Skip to content
2000
Volume 28, Issue 10
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Immune Checkpoint Inhibitors (ICIs) are becoming a new treatment approach for patients with unresectable hepatocellular carcinoma (uHCC). However, the results regarding its efficacy compared with the standard regimen of targeted therapy are not consistent.

Aims

Our aim was to conduct a meta-analysis of existing studies to reveal the differences in the efficacy and safety of the two systems of treatment.

Methods

The related studies were searched in PubMed, Web of Science, the Cochrane Library, and Embase from inception to June 30th, 2022. Data on overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and rate of treatment-related adverse events (TrAEs) with their 95% confidence intervals (CI) were pooled and analyzed by Stata 12.0 software.

Results

A total of ten high-quality controlled clinical studies with 5,539 patients with uHCC were included. The hazard ratio (HR) of the OS and PFS were 0.80 (95% CI, 0.74-0.86) and 0.72 (95% CI, 0.58-0.89), respectively. In addition, the odds ratio (OR) of the ORR and DCR were 3.39 (95% CI, 2.75-4.17) and 1.20 (95% CI, 0.84-1.73), respectively. The ORR of ICIs monotherapy, ICIs plus anti-vascular endothelial growth factor (VEGF) and ICIs plus ICIs were 16% (95% CI, 0.13-0.18), 17% (95% CI, 0.10-0.27), and 20% (95% CI, 0.16-0.24), respectively. For all included studies, the OR of the overall TrAEs was 0.51(95% CI, 0.22-1.18), and grade ≥ 3 TrAEs was 0.78 (95% CI, 0.53-1.14).

Conclusion

ICIs were more effective than targeted drugs concerning survival periods and ORR in patients with uHCC while maintaining a stable safety profile.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073297462240524064442
2024-06-12
2025-10-11
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. YangJ.D. HeimbachJ.K. New advances in the diagnosis and management of hepatocellular carcinoma.BMJ2020371m354410.1136/bmj.m354433106289
    [Google Scholar]
  3. MurataS. MineT. SugiharaF. YasuiD. YamaguchiH. UedaT. OnozawaS. KumitaS. Interventional treatment for unresectable hepatocellular carcinoma.World J. Gastroenterol.20142037134531346510.3748/wjg.v20.i37.1345325309076
    [Google Scholar]
  4. GoossensN. TosoC. HeimM.H. Management of hepatocellular carcinoma: SASL expert opinion statement.Swiss Med. Wkly.20201503132w2029610.4414/smw.2020.2029632789822
    [Google Scholar]
  5. LangL. FDA approves sorafenib for patients with inoperable liver cancer.Gastroenterology2008134237910.1053/j.gastro.2007.12.03718242200
    [Google Scholar]
  6. BruixJ. QinS. MerleP. GranitoA. HuangY.H. BodokyG. PrachtM. YokosukaO. RosmorducO. BrederV. GerolamiR. MasiG. RossP.J. SongT. BronowickiJ.P. Ollivier-HourmandI. KudoM. ChengA.L. LlovetJ.M. FinnR.S. LeBerreM.A. BaumhauerA. MeinhardtG. HanG. RESORCE Investigators Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet201738910064566610.1016/S0140‑6736(16)32453‑927932229
