Skip to content
2000
Volume 28, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Backgound

Thunb. (PMT) has shown promise in exerting cerebrovascular protective effects, and its potential for treating ischemic stroke (IS) has garnered attention. However, the lack of clarity regarding its chemical constituents and mechanisms has significantly hindered its clinical application.

Methods

In this study, we employed network pharmacology and molecular docking techniques for the first time to elucidate the potential compounds and targets of PMT in treating IS. The databases CTD, DrugBank, DisGeNET, GeneCards, OMIM, TTD, PGKB, NCBI, TCMIP, CNKI, PubMed, ZINC, STITCH, BATMAN, ETCM and Swiss provided information on targets related to IS and components of PMT, along with their associated targets. We constructed “compound-target” and protein-protein interaction (PPI) networks sourced from the STRING database using the Cytoscape software. Gene Ontology (GO) enrichment analysis and KEGG pathway analysis were conducted using the DAVID database. Molecular docking between core targets and active compounds was conducted using Autodock4 software. Experiments were performed in an oxygen-glucose deprivation and reperfusion (OGD/R) model to validate the anti-IS activity of compounds isolated from PMT preliminarily. Network pharmacological analysis revealed 16 core compounds, including resveratrol, polydatin, TSG, ω-hydroxyemodin, emodin anthrone, tricin, moupinamide, and others, along with 11 high-degree targets, such as PTGS1, PTGS2, ADORA1, ADORA2, CA1, EGFR, ESR1, ESR2, SRC, MMP3 and MMP9.

Results

GO and KEGG enrichment analyses revealed the involvement of HIF-1, Akt signaling pathway and energy metabolism-related signaling pathways. Molecular docking results emphasized eight key compounds and confirmed their interactions with corresponding targets. OGD/R model experiments identified TSG and tricin as the primary active substances within PMT for its anti-stroke activity.

Conclusion

This study contributes new insights into the potential development of PMT for stroke prevention and treatment.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073285988240229081558
2024-04-15
2025-09-22
Loading full text...

Full text loading...

References

  1. TsaoC.W. AdayA.W. AlmarzooqZ.I. AlonsoA. BeatonA.Z. BittencourtM.S. BoehmeA.K. BuxtonA.E. CarsonA.P. Commodore-MensahY. ElkindM.S.V. EvensonK.R. Eze-NliamC. FergusonJ.F. GenerosoG. HoJ.E. KalaniR. KhanS.S. KisselaB.M. KnutsonK.L. LevineD.A. LewisT.T. LiuJ. LoopM.S. MaJ. MussolinoM.E. NavaneethanS.D. PerakA.M. PoudelR. Rezk-HannaM. RothG.A. SchroederE.B. ShahS.H. ThackerE.L. VanWagnerL.B. ViraniS.S. VoecksJ.H. WangN.Y. YaffeK. MartinS.S. Heart disease and stroke statistics—2022 update: A report from the american heart association.Circulation20221458e153e63910.1161/CIR.0000000000001052 35078371
    [Google Scholar]
  2. XiaC. ZhouJ. LuC. WangY. TangT. CaiY. JuS. Characterizing diaschisis-related thalamic perfusion and diffusion after middle cerebral artery infarction.Stroke20215272319232710.1161/STROKEAHA.120.032464 33971741
    [Google Scholar]
  3. XingC. AraiK. LoE.H. HommelM. Pathophysiologic cascades in ischemic stroke.Int. J. Stroke20127537838510.1111/j.1747‑4949.2012.00839.x 22712739
    [Google Scholar]
  4. HankeyG.J. Neuroprotection for acute ischaemic stroke: Hope reignited.Lancet Neurol.20065428728810.1016/S1474‑4422(06)70387‑8 16545741
    [Google Scholar]
  5. AmaniH. HabibeyR. HajmiresmailS.J. LatifiS. Pazoki-ToroudiH. AkhavanO. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries.J. Mater. Chem. B Mater. Biol. Med.20175489452947610.1039/C7TB01689A 32264560
    [Google Scholar]
  6. AmaniH. HabibeyR. ShokriF. HajmiresmailS.J. AkhavanO. MashaghiA. Pazoki-ToroudiH. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling.Sci. Rep.201991604410.1038/s41598‑019‑42633‑9 30988361
    [Google Scholar]
  7. CaiX. BandlaA. WangC. LiuY.H. ChuanC.K. XuY. LiuX. XuS. WuW. ThakorN.V. LiuB. Photothermal‐activatable liposome carrying tissue plasminogen activator for photoacoustic image‐guided ischemic stroke treatment.Small Struct.202232210011810.1002/sstr.202100118
    [Google Scholar]
  8. YoshitomiT. NagasakiY. Self-assembling antioxidants for ischemia–reperfusion injuries.Antioxid. Redox Signal.2022361-3708010.1089/ars.2021.0103 34074133
    [Google Scholar]
  9. ParvezS. KaushikM. AliM. AlamM.M. AliJ. TabassumH. KaushikP. Dodging blood brain barrier with “nano” warriors: Novel strategy against ischemic stroke.Theranostics202212268971910.7150/thno.64806 34976208
    [Google Scholar]
  10. LiaoJ. LiY. LuoY. MengS. ZhangC. XiongL. WangT. LuY. Recent advances in targeted nanotherapies for ischemic stroke.Mol. Pharm.20221993026304110.1021/acs.molpharmaceut.2c00383 35905397
    [Google Scholar]
  11. AkhavanO. GhaderiE. AboueiE. HatamieS. GhasemiE. Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets.Carbon20146639540610.1016/j.carbon.2013.09.015
    [Google Scholar]
  12. ZengP. YiY. SuH.F. YeC.Y. SunY.W. ZhouX.W. LuY. ShiA. TianQ. Key phytochemicals and biological functions of chuanxiong rhizoma against ischemic stroke: A network pharmacology and experimental assessment.Front. Pharmacol.20211275804910.3389/fphar.2021.758049 34992531
    [Google Scholar]
  13. ChongP.Z. NgH.Y. TaiJ.T. LeeS.W.H. Efficacy and safety of ginkgo biloba in patients with acute ischemic stroke: A systematic review and meta-analysis.Am. J. Chin. Med.202048351353410.1142/S0192415X20500263 32349519
    [Google Scholar]
  14. XuM. WuR.X. LiX.L. ZengY.S. LiangJ.Y. FuK. LiangY. WangZ. Traditional medicine in China for ischemic stroke: Bioactive components, pharmacology, and mechanisms. J. Integr. Neurosci.,202221102610.31083/j.jin210102635164462
    [Google Scholar]
  15. LiangJ. HanR. ZhouB. Metabolic Reprogramming: Strategy for Ischemic Stroke Treatment by Ischemic Preconditioning.Biology 202110542410.3390/biology10050424 34064579
    [Google Scholar]
  16. YangM. HuangW.Z. PongN.H. LiuA.G.L. LiC.K. NgP.C. FokT.F. LiK.K.H. The effect of polygonum multiflorum extracts on hematopoiesis and platelet production.Blood200510621592159
    [Google Scholar]
  17. LiY. HanM. LinP. HeY. YuJ. ZhaoR. Hair growth promotion activity and its mechanism of polygonum multiflorum.Evid. Based Complement. Alternat. Med.2015201511010.1155/2015/517901 26294926
    [Google Scholar]
  18. ChenH-S. LiuY. LinL.Q. ZhaoJ.L. ZhangC.P. JinJ.C. WangL. BaiM.H. WangY.C. LiuM. ShenB.Z. Anti-proliferative effect of an extract of the root of Polygonum multiflorum Thunb. on MCF-7 human breast cancer cells and the possible mechanisms.Mol. Med. Rep.20114613131319 21874249
    [Google Scholar]
  19. LiM.H. RuanL.Y. ChenC. XingY.X. HongW. DuR.H. WangJ.S. Protective effects of Polygonum multiflorum on ischemic stroke rat model analysed by 1 H NMR metabolic profiling.J. Pharm. Biomed. Anal.20181559110310.1016/j.jpba.2018.03.049 29625260
    [Google Scholar]
  20. ChanY.C. WangM.F. ChenY.C. YangD.Y. LeeM.S. ChengF.C. Long-term administration of Polygonum multiflorum Thunb. reduces cerebral ischemia-induced infarct volume in gerbils.Am. J. Chin. Med.2003311717710.1142/S0192415X03000734 12723756
    [Google Scholar]
  21. LeeS.V. ChoiK.H. ChoiY.W. HongJ.W. BaekJ.U. ChoiB.T. ShinH.K. Hexane extracts of Polygonum multiflorum improve tissue and functional outcome following focal cerebral ischemia in mice.Mol. Med. Rep.2014941415142110.3892/mmr.2014.1943 24534954
    [Google Scholar]
  22. JangJ.Y. KimH.N. KimY.R. ChoiY.W. ChoiY.H. LeeJ.H. ShinH.K. ChoiB.T. Hexane extract from Polygonum multiflorum attenuates glutamate-induced apoptosis in primary cultured cortical neurons.J. Ethnopharmacol.2013145126126810.1016/j.jep.2012.10.061 23164763
    [Google Scholar]
  23. KimH.N. KimY.R. JangJ.Y. ChoiY.W. BaekJ.U. HongJ.W. ChoiY.H. ShinH.K. ChoiB.T. Neuroprotective effects of Polygonum multiflorum extract against glutamate-induced oxidative toxicity in HT22 hippocampal cells.J. Ethnopharmacol.2013150110811510.1016/j.jep.2013.08.014 23973786
    [Google Scholar]
  24. AlimirzaeiF. KieslichC.A. Machine learning models for predicting membranolytic anticancer peptides. In: Computer Aided Chemical Engineering. KokossisA.C. GeorgiadisM.C. PistikopoulosE. Elsevier202326912696
    [Google Scholar]
  25. CasasA.I. HassanA.A. LarsenS.J. Gomez-RangelV. ElbatreekM. KleikersP.W.M. GuneyE. EgeaJ. LópezM.G. BaumbachJ. SchmidtH.H.H.W. From single drug targets to synergistic network pharmacology in ischemic stroke.Proc. Natl. Acad. Sci. 2019116147129713610.1073/pnas.1820799116 30894481
    [Google Scholar]
  26. LaiW. KuangM. WangX. GhafariaslP. SabzalianM.H. LeeS. Skin cancer diagnosis (SCD) using Artificial Neural Network (ANN) and Improved Gray Wolf Optimization (IGWO).Sci. Rep.20231311937710.1038/s41598‑023‑45039‑w 37938553
    [Google Scholar]
  27. RahimF. Zaki ZadehA. JavanmardiP. Emmanuel KomolafeT. KhalafiM. ArjomandiA. GhofraniH.A. ShirbandiK. Machine learning algorithms for diagnosis of hip bone osteoporosis: A systematic review and meta-analysis study.Biomed. Eng. Online20232216810.1186/s12938‑023‑01132‑9 37430259
    [Google Scholar]
  28. MaghsoudiS. Taghavi ShahrakiB. RamehF. NazarabiM. FatahiY. AkhavanO. RabieeM. MostafaviE. LimaE.C. SaebM.R. RabieeN. A review on computer‐aided chemogenomics and drug repositioning for rational COVID ‐19 drug discovery.Chem. Biol. Drug Des.2022100569972110.1111/cbdd.14136 36002440
    [Google Scholar]
  29. RadM. EbrahimipourG. BandehpourM. AkhavanO. YarianF. Neisseria meningitidis detection by coupling bacterial factor H onto Au/scFv antibody nanohybrids.Appl. Phys., A Mater. Sci. Process.2023129640110.1007/s00339‑023‑06620‑2
    [Google Scholar]
  30. KieslichC.A. AlimirzaeiF. SongH. DoM. HallP. Data-driven prediction of antiviral peptides based on periodicities of amino acid properties. In: Computer Aided Chemical Engineering, 50. TürkayM. GaniR. 20212019202410.1016/B978‑0‑323‑88506‑5.50312‑0
    [Google Scholar]
  31. LiS. ZhangB. Traditional Chinese medicine network pharmacology: Theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  32. SahuS.N. SorenS. ChakrabartyS. SahuR. Theoretical Study on Graphene Oxide as a Cancer Drug Carrier.Monoelements2020738610.1002/9781119655275.ch4
    [Google Scholar]
  33. RadM. EbrahimipourG. BandehpourM. AkhavanO. YarianF. SOEing PCR/docking optimization of protein A-G/scFv-Fc-bioconjugated au nanoparticles for interaction with meningitidis bacterial antigen.Catalysts202313579010.3390/catal13050790
    [Google Scholar]
  34. UnalM.A. BayrakdarF. NazirH. BesbinarO. GurcanC. LozanoN. ArellanoL.M. YalcinS. PanatliO. CelikD. AlkayaD. AganA. FuscoL. Suzuk YildizS. DeloguL.G. AkcaliK.C. KostarelosK. YilmazerA. Graphene oxide nanosheets interact and interfere with SARS‐CoV‐2 surface proteins and cell receptors to inhibit infectivity.Small20211725210148310.1002/smll.202101483 33988903
    [Google Scholar]
  35. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  36. JiangP. LiuR. DouS. LiuL. ZhangW. ChenZ. XuR. DingJ. Analysis of the constituents in rat plasma after oral administration of Shexiang Baoxin pill by HPLC‐ESI‐MS/MS.Biomed. Chromatogr.200923121333134310.1002/bmc.1258 19517427
    [Google Scholar]
  37. GfellerD. GrosdidierA. WirthM. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: A web server for target prediction of bioactive small molecules.Nucleic Acids Res.201442W1W32W3810.1093/nar/gku293 24792161
    [Google Scholar]
  38. SmootM.E. OnoK. RuscheinskiJ. WangP.L. IdekerT. Cytoscape 2.8: New features for data integration and network visualization.Bioinformatics201127343143210.1093/bioinformatics/btq675 21149340
    [Google Scholar]
  39. LinL. NiB. LinH. ZhangM. LiX. YinX. QuC. NiJ. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review.J. Ethnopharmacol.201515915818310.1016/j.jep.2014.11.009 25449462
    [Google Scholar]
  40. ArditoF. GiulianiM. PerroneD. TroianoG. MuzioL.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. (Review). Int. J. Mol. Med.201740227128010.3892/ijmm.2017.3036 28656226
    [Google Scholar]
  41. JunttilaM.R. LiS.P. WestermarckJ. Phosphatase‐mediated crosstalk between MAPK signaling pathways in the regulation of cell survival.FASEB J.200822495496510.1096/fj.06‑7859rev 18039929
    [Google Scholar]
  42. UzdenskyA.B. Apoptosis regulation in the penumbra after ischemic stroke: Expression of pro- and antiapoptotic proteins.Apoptosis2019249-1068770210.1007/s10495‑019‑01556‑6 31256300
    [Google Scholar]
  43. QinC. YangS. ChuY.H. ZhangH. PangX.W. ChenL. ZhouL.Q. ChenM. TianD.S. WangW. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.20227121510.1038/s41392‑022‑01064‑1 35794095
    [Google Scholar]
  44. LebelM. PatenaudeC. AllysonJ. MassicotteG. CyrM. Dopamine D1 receptor activation induces tau phosphorylation via cdk5 and GSK3 signaling pathways.Neuropharmacology200957439240210.1016/j.neuropharm.2009.06.041 19591849
    [Google Scholar]
  45. HamP.B.III RajuR. Mitochondrial function in hypoxic ischemic injury and influence of aging.Prog. Neurobiol.20171579211610.1016/j.pneurobio.2016.06.006 27321753
    [Google Scholar]
  46. Duta-BratuC.G. NitulescuG.M. MihaiD.P. OlaruO.T. Resveratrol and other natural oligomeric stilbenoid compounds and their therapeutic applications.Plants20231216293510.3390/plants12162935 37631147
    [Google Scholar]
  47. LaubachV.E. FrenchB.A. OkusaM.D. Targeting of adenosine receptors in ischemia–reperfusion injury.Expert Opin. Ther. Targets201115110311810.1517/14728222.2011.541441 21110787
    [Google Scholar]
  48. RuanL. LiG. ZhaoW. MengH. ZhengQ. WangJ. Activation of adenosine a1 receptor in ischemic stroke: Neuroprotection by tetrahydroxy stilbene glycoside as an agonist.Antioxidants2021107111210.3390/antiox10071112 34356346
