Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

ALD is a chronic liver disease caused by chronic excessive alcohol consumption, for which there are no drugs with better efficacy. Ancient literature and modern studies have shown that Massa Medicata Fermentata (MMF) has a hangover effect and ameliorates hepatic inflammation, so we believe that MMF has a potential role in the treatment of alcoholic liver disease.

Methods

UPLC-Q-Orbitrap HRMS was used to characterize the chemical constituents in MMF. The database was utilized to collect targets for the components and diseases, and cross-targeting analysis of the targets was performed. PPI, KEGG, GO enrichment analysis and molecular docking were performed using the core cross-targeting information to preliminarily validate the mechanism of action of MMF on disease. Finally, animal validation was carried out using male KM mice of the alcoholic liver injury model.

Results

MMF could play a role in the therapeutic prevention of alcoholic liver disease through the core targets AKT1, TNF, TP53, IL6 and CASP3 to regulate cancer pathways, lipid, and atherosclerosis, targeting IL-17 signaling, TNF signaling pathway, and hepatitis C, which was confirmed by animal pharmacodynamic experiments.

Conclusion

This study serves as a rationale to support MMF in the treatment of ALD and meets the urgent need for clinical treatment of ALD. At the same time, it broadens the scope of clinical application of MMF.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073278353231226100219
2024-01-25
2025-09-06
Loading full text...

Full text loading...

