384110.3389/fphar.2020.533841 33013383
    [Google Scholar]
  52. JiaC HuF LuD JinH LuH XueE WuD. D. Formononetin inhibits IL-1β-induced inflammation in human chondrocytes and slows the progression of osteoarthritis in rat model via the regulation of PTEN/AKT/NF-κB pathway. Int Immunopharmacol2022113Pt A109309
    [Google Scholar]
  53. ChenL. XingD. GuoL. JinJ. LiS. Formononetin, an active component of astragalus membranaceus, inhibits the pathogenesisand progression of esophageal cancer through the COX-2/Cyclin D1 axis. Clin. Lab.20236903/202310.7754/Clin.Lab.2022.22040336912303
    [Google Scholar]
  54. JiaoW.P. JiaoW.J. ZhangJ.Y. Formononetin affects the pathogenesis of liver cancer by inhibiting the COX-2/Cyclin D1 Axis.Zhongguo Zhongliu Shengwu Zhiliao Zazhi20212809877884
    [Google Scholar]
  55. Reigada-RiveraM.L. LozanoC.S. RodillaE.M. García-SánchezA. García-SolaesaV. ToledanoF.L. GonzálezI.D. Isidoro-GarcíaM. Polymorphisms in human IL4, IL10, and TNF genes are associated with an increased risk of developing nsaid-exacerbated respiratory disease.Genes 202213460510.3390/genes13040605 35456412
    [Google Scholar]
  56. NamakanovaO.A. GorshkovaE.A. ZvartsevR.V. NedospasovS.A. DrutskayaM.S. GubernatorovaE.O. Therapeutic potential of combining IL-6 and TNF blockade in a mouse model of allergic asthma.Int. J. Mol. Sci.2022237352110.3390/ijms23073521 35408882
    [Google Scholar]
  57. ZhangY.Z. WuQ.J. YangX. XingX.X. ChenY.Y. WangH. Effects of SIRT1/Akt pathway on chronic inflammatory response and lung function in patients with asthma.Eur. Rev. Med. Pharmacol. Sci.2019231149484953 31210330
    [Google Scholar]
  58. SuY. SaiY. ZhouL. LiuZ. DuP. WuJ. ZhangJ. Current insights into the regulation of programmed cell death by TP53 mutation in cancer.Front. Oncol.202212102342710.3389/fonc.2022.1023427 36313700
    [Google Scholar]
  59. YuanL. WangL. DuX. QinL. YangM. ZhouK. WuM. YangY. ZhengZ. XiangY. QuX. LiuH. QinX. LiuC. The DNA methylation of FOXO3 and TP53 as a blood biomarker of late-onset asthma.J. Transl. Med.202018146710.1186/s12967‑020‑02643‑y 33298101
    [Google Scholar]
  60. YangN. LiX. Epigallocatechin gallate relieves asthmatic symptoms in mice by suppressing HIF-1α/VEGFA-mediated M2 skewing of macrophages.Biochem. Pharmacol.202220211511210.1016/j.bcp.2022.115112 35640712
    [Google Scholar]
  61. BerryS.P.D.G. DossouC. KashifA. SharifinejadN. AziziG. HamedifarH. SabzvariA. ZianZ. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases.Int. Immunopharmacol.202210210840210.1016/j.intimp.2021.108402 34863654
    [Google Scholar]
  62. CamargoL.N. SantosT.M. AndradeF.C.P. FukuzakiS. dos Santos LopesF.D.T.Q. de Arruda MartinsM. PradoC.M. LeickE.A. RighettiR.F. TibérioI.F.L.C. Bronchial vascular remodeling is attenuated by Anti-IL-17 in asthmatic responses exacerbated by LPS.Front. Pharmacol.202011126910.3389/fphar.2020.01269 33013361
    [Google Scholar]
  63. LiuS.Y. ChengX.M. ChenX.H. Molecular mechanism of Qianhu in the treatment of bronchial asthma based on network pharmacology.Zhongguo Yiyuan Yaoxue Zazhi2020401415281533
    [Google Scholar]