    [Google Scholar]
  7. Abou-AlfaG.K. MeyerT. ChengA.L. El-KhoueiryA.B. RimassaL. RyooB.Y. CicinI. MerleP. ChenY. ParkJ.W. BlancJ.F. BolondiL. KlümpenH.J. ChanS.L. ZagonelV. PressianiT. RyuM.H. VenookA.P. HesselC. Borgman-HageyA.E. SchwabG. KelleyR.K. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma.N. Engl. J. Med.20183791546310.1056/NEJMoa171700229972759
    [Google Scholar]
  8. GretenT.F. SangroB. Targets for immunotherapy of liver cancer.J. Hepatol.2017S0168-8278(17)32287-028923358
    [Google Scholar]
  9. KonstantinidouM. Zarganes-TzitzikasT. Magiera-MularzK. HolakT.A. DömlingA. Immune checkpoint PD‐1/PD‐L1: Is there life beyond antibodies?Angew. Chem. Int. Ed.201857184840484810.1002/anie.20171040729178534
    [Google Scholar]
  10. BorghaeiH. Paz-AresL. HornL. SpigelD.R. SteinsM. ReadyN.E. ChowL.Q. VokesE.E. FelipE. HolgadoE. BarlesiF. KohlhäuflM. ArrietaO. BurgioM.A. FayetteJ. LenaH. PoddubskayaE. GerberD.E. GettingerS.N. RudinC.M. RizviN. CrinòL. BlumenscheinG.R.Jr AntoniaS.J. DorangeC. HarbisonC.T. Graf FinckensteinF. BrahmerJ.R. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer.N. Engl. J. Med.2015373171627163910.1056/NEJMoa150764326412456
    [Google Scholar]
  11. HodiF.S. O’DayS.J. McDermottD.F. WeberR.W. SosmanJ.A. HaanenJ.B. GonzalezR. RobertC. SchadendorfD. HasselJ.C. AkerleyW. van den EertweghA.J.M. LutzkyJ. LoriganP. VaubelJ.M. LinetteG.P. HoggD. OttensmeierC.H. LebbéC. PeschelC. QuirtI. ClarkJ.I. WolchokJ.D. WeberJ.S. TianJ. YellinM.J. NicholG.M. HoosA. UrbaW.J. Improved survival with ipilimumab in patients with metastatic melanoma.N. Engl. J. Med.2010363871172310.1056/NEJMoa100346620525992
    [Google Scholar]
  12. RobertC. LongG.V. BradyB. DutriauxC. MaioM. MortierL. HasselJ.C. RutkowskiP. McNeilC. Kalinka-WarzochaE. SavageK.J. HernbergM.M. LebbéC. CharlesJ. MihalcioiuC. Chiarion-SileniV. MauchC. CognettiF. AranceA. SchmidtH. SchadendorfD. GogasH. Lundgren-ErikssonL. HorakC. SharkeyB. WaxmanI.M. AtkinsonV. AsciertoP.A. Nivolumab in previously untreated melanoma without BRAF mutation.N. Engl. J. Med.2015372432033010.1056/NEJMoa141208225399552
    [Google Scholar]
  13. ZhuA.X. FinnR.S. EdelineJ. CattanS. OgasawaraS. PalmerD. VerslypeC. ZagonelV. FartouxL. VogelA. SarkerD. VersetG. ChanS.L. KnoxJ. DanieleB. WebberA.L. EbbinghausS.W. MaJ. SiegelA.B. ChengA.L. KudoM. AlistarA. AsselahJ. BlancJ-F. BorbathI. CannonT. ChungK. CohnA. CosgroveD.P. DamjanovN. GuptaM. KarinoY. KarwalM. KaubischA. KelleyR. Van LaethemJ-L. LarsonT. LeeJ. LiD. ManhasA. ManjiG.A. NumataK. ParsonsB. PaulsonA.S. PintoC. RamirezR. RatnamS. RizellM. RosmorducO. SadaY. SasakiY. StalP.I. StrasserS. TrojanJ. VaccaroG. Van VlierbergheH. WeissA. WeissK-H. YamashitaT. KEYNOTE-224 investigators Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial.Lancet Oncol.201819794095210.1016/S1470‑2045(18)30351‑629875066
    [Google Scholar]
  14. LeeD.W. ChoE.J. LeeJ.H. YuS.J. KimY.J. YoonJ.H. KimT.Y. HanS.W. OhD.Y. ImS.A. KimT.Y. LeeY. KimH. LeeK.H. Phase II study of avelumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib.Clin. Cancer Res.202127371371810.1158/1078‑0432.CCR‑20‑309433139266
    [Google Scholar]
  15. FinnR.S. RyooB.Y. MerleP. KudoM. BouattourM. LimH.Y. BrederV. EdelineJ. ChaoY. OgasawaraS. YauT. GarridoM. ChanS.L. KnoxJ. DanieleB. EbbinghausS.W. ChenE. SiegelA.B. ZhuA.X. ChengA.L. KEYNOTE-240 investigators Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: A randomized, double-blind, phase III trial.J. Clin. Oncol.202038319320210.1200/JCO.19.0130731790344
    [Google Scholar]
  16. El-KhoueiryA.B. SangroB. YauT. CrocenziT.S. KudoM. HsuC. KimT.Y. ChooS.P. TrojanJ. WellingT.H.III MeyerT. KangY.K. YeoW. ChopraA. AndersonJ. dela CruzC. LangL. NeelyJ. TangH. DastaniH.B. MeleroI. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial.Lancet2017389100882492250210.1016/S0140‑6736(17)31046‑228434648
    [Google Scholar]
  17. YauT. ParkJ.W. FinnR.S. ChengA.L. MathurinP. EdelineJ. KudoM. HardingJ.J. MerleP. RosmorducO. WyrwiczL. SchottE. ChooS.P. KelleyR.K. SieghartW. AssenatE. ZauchaR. FuruseJ. Abou-AlfaG.K. El-KhoueiryA.B. MeleroI. BegicD. ChenG. NeelyJ. WisniewskiT. TschaikaM. SangroB. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial.Lancet Oncol.2022231779010.1016/S1470‑2045(21)00604‑534914889
    [Google Scholar]
  18. RenZ. XuJ. BaiY. XuA. CangS. DuC. LiQ. LuY. ChenY. GuoY. ChenZ. LiuB. JiaW. WuJ. WangJ. ShaoG. ZhangB. ShanY. MengZ. WuJ. GuS. YangW. LiuC. ShiX. GaoZ. YinT. CuiJ. HuangM. XingB. MaoY. TengG. QinY. WangJ. XiaF. YinG. YangY. ChenM. WangY. ZhouH. FanJ. ORIENT-32 study group Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): A randomised, open-label, phase 2–3 study.Lancet Oncol.202122797799010.1016/S1470‑2045(21)00252‑734143971
    [Google Scholar]
  19. LeeC.H. LeeY.B. KimM.A. JangH. OhH. KimS.W. ChoE.J. LeeK.H. LeeJ.H. YuS.J. YoonJ.H. KimT.Y. KimY.J. Effectiveness of nivolumab versus regorafenib in hepatocellular carcinoma patients who failed sorafenib treatment.Clin. Mol. Hepatol.202026332833910.3350/cmh.2019.0049n32460459
    [Google Scholar]
  20. KelleyR.K. RimassaL. ChengA.L. KasebA. QinS. ZhuA.X. ChanS.L. MelkadzeT. SukeepaisarnjaroenW. BrederV. VersetG. GaneE. BorbathI. RangelJ.D.G. RyooB.Y. MakharadzeT. MerleP. BenzaghouF. BanerjeeK. HazraS. FawcettJ. YauT. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): A multicentre, open-label, randomised, phase 3 trial.Lancet Oncol.2022238995100810.1016/S1470‑2045(22)00326‑635798016
    [Google Scholar]
  21. ChoiW.M. ChoiJ. LeeD. ShimJ.H. LimY.S. LeeH.C. ChungY.H. LeeY.S. ParkS.R. RyuM.H. RyooB.Y. LeeS.J. KimK.M. Regorafenib versus nivolumab after sorafenib failure: Real‐world data in patients with hepatocellular carcinoma.Hepatol. Commun.2020471073108610.1002/hep4.152332626838
    [Google Scholar]
  22. ChengA.L. QinS. IkedaM. GalleP.R. DucreuxM. KimT.Y. LimH.Y. KudoM. BrederV. MerleP. KasebA.O. LiD. VerretW. MaN. NicholasA. WangY. LiL. ZhuA.X. FinnR.S. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma.J. Hepatol.202276486287310.1016/j.jhep.2021.11.03034902530
    [Google Scholar]
  23. Abou-AlfaG.K. ChanS.L. KudoM. LauG. KelleyR.K. FuruseJ. SukeepaisarnjaroenW. KangY-K. DaoT.V. De ToniE.N. RimassaL. BrederV.V. VasilyevA. HeurgueA. TamV. ModyK. ThungappaS.C. HeP. NegroA. SangroB. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA.J. Clin. Oncol.2022404_supplSuppl.37910.1200/JCO.2022.40.4_suppl.379
    [Google Scholar]
  24. MoherD. LiberatiA. TetzlaffJ. AltmanD.G. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement.BMJ2009339jul21 1b253510.1136/bmj.b253519622551
    [Google Scholar]
  25. HigginsJ.P.T. AltmanD.G. GøtzscheP.C. JüniP. MoherD. OxmanA.D. SavovicJ. SchulzK.F. WeeksL. SterneJ.A.C. Cochrane Bias Methods Group Cochrane Statistical Methods Group The cochrane collaboration’s tool for assessing risk of bias in randomised trials.BMJ20113432d592810.1136/bmj.d592822008217
    [Google Scholar]
  26. StangA. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses.Eur. J. Epidemiol.201025960360510.1007/s10654‑010‑9491‑z20652370
    [Google Scholar]
  27. EggerM. SmithG.D. SchneiderM. MinderC. Bias in meta-analysis detected by a simple, graphical test.BMJ1997315710962963410.1136/bmj.315.7109.6299310563
    [Google Scholar]
  28. GrimesD.A. SchulzK.F. Cohort studies: Marching towards outcomes.Lancet2002359930334134510.1016/S0140‑6736(02)07500‑111830217
    [Google Scholar]
  29. LitièreS. ColletteS. de VriesE.G.E. SeymourL. BogaertsJ. RECIST — learning from the past to build the future.Nat. Rev. Clin. Oncol.201714318719210.1038/nrclinonc.2016.19527995946
    [Google Scholar]
  30. GandhiL. Rodríguez-AbreuD. GadgeelS. EstebanE. FelipE. De AngelisF. DomineM. ClinganP. HochmairM.J. PowellS.F. ChengS.Y.S. BischoffH.G. PeledN. GrossiF. JennensR.R. ReckM. HuiR. GaronE.B. BoyerM. Rubio-ViqueiraB. NovelloS. KurataT. GrayJ.E. VidaJ. WeiZ. YangJ. RaftopoulosH. PietanzaM.C. GarassinoM.C. KEYNOTE-189 Investigators Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer.N. Engl. J. Med.2018378222078209210.1056/NEJMoa180100529658856
    [Google Scholar]
  31. WenW. ZhangY. ZhangH. ChenY. Clinical outcomes of Pd-1/Pd-L1 inhibitors in patients with advanced hepatocellular carcinoma: A systematic review and meta-analysis.J. Cancer Res. Clin. Oncol.2022149396997835771261
    [Google Scholar]
  32. RaoQ. LiM. XuW. PangK. GuoX. WangD. LiuJ. GuoW. ZhangZ. Clinical benefits of PD-1/PD-L1 inhibitors in advanced hepatocellular carcinoma: A systematic review and meta-analysis.Hepatol. Int.202014576577510.1007/s12072‑020‑10064‑832572818
    [Google Scholar]
  33. HeS. JiangW. FanK. WangX. The efficacy and safety of programmed death-1 and programmed death ligand 1 inhibitors for the treatment of hepatocellular carcinoma: A systematic review and meta-analysis.Front. Oncol.20211162698410.3389/fonc.2021.62698433833987
    [Google Scholar]
  34. YuanH. MaoJ. LiuC. FuH. GuoW. DingG. Risk of adverse events in advanced hepatocellular carcinoma with immune checkpoint therapy: A systematic review and meta-analysis.Clin. Res. Hepatol. Gastroenterol.202044684585410.1016/j.clinre.2020.02.01232307332
    [Google Scholar]
  35. ZengL. SuJ. QiuW. JinX. QiuY. YuW. Survival outcomes and safety of programmed cell death/programmed cell death ligand 1 inhibitors for unresectable hepatocellular carcinoma: Result from phase III trials.Cancer Contr.20222910.1177/1073274822109292435418272
    [Google Scholar]
  36. JácomeA.A. CastroA.C.G. VasconcelosJ.P.S. SilvaM.H.C.R. LessaM.A.O. MoraesE.D. AndradeA.C. LimaF.M.T. FariasJ.P.F. GilR.A. ProllaG. GaricocheaB. Efficacy and safety associated with immune checkpoint inhibitors in unresectable hepatocellular carcinoma.JAMA Netw. Open2021412e213612810.1001/jamanetworkopen.2021.3612834870682
    [Google Scholar]
  37. ShigetaK. DattaM. HatoT. KitaharaS. ChenI.X. MatsuiA. KikuchiH. MamessierE. AokiS. RamjiawanR.R. OchiaiH. BardeesyN. HuangP. CobboldM. ZhuA.X. JainR.K. DudaD.G. Dual programmed death receptor‐1 and vascular endothelial growth factor receptor‐2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma.Hepatology20207141247126110.1002/hep.3088931378984
    [Google Scholar]
  38. MengY. YeF. NieP. ZhaoQ. AnL. WangW. QuS. ShenZ. CaoZ. ZhangX. JiaoS. WuD. ZhouZ. WeiL. Immunosuppressive CD10+ALPL+ neutrophils promote resistance to anti-PD-1 therapy in HCC by mediating irreversible exhaustion of T cells.J. Hepatol.20237961435144910.1016/j.jhep.2023.08.02437689322
    [Google Scholar]
  39. XiaY. ChenR. YeS.L. SunR. ChenJ. ZhaoY. Inhibition of T-cell responses by intratumoral hepatic stellate cells contribute to migration and invasion of hepatocellular carcinoma.Clin. Exp. Metastasis201128766167410.1007/s10585‑011‑9399‑321717117
    [Google Scholar]
  40. YauT. KangY.K. KimT.Y. El-KhoueiryA.B. SantoroA. SangroB. MeleroI. KudoM. HouM.M. MatillaA. TovoliF. KnoxJ.J. Ruth HeA. El-RayesB.F. Acosta-RiveraM. LimH.Y. NeelyJ. ShenY. WisniewskiT. AndersonJ. HsuC. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib.JAMA Oncol.2020611e20456410.1001/jamaoncol.2020.456433001135
    [Google Scholar]
  41. NardoM. YilmazB. NelsonB.E. TorresH.A. WangL.S. GranwehrB.P. SongJ. Dalla PriaH.R.F. TrinhV.A. Glitza OlivaI.C. PatelS.P. TannirN.M. KasebA.O. AltanM. LeeS.S. MillerE. ZhangH. StephenB.A. NaingA. Safety and efficacy of immune checkpoint inhibitors in patients with cancer and viral hepatitis: The MD anderson cancer center experience.Oncologist202328871472110.1093/oncolo/oyad03936952233
    [Google Scholar]
  42. De KeukeleireS.J. VermassenT. NezhadZ.M. KerreT. KruseV. VlierbergheH.V. VermaelenK. RotteyS. Managing viral hepatitis in cancer patients under immune checkpoint inhibitors: Should we take the risk?Immunotherapy202113540941810.2217/imt‑2020‑027333487052
    [Google Scholar]
  43. ZhouG. SprengersD. BoorP.P.C. DoukasM. SchutzH. ManchamS. Pedroza-GonzalezA. PolakW.G. de JongeJ. GasperszM. DongH. ThielemansK. PanQ. IJzermansJ.N.M. BrunoM.J. KwekkeboomJ. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas.Gastroenterology2017153411071119.e1010.1053/j.gastro.2017.06.01728648905
    [Google Scholar]
  44. ZhangM. PangH.J. ZhaoW. LiY.F. YanL.X. DongZ.Y. HeX.F. VISTA expression associated with CD8 confers a favorable immune microenvironment and better overall survival in hepatocellular carcinoma.BMC Cancer201818151110.1186/s12885‑018‑4435‑129720116
    [Google Scholar]
  45. CheungC.C.L. SeahY.H.J. FangJ. OrpillaN.H.C. LauM.C. LimC.J. LimX. LeeJ.N.L.W. LimJ.C.T. LimS. ChengQ. TohH.C. ChooS.P. LeeS.Y. LeeJ.J.X. LiuJ. LimT.K.H. TaiD. YeongJ. Immunohistochemical scoring of LAG-3 in conjunction with CD8 in the tumor microenvironment predicts response to immunotherapy in hepatocellular carcinoma.Front. Immunol.202314115098510.3389/fimmu.2023.115098537342338
    [Google Scholar]
  46. YuL. LiuX. WangX. YanF. WangP. JiangY. DuJ. YangZ. TIGIT + TIM-3 + NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus‑related hepatocellular carcinoma.OncoImmunology2021101194267310.1080/2162402X.2021.194267334249476
    [Google Scholar]
  47. XieE. YeoY.H. ScheinerB. ZhangY. HiraokaA. TantaiX. FessasP. de CastroT. D’AlessioA. FulgenziC.A.M. XuS. TsaiH.M. KambhampatiS. WangW. KeenanB.P. GaoX. XingZ. PinterM. LinY.J. GuoZ. VogelA. TanakaT. KuoH.Y. KelleyR.K. KudoM. YangJ.D. PinatoD.J. JiF. Immune checkpoint inhibitors for child-pugh class B advanced hepatocellular carcinoma.JAMA Oncol.20239101423143110.1001/jamaoncol.2023.328437615958
    [Google Scholar]
  48. FanZ. DuanJ. WangL. XiaoS. LiL. YanX. YaoW. WuL. ZhangS. ZhangY. LiY. ZhuX. HuY. ZhangD. JiaoS. XuX. PTK2 promotes cancer stem cell traits in hepatocellular carcinoma by activating Wnt/β-catenin signaling.Cancer Lett.201945013214310.1016/j.canlet.2019.02.04030849480
    [Google Scholar]
  49. MontironiC. CastetF. HaberP.K. PinyolR. Torres-MartinM. TorrensL. MesropianA. WangH. PuigvehiM. MaedaM. LeowW.Q. HarrodE. TaikP. ChinburenJ. TaivanbaatarE. ChinboldE. Solé ArquésM. DonovanM. ThungS. NeelyJ. MazzaferroV. AndersonJ. RoayaieS. SchwartzM. VillanuevaA. FriedmanS.L. UzilovA. SiaD. LlovetJ.M. Inflamed and non-inflamed classes of HCC: A revised immunogenomic classification.Gut202372112914010.1136/gutjnl‑2021‑32591835197323
    [Google Scholar]
  50. LeoneP. ShinE.C. PerosaF. VaccaA. DammaccoF. RacanelliV. MHC class I antigen processing and presenting machinery: Organization, function, and defects in tumor cells.J. Natl. Cancer Inst.2013105161172118710.1093/jnci/djt18423852952
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073297462240524064442
Loading
/content/journals/cchts/10.2174/0113862073297462240524064442
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test