References

  1. MantheyJ. ShieldK.D. RylettM. HasanO.S.M. ProbstC. RehmJ. Global alcohol exposure between 1990 and 2017 and forecasts until 2030: A modelling study.Lancet2019393101902493250210.1016/S0140‑6736(18)32744‑2 31076174
    [Google Scholar]
  2. World Health OrganizationGlobal status report on alcohol and health.Available from: https://iris.who.int/bitstream/handle/10665/274603/9789241565639-eng.pdf?sequence=1 (Accessed on: July 23, 2023).2018
  3. AsraniS.K. MellingerJ. ArabJ.P. ShahV.H. Reducing the global burden of alcohol‐associated liver disease: A blueprint for action.Hepatology20217352039205010.1002/hep.31583 32986883
    [Google Scholar]
  4. World health statistics 2023: Monitoring health for the SDGs, sustainable development goals.Available from: https://www.who.int/publications/i/item/9789240074323 2022
  5. de Carvalho RibeiroM. SzaboG. Role of the inflammasome in liver disease.Annu. Rev. Pathol.202217134536510.1146/annurev‑pathmechdis‑032521‑102529 34752711
    [Google Scholar]
  6. AlpiniG. Sphingosine lipid signaling in alcoholic liver injury.Dig. Liver Dis.20195181164116510.1016/j.dld.2019.04.002 31031176
    [Google Scholar]
  7. LiY. YangS. Progress on alcoholic liver disease.Chin. J. Liver Disease.20221431410.3969/j.issn.1674‑7380.2022.03.001 36142520
    [Google Scholar]
  8. KimA. WuX. AllendeD.S. NagyL.E. Gene deconvolution reveals aberrant liver regeneration and immune cell infiltration in alcohol‐associated hepatitis.Hepatology2021742987100210.1002/hep.31759 33619773
    [Google Scholar]
  9. AsraniS.K. DevarbhaviH. EatonJ. KamathP.S. Burden of liver diseases in the world.J. Hepatol.201970115117110.1016/j.jhep.2018.09.014 30266282
    [Google Scholar]
  10. SukK.T. KimM.Y. BaikS.K. Alcoholic liver disease: Treatment.World J. Gastroenterol.20142036129341294410.3748/wjg.v20.i36.12934 25278689
    [Google Scholar]
  11. BaiY. ZhengM. FuR. DuJ. WangJ. ZhangM. FanY. HuangX. LiZ. Effect of massa medicata fermentata on the intestinal flora of rats with functional dyspepsia.Microb. Pathog.202317410592710.1016/j.micpath.2022.105927 36529285
    [Google Scholar]
  12. LiuX.Y. GaoH. LiuT.F. JiaK.J. ChenJ.N. ShanG.S. ZhangF. JiaT.Z. Effects of methanol extracts of different habitat Massa Medicata Fermentata(MMF) on the activity of macrophages and small intestinal epithelial cells.J. Med. Res.201746515510.11969/j.issn.1673‑548X.2017.02.015
    [Google Scholar]
  13. GaoP.F. ZhangW.Y. ZhouR.R. ZhangY.C. MaW.W. ShiX.Y. Effects of different Liushen Qu on digestive function in mice.Chin. J. Trad. Chin. Med.20163436236410.13193/j.issn.1673‑7717.2016.02.031
    [Google Scholar]
  14. Menéndez-GonzálezM. TavaresF. ZeidanN. PachecoS.J.M. CarriónA.O. GuD. YueT. YuanR. PangX. Diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT: A clinical follow up study.Front. Aging Neurosci.20146565710.3389/fnagi.2014.00056 24744729
    [Google Scholar]
  15. YoonS. KimJ. LeeH. LeeH. LimJ. YangH. ShinS.S. YoonM. The effects of herbal composition Gambigyeongsinhwan (4) on hepatic steatosis and inflammation in otsuka long‐evans tokushima fatty rats and HepG2 cells.J. Ethnopharmacol.201719520421310.1016/j.jep.2016.11.020 27845265
    [Google Scholar]
  16. WangD. YuJ. ZhanG. LiY.Q. Advances in application of liquid chromatography - Mass spectrometry technology in study of traditional chinese medicine.Chin. J. Trad. Chin. Med.202240687110.3748/wjg.v20.i36.12934
    [Google Scholar]
  17. ZuoL. LiuL. YangY. YangJ. ChenM. ZhangH. KangJ. ZhangX. WangJ. SunZ. An entire process optimization strategy for comprehensive in vivo metabolite profiling of prucalopride in rats based on ultra-performance liquid chromatography with Q-exactive hybrid quadrupole–orbitrap high-resolution mass spectrometry.Front. Pharmacol.20211261022610.3389/fphar.2021.610226 34025397
    [Google Scholar]
  18. LuanZ.X. TangX.L. HaoF.R. LiM. LiS.D. YangM.H. UPLC-Q-TOF-MS combined with network pharmacology to explore the quality markers of Bushen Huoxue Granule in treatment of PD. Chin. J. Geriatr. Heart Brain.Vessel Dis.20232550851310.3969/j.issn.1009‑0126.2023.05.016
    [Google Scholar]
  19. ZhangH.L. Study on the efficacy and material basis of Liushenqu Digestion.Master Thesis, Chengdu University of Traditional Chinese Medicine201910.26988/d.cnki.gcdzu.2019.000061
    [Google Scholar]
  20. WangY.L. NingY. DingY. Research progress of Chinese medicine in the treatment of alcoholic liver disease.Chin. J. Trad. Chin.202239808410.19656/j.cnki.1002‑2406.20220914
    [Google Scholar]
  21. Di PetrilloA. OrrùG. FaisA. FantiniM.C. Quercetin and its derivates as antiviral potentials: A comprehensive review.Phytother. Res.202236126627810.1002/ptr.7309 34709675
    [Google Scholar]
  22. Di PierroF. KhanA. IqtadarS. MumtazS.U. ChaudhryM.N.A. BertuccioliA. DerosaG. MaffioliP. TogniS. RivaA. AllegriniP. RecchiaM. ZerbinatiN. Quercetin as a possible complementary agent for early-stage COVID-19: Concluding results of a randomized clinical trial.Front. Pharmacol.202313109685310.3389/fphar.2022.1096853 36712674
    [Google Scholar]
  23. ImranM. RaufA. Abu-IzneidT. NadeemM. ShariatiM.A. KhanI.A. ImranA. OrhanI.E. RizwanM. AtifM. GondalT.A. MubarakM.S. Luteolin, a flavonoid, as an anticancer agent: A review.Biomed. Pharmacother.201911210861210.1016/j.biopha.2019.108612 30798142
    [Google Scholar]
  24. ZhouY. WeiK. HeL. SunX. ShaoK. FangB. ShenY. YeB. ShenJ. LinS. ChenZ. CaiG. ChenJ. GaoY. WangX. ZhuJ. Multi-central clinical research into treating 80 cases of chronic thrombocytopenia with qi-supplementing and yin-nourishing therapy and western medicine.J. Tradit. Chin. Med.201131427728110.1016/S0254‑6272(12)60004‑1 22462231
    [Google Scholar]
  25. YangP.W. ZhangS.H. Advances in the study of the effect and mechanism of Luteolin on hepatocellular carcinoma.Pharmacol. