Skip to content
2000
Volume 28, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Modified Dachaihu decoction (MDD) is a herbal prescription that has shown promising therapeutic benefits in ameliorating pulmonary diseases in clinical practice. However, the detailed mechanisms remain unclear.

Objective

This study aimed to elucidate the lung-protective effects of MDD against acute lung injury (ALI) and the involvement of underlying mechanisms.

Methods

High-performance liquid chromatography (HPLC) was performed to identify the main active ingredients of MDD. Network pharmacological method was adapted to explore the potential mechanisms. Mice were orally administered MDD (11.25, 22.5, and 45 g/kg) once daily for 7 days. H&E staining was performed to evaluate histological changes in the lungs. Levels of inflammatory cytokines and oxidative stress markers were measured to determine the extent of lung injury. Total protein content in bronchoalveolar lavage fluid (BALF) and lung wet/dry weight ratio were measured to assess the severity of pulmonary edema. TUNEL staining and immunohistochemistry analysis were performed to detect apoptosis. RT-qPCR and western blotting were performed to validate the mechanisms involved.

Results

About 10 main active ingredients of MDD were identified. Notably, treatment with MDD resulted in a remarkable reduction in total protein content in BALF and lung W/D weight ratio, as well as substantial mitigation of the inflammatory response and oxidative stress. Mechanistically, the PI3K/Akt signalling pathway was activated. Moreover, MDD pretreatment downregulated p53 and caspase-9 mRNA expression and decreased the Bax/Bcl-2 ratio to ameliorate lung apoptosis.

Conclusions

MDD exhibited pronounced therapeutic effects attenuating inflammatory response, oxidative stress, and apoptosis. These therapeutic effects could be attributed to the synergistic effect of the main active ingredients and are believed to be associated with the activation of the PI3K/Akt pathway.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073282311240226113714
2024-06-06
2025-12-10
Loading full text...

Full text loading...

References

  1. BellaniG. LaffeyJ.G. PhamT. FanE. BrochardL. EstebanA. GattinoniL. van HarenF. LarssonA. McAuleyD.F. RanieriM. RubenfeldG. ThompsonB.T. WriggeH. SlutskyA.S. PesentiA. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries.JAMA2016315878880010.1001/jama.2016.0291 26903337
    [Google Scholar]
  2. ZhangY. ZhangJ. FuZ. Molecular hydrogen is a potential protective agent in the management of acute lung injury.Mol. Med.20222812710.1186/s10020‑022‑00455‑y 35240982
    [Google Scholar]
  3. GustineJ.N. JonesD. Immunopathology of Hyperinflammation in COVID-19.Am. J. Pathol.2021191141710.1016/j.ajpath.2020.08.009 32919977
    [Google Scholar]
  4. ThompsonB.T. ChambersR.C. LiuK.D. Acute respiratory distress syndrome.N. Engl. J. Med.2017377656257210.1056/NEJMra1608077 28792873
    [Google Scholar]
  5. KidoT. MuramatsuK. YateraK. AsakawaT. OtsuboH. KuboT. FujinoY. MatsudaS. MayumiT. MukaeH. Efficacy of early sivelestat administration on acute lung injury and acute respiratory distress syndrome.Respirology201722470871310.1111/resp.12969 27990710
    [Google Scholar]
  6. LewisS.R. PritchardM.W. ThomasC.M. SmithA.F. Pharmacological agents for adults with acute respiratory distress syndrome.Cochrane Libr.201977CD00447710.1002/14651858.CD004477.pub3 31334568
    [Google Scholar]
  7. ShafeeqH. LatI. Pharmacotherapy for acute respiratory distress syndrome.Pharmacotherapy2012321094395710.1002/j.1875‑9114.2012.01115 23033233
    [Google Scholar]
  8. LiuC. XiaoK. XieL. Advances in the use of exosomes for the treatment of ALI/ARDS.Front. Immunol.20221397118910.3389/fimmu.2022.971189 36016948
    [Google Scholar]
  9. DingZ. ZhongR. XiaT. YangY. XingN. WangW. WangY. YangB. SunX. ShuZ. Advances in research into the mechanisms of chinese materia medica against acute lung injury.Biomed. Pharmacother.202012210970610.1016/j.biopha.2019.109706 31918277
    [Google Scholar]
  10. WangJ. WuQ. DingL. SongS. LiY. ShiL. WangT. ZhaoD. WangZ. LiX. Therapeutic effects and molecular mechanisms of bioactive compounds against respiratory diseases: Traditional chinese medicine theory and high-frequency use.Front. Pharmacol.20211273445010.3389/fphar.2021.734450 34512360
    [Google Scholar]
  11. YuanH. MaQ. CuiH. LiuG. ZhaoX. LiW. PiaoG. How can synergism of traditional medicines benefit from network pharmacology?Molecules2017227113510.3390/molecules22071135 28686181
    [Google Scholar]
  12. RenX. ShaoX.X. LiX.X. JiaX.H. SongT. ZhouW.Y. WangP. LiY. WangX.L. CuiQ.H. QiuP.J. ZhaoY.G. LiX.B. ZhangF.C. LiZ.Y. ZhongY. WangZ.G. FuX.J. Identifying potential treatments of COVID-19 from traditional chinese medicine (TCM) by using a data-driven approach.J. Ethnopharmacol.202025811293210.1016/j.jep.2020.112932 32376368
    [Google Scholar]
  13. HaoD. LiY. ShiJ. JiangJ. Baicalin alleviates chronic obstructive pulmonary disease through regulation of HSP72-mediated JNK pathway.Mol. Med.20212715310.1186/s10020‑021‑00309‑z 34053448
    [Google Scholar]
  14. HuangK.L. ChenC.S. HsuC.W. LiM.H. ChangH. TsaiS.H. ChuS.J. Therapeutic effects of baicalin on lipopolysaccharide-induced acute lung injury in rats.Am. J. Chin. Med.200836230131110.1142/S0192415X08005783 18457362
    [Google Scholar]
  15. DongX. FuJ. YinX. CaoS. LiX. LinL. NiJ. Emodin: A review of its pharmacology, toxicity and pharmacokinetics.Phytother. Res.20163081207121810.1002/ptr.5631 27188216
    [Google Scholar]
  16. HuQ. YaoJ. WuX. LiJ. LiG. TangW. LiuJ. WanM. Emodin attenuates severe acute pancreatitis-associated acute lung injury by suppressing pancreatic exosome-mediated alveolar macrophage activation.Acta Pharm. Sin. B202212103986400310.1016/j.apsb.2021.10.008 36213542
    [Google Scholar]
  17. LiuY. ShangL. ZhouJ. PanG. ZhouF. YangS. Emodin attenuates LPS-induced acute lung injury by inhibiting nlrp3 inflammasome-dependent pyroptosis signaling pathway in vitro and in vivo.Inflammation202245275376710.1007/s10753‑021‑01581‑1 34787801
    [Google Scholar]
  18. XieP. YanL.J. ZhouH.L. CaoH.H. ZhengY.R. LuZ.B. YangH.Y. MaJ.M. ChenY.Y. HuoC. TianC. LiuJ.S. YuL.Z. Emodin protects against lipopolysaccharide-induced acute lung injury via the JNK/Nur77/c-Jun signaling pathway.Front. Pharmacol.20221371727110.3389/fphar.2022.717271 35370650
    [Google Scholar]
  19. DuZ.A. SunM.N. HuZ.S. Saikosaponin a ameliorates lps-induced acute lung injury in mice.Inflammation201841119319810.1007/s10753‑017‑0677‑3 28986747
    [Google Scholar]
  20. WangH-W. LiuM. ZhongT-D. FangX-M. Saikosaponin-d attenuates ventilator-induced lung injury in rats.Int. J. Clin. Exp. Med.2015891513715145 26628997
    [Google Scholar]
  21. CuiH. LiY. WangY. JinL. YangL. WangL. LiaoJ. WangH. PengY. ZhangZ. WangH. LiuX. Da-chai-hu decoction ameliorates high fat diet-induced nonalcoholic fatty liver disease through remodeling the gut microbiota and modulating the serum metabolism.Front. Pharmacol.20201158409010.3389/fphar.2020.584090 33328987
    [Google Scholar]
  22. ZhaoG. ZhuoY.Z. CuiL.H. LiC.X. ChenS.Y. LiD. LiuJ.H. LiD.H. CuiN.Q. ZhangS.K. Modified da-chai-hu decoction regulates the expression of occludin and nf-κb to alleviate organ injury in severe acute pancreatitis rats.Chin. J. Nat. Med.201917535536210.1016/S1875‑5364(19)30041‑X 31171270
    [Google Scholar]
  23. ChenH. BaiC. WangX. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine.Expert Rev. Respir. Med.20104677378310.1586/ers.10.71 21128752
    [Google Scholar]
  24. YeR. LiuZ. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway.Exp. Mol. Pathol.202011310435010.1016/j.yexmp.2019.104350 31805278
    [Google Scholar]
  25. CommissionS.P. Pharmacopoeia of the People's Republic of China, 2020 English Ed.; China Medical Science Press: Beijing,2022
    [Google Scholar]
  26. National research council committee for the update of the guide for the C, use of laboratory A. The national academies collection: Reports funded by national institutes of health. Guide for the care and use of laboratory animals. The national academies collection: Reports funded by national institutes of health, 8th ed; National Academies Press (US) Copyright © 2011, National Academy of Sciences : Washington (DC),201110.17226/1291021595115
    [Google Scholar]
  27. ChenB. GongS. LiM. LiuY. NieJ. ZhengJ. ZhengX. LiJ. GanY. SuZ. ChenJ. LiY. XieQ. YanF. Protective effect of oxyberberine against acute lung injury in mice via inhibiting RhoA/ROCK signaling pathway.Biomed. Pharmacother.202215311330710.1016/j.biopha.2022.113307 35753262
    [Google Scholar]
  28. WuY. WangY. GaoZ. ChenD. LiuG. WanB. JiangF. WeiM. ZuoJ. ZhuJ. ChenY. QianF. PangQ. Ethyl ferulate protects against lipopolysaccharide-induced acute lung injury by activating AMPK/Nrf2 signaling pathway.Acta Pharmacol. Sin.202142122069208110.1038/s41401‑021‑00742‑0 34417573
    [Google Scholar]
  29. ZhuW. ZhangY. WangY. Immunotherapy strategies and prospects for acute lung injury: Focus on immune cells and cytokines.Front. Pharmacol.202213110330910.3389/fphar.2022.1103309 36618910
    [Google Scholar]
  30. BezerraF.S. LanzettiM. NesiR.T. NagatoA.C. SilvaC.P. Kennedy-FeitosaE. MeloA.C. Cattani-CavalieriI. PortoL.C. ValencaS.S. Oxidative stress and inflammation in acute and chronic lung injuries.Antioxidants202312354810.3390/antiox12030548 36978796
    [Google Scholar]
  31. ChenX. TangJ. ShuaiW. MengJ. FengJ. HanZ. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome.Inflamm. Res.202069988389510.1007/s00011‑020‑01378‑2 32647933
    [Google Scholar]
  32. QiaoQ. LiuX. YangT. CuiK. KongL. YangC. ZhangZ. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design.Acta Pharm. Sin. B202111103060309110.1016/j.apsb.2021.04.023 33977080
    [Google Scholar]
  33. XuanT. GongG. DuH. LiuC. WuY. BaoG. MaQ. ZhenD. Protective effect of pteryxin on LPS-induced acute lung injury via modulating MAPK/NF-κB pathway and NLRP3 inflammasome activation.J. Ethnopharmacol.202228611492410.1016/j.jep.2021.114924 34942323
    [Google Scholar]
  34. Z’graggenB.R. TornicJ. Müller-EdenbornB. ReyesL. BooyC. Beck-SchimmerB. Acute lung injury: Apoptosis in effector and target cells of the upper and lower airway compartment.Clin. Exp. Immunol.2010161232433110.1111/j.1365‑2249.2010.04175.x 20456415
    [Google Scholar]
  35. ZhangY. YangJ. LiuP. ZhangR. LiJ. BiY. LiY. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury.Pharmacol. Res.202218510650910.1016/j.phrs.2022.106509 36243330
    [Google Scholar]
  36. GalaniV. TatsakiE. BaiM. KitsoulisP. LekkaM. NakosG. KanavarosP. The role of apoptosis in the pathophysiology of acute respiratory distress syndrome (ARDS): An up-to-date cell-specific review.Pathol. Res. Pract.2010206314515010.1016/j.prp.2009.12.002 20097014
    [Google Scholar]
  37. SabbatiniP. McCormickF. Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis.J. Biol. Chem.199927434242632426910.1074/jbc.274.34.24263 10446202
    [Google Scholar]
  38. YangR. YangH. WeiJ. LiW. YueF. SongY. HeX. HuK. Mechanisms underlying the effects of lianhua qingwen on sepsis-induced acute lung injury: A network pharmacology approach.Front. Pharmacol.20211271765210.3389/fphar.2021.717652 34721017
    [Google Scholar]
  39. BenchimolS. p53-dependent pathways of apoptosis.Cell Death Differ.20018111049105110.1038/sj.cdd.4400918 11687883
    [Google Scholar]
  40. HsiehY.H. DengJ.S. ChangY.S. HuangG.J. Ginsenoside Rh2 ameliorates lipopolysaccharide-induced acute lung injury by regulating the TLR4/PI3K/Akt/mTOR, Raf-1/MEK/ERK, and Keap1/Nrf2/HO-1 signaling pathways in mice.Nutrients2018109120810.3390/nu10091208 30200495
    [Google Scholar]
  41. YangC.C. WuC.J. ChienC.Y. ChienC.T. Green tea polyphenol catechins inhibit coronavirus replication and potentiate the adaptive immunity and autophagy-dependent protective mechanism to improve acute lung injury in mice.Antioxidants202110692810.3390/antiox10060928 34200327
    [Google Scholar]
  42. WangJ. GaoX. LiuF. FangWang; Dong, J.; Zhao, P. Difenoconazole causes cardiotoxicity in common carp (Cyprinus carpio): Involvement of oxidative stress, inflammation, apoptosis and autophagy.Chemosphere202230613556210.1016/j.chemosphere.2022.135562 35792209
    [Google Scholar]
  43. Métrailler-RuchonnetI. PaganoA. CarnesecchiS. KhatibK. HerreraP. DonatiY. BronC. BarazzoneC. Bcl-2 overexpression in type II epithelial cells does not prevent hyperoxia-induced acute lung injury in mice.Am. J. Physiol. Lung Cell. Mol. Physiol.20102993L312L32210.1152/ajplung.00212.2009 20382751
    [Google Scholar]
  44. ZhongR. XiaT. WangY. DingZ. LiW. ChenY. PengM. LiC. ZhangH. ShuZ. Physalin B ameliorates inflammatory responses in lipopolysaccharide-induced acute lung injury mice by inhibiting NF-κB and NLRP3 via the activation of the PI3K/Akt pathway.J. Ethnopharmacol.202228411477710.1016/j.jep.2021.114777 34737012
    [Google Scholar]
  45. DingZ. ZhongR. YangY. XiaT. WangW. WangY. XingN. LuoY. LiS. ShangL. ShuZ. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: A novel strategy for exploring active components and effective mechanism of TCM formulae.Pharmacol. Res.202015610475910.1016/j.phrs.2020.104759 32200026
    [Google Scholar]
  46. ZhangA. PanW. LvJ. WuH. Protective effect of amygdalin on lps-induced acute lung injury by inhibiting NF-κB and NLRP3 signaling pathways.Inflammation201740374575110.1007/s10753‑017‑0518‑4 28303417
    [Google Scholar]
  47. YuW. ZengM. XuP. LiuJ. WangH. Effect of paeoniflorin on acute lung injury induced by influenza A virus in mice. Evidences of its mechanism of action.Phytomedicine20219215372410.1016/j.phymed.2021.153724 34509953
    [Google Scholar]
  48. LiY. XuB. XuM. ChenD. XiongY. LianM. SunY. TangZ. WangL. JiangC. LinY. 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling.Pharmacol. Res.201711913714810.1016/j.phrs.2017.01.026 28167239
    [Google Scholar]
  49. KoH.C. WangY.H. LiouK.T. ChenC.M. ChenC.H. WangW.Y. ChangS. HouY.C. ChenK.T. ChenC.F. ShenY.C. Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells.Eur. J. Pharmacol.20075552-321121710.1016/j.ejphar.2006.10.002 17109845
    [Google Scholar]
  50. KaoT.C. ShyuM.H. YenG.C. Glycyrrhizic acid and 18beta-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3beta signaling and glucocorticoid receptor activation.J. Agric. Food Chem.201058158623862910.1021/jf101841r 20681651
    [Google Scholar]
  51. Fernández-AparicioÁ. Correa-RodríguezM. CastellanoJ.M. Schmidt-RioValle, J.; Perona, J.S.; González-Jiménez, E. Potential molecular targets of oleanolic acid in insulin resistance and underlying oxidative stress: A systematic review.Antioxidants2022118151710.3390/antiox11081517 36009236
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073282311240226113714
Loading
/content/journals/cchts/10.2174/0113862073282311240226113714
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test