    [Google Scholar]
  49. ZhaoS. ChengC.K. ZhangC.L. HuangY. Interplay between oxidative stress, cyclooxygenases, and prostanoids in cardiovascular diseases.Antioxid. Redox Signal.2021341078479910.1089/ars.2020.8105 32323554
    [Google Scholar]
  50. YangH. LiG.P. LiuQ. ZongS.B. LiL. XuZ.L. ZhouJ. CaoL. WangZ.Z. ZhangQ.C. LiM. FanQ.R. HuH.F. XiaoW. Neuroprotective effects of Ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor.Phytother. Res.20213552727274410.1002/ptr.7018 33452698
    [Google Scholar]
  51. ChoiS.H. AidS. BosettiF. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: Implications for translational research.Trends Pharmacol. Sci.200930417418110.1016/j.tips.2009.01.002 19269697
    [Google Scholar]
  52. LopezM.S. DempseyR.J. VemugantiR. Resveratrol neuroprotection in stroke and traumatic CNS injury.Neurochem. Int.201589758210.1016/j.neuint.2015.08.009 26277384
    [Google Scholar]
  53. ShahF.A. KuryL.A. LiT. ZebA. KohP.O. LiuF. ZhouQ. HussainI. KhanA.U. JiangY. LiS. Polydatin attenuates neuronal loss via reducing neuroinflammation and oxidative stress in rat MCAO models.Front. Pharmacol.20191066366310.3389/fphar.2019.00663 31293416
    [Google Scholar]
  54. FuR. ShenY. ZhengJ. Association between common genetic variants in ESR1 and stroke risk: A systematic review and meta-analysis.J. Stroke Cerebrovasc. Dis.2019281110435510.1016/j.jstrokecerebrovasdis.2019.104355 31533892
    [Google Scholar]
  55. DuncanK.A. SaldanhaC.J. Central aromatization: A dramatic and responsive defense against threat and trauma to the vertebrate brain.Front. Neuroendocrinol.20205610081610.1016/j.yfrne.2019.100816 31786088
    [Google Scholar]
  56. MatsudaH. ShimodaH. MorikawaT. YoshikawaM. Phytoestrogens from the roots of Polygonum cuspidatum (polygonaceae): structure-Requirement of hydroxyanthraquinones for estrogenic activity.Bioorg. Med. Chem. Lett.200111141839184210.1016/S0960‑894X(01)00318‑3 11459643
    [Google Scholar]
  57. KangS.C. LeeC.M. ChoungE.S. BakJ.P. BaeJ.J. YooH.S. KwakJ.H. ZeeO.P. Anti-proliferative effects of estrogen receptor-modulating compounds isolated from Rheum palmatum.Arch. Pharm. Res.200831672272610.1007/s12272‑001‑1218‑1 18563353
    [Google Scholar]
  58. KimS.J. HwangY.H. YeeS.T. Estrogenic activities of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside and physcion in MCF-7 cells.Medicine in. Drug Discovery.2021910007210.1016/j.medidd.2020.100072
    [Google Scholar]
  59. HabermanS. CapildeoR. RoseF.C. Sex differences in the incidence of cerebrovascular disease.J. Epidemiol. Community Health1981351455010.1136/jech.35.1.45 7264532
    [Google Scholar]
  60. ChenM. WuS. ShenB. FanQ. ZhangR. ZhouY. ZhangP. WangL. ZhangL. Activation of the δ opioid receptor relieves cerebral ischemic injury in rats via EGFR transactivation.Life Sci.202127311929210.1016/j.lfs.2021.119292 33667516
    [Google Scholar]
  61. WangY. CookeM.J. LapitskyY. WylieR.G. SachewskyN. CorbettD. MorsheadC.M. ShoichetM.S. Transport of epidermal growth factor in the stroke-injured brain.J. Control. Release2011149322523510.1016/j.jconrel.2010.10.022 21035512
    [Google Scholar]
  62. NakanoS. KobayashiN. YoshidaK. OhnoT. MatsuokaH. Cardioprotective mechanisms of spironolactone associated with the angiotensin-converting enzyme/epidermal growth factor receptor/extracellular signal-regulated kinases, NAD(P)H oxidase/lectin-like oxidized low-density lipoprotein receptor-1, and Rho-kinase pathways in aldosterone/salt-induced hypertensive rats.Hypertens. Res.2005281192593610.1291/hypres.28.925 16555582