  64. XuH. LiuT. LiJ. ChenF. XuJ. HuL. JiangL. XiangZ. WangX. ShengJ. Roburic acid targets TNF to inhibit the NF-κB signaling pathway and suppress human colorectal cancer cell growth.Front. Immunol.20221385316510.3389/fimmu.2022.853165 35222445
    [Google Scholar]
  65. LiuY. ChenY. DingC. ZhuX. SongX. RenY. WangQ. ZhangY. SunX. TRIM56 positively regulates TNFα-induced NF-κB signaling by enhancing the ubiquitination of TAK1.Int. J. Biol. Macromol.202221957157810.1016/j.ijbiomac.2022.08.019 35952808
    [Google Scholar]
  66. MaY. PengT. YaoX. SunC. WangX. KLF2 reduces dexamethasone-induced injury to growth plate chondrocytes by inhibiting the Runx2-mediated PI3K/AKT and ERK signalling pathways.Autoimmunity20235611710.1080/08916934.2022.2141233 36343159
    [Google Scholar]
  67. WangL. JiangW. WangJ. XieY. WangW. Puerarin inhibits FUNDC1-mediated mitochondrial autophagy and CSE-induced apoptosis of human bronchial epithelial cells by activating the PI3K/AKT/mTOR signaling pathway.Aging 20221431253126410.18632/aging.203317 35134750
    [Google Scholar]
  68. LiuJ. ZhangX. YueS. FuJ. ChenJ. HuangR. ShangP. ZhongK. GuoS. JiaoX. ZhaG. HanL. YangG. LiH. WangY. The anti-apoptotic and anti-autophagic effects of EPO through PI3K/Akt/mTOR signaling pathway in MAC-T cells.Res. Vet. Sci.202214911010.1016/j.rvsc.2022.06.005 35714559
    [Google Scholar]
  69. WuD LiS LiuX XuJ JiangA ZhangY LiuZ WangJ ZhouE WeiZ YangZ GuoC C Alpinetin prevents inflammatory responses in OVA-induced allergic asthma through modulating PI3K/AKT/NF-κB and HO-1 signaling pathways in mice. Int Immunopharmacol.,202089Pt A107073
    [Google Scholar]
  70. ZhuY SunD LiuH SunL JieJ LuoJ PengL SongL Bixin protects mice against bronchial asthma though modulating PI3K/Akt pathway. Int Immunopharmacol, 2021101Pt B108266
    [Google Scholar]
  71. HuangW.C. TuR.S. ChenY.L. TsaiY.Y. LinC.F. LiouC.J. Conjugated linoleic acids suppress inflammatory response and ICAM-1 expression through inhibition of NF-κB and MAPK signaling in human bronchial epithelial cells.Food Funct.2016742025203310.1039/C5FO01037C 27007063
    [Google Scholar]
  72. LuB. ChenX. ChenH. LiQ. LiH. XuY. LiY. ShenX. JiangR. Demethoxycurcumin mitigates inflammatory responses in lumbar disc herniation via MAPK and NF-κB pathways in vivo and in vitro.Int. Immunopharmacol.202210810891410.1016/j.intimp.2022.108914 35729841
    [Google Scholar]
  73. LiZ. ChengQ. YuL. HeY.Y. GaoL.N. WangY. LiL. CuiY.L. GaoS. YuC.Q. Dan-Lou tablets reduces inflammatory response via suppression of the MyD88/p38 MAPK/NF-κB signaling pathway in RAW 264.7 macrophages induced by ox-LDL.J. Ethnopharmacol.202229811560010.1016/j.jep.2022.115600 35970313
    [Google Scholar]
  74. WenX.H. WangF. SuK. The influence of bufei decoction on pulmonary histopathology and broncho-alveolar lavage fluid inflammatory factors of COPD model rats.J. Chin. Clin. Med.201810549
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073285566240223144925
Loading
/content/journals/cchts/10.2174/0113862073285566240223144925
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test