    [Google Scholar]
  63. KagiyamaS. EguchiS. FrankG.D. InagamiT. ZhangY.C. PhillipsM.I. Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense.Circulation2002106890991210.1161/01.CIR.0000030181.63741.56 12186792
    [Google Scholar]
  64. AraiK. JinG. NavaratnaD. LoE.H. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke.FEBS J.2009276174644465210.1111/j.1742‑4658.2009.07176.x 19664070
    [Google Scholar]
  65. ChangJ.J. StanfillA. PourmotabbedT. The role of matrix metalloproteinase polymorphisms in ischemic stroke.Int. J. Mol. Sci.2016171323
    [Google Scholar]
  66. AlamM. MohammadA. RahmanS. ToddK. ShuaibA. Hyperthermia up-regulates matrix metalloproteinases and accelerates basement membrane degradation in experimental stroke.Neurosci. Lett.2011495213513910.1016/j.neulet.2011.03.056 21443925
    [Google Scholar]
  67. BarrT.L. LatourL.L. LeeK.Y. SchaeweT.J. LubyM. ChangG.S. El-ZammarZ. AlamS. HallenbeckJ.M. KidwellC.S. WarachS. Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9.Stroke2010413e123e12810.1161/STROKEAHA.109.570515 20035078
    [Google Scholar]
  68. ChoiD.H. KangD.G. KimE.J. KimH.Y. KimJ.S. LeeH.S. An ethanol extract of Polygonum multiflorum (EPM) suppresses atherogenesis in rat with atherogenic‐diet.Wiley Online Library200810.1096/fasebj.22.1_supplement.912.40
    [Google Scholar]
  69. ZhangW. WangC.H. LiF. ZhuW.Z. 2,3,4′,5‐tetrahydroxystilbene‐2‐ O ‐β‐ D ‐glucoside suppresses matrix metalloproteinase expression and inflammation in atherosclerotic rats.Clin. Exp. Pharmacol. Physiol.200835331031610.1111/j.1440‑1681.2007.04824.x 17973930
    [Google Scholar]
  70. DongW. LiN. GaoD. ZhenH. ZhangX. LiF. Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors.J. Vasc. Surg.200848370971410.1016/j.jvs.2008.04.007 18572362
    [Google Scholar]
  71. TsaiM.M. ChenJ.L. LeeT.H. LiuH. ShanmugamV. HsiehH.L. Brain protective effect of resveratrol via ameliorating interleukin-1β-Induced MMP-9-mediated disruption of ZO-1 arranged integrity.Biomedicines2022106127010.3390/biomedicines10061270
    [Google Scholar]
  72. GuoF. HuaY. WangJ. KeepR.F. XiG. Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage.Transl. Stroke Res.20123113013710.1007/s12975‑011‑0106‑0 22400066
    [Google Scholar]
  73. LemonN. CanepaE. IliesM.A. FossatiS. Carbonic anhydrases as potential targets against neurovascular unit dysfunction in alzheimer’s disease and stroke.Front. Aging Neurosci.202113772278
    [Google Scholar]
  74. ZhangY. ShenL. XieJ. LiL. XiW. LiB. BaiY. YaoH. ZhangS. HanB. Pushen capsule treatment promotes functional recovery after ischemic stroke.Phytomedicine202311115466410.1016/j.phymed.2023.154664 36682301
    [Google Scholar]
  75. LiuY. QuX. YanM. LiD. ZouR. Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway.Hum. Exp. Toxicol.20224110.1177/09603271221125928 36113040
    [Google Scholar]
  76. LawanA. ShiH. GatzkeF. BennettA.M. Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions.Cell. Mol. Life Sci.201370222323710.1007/s00018‑012‑1041‑2 22695679
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073285988240229081558
Loading
/content/journals/cchts/10.2174/0113862073285988240229081558
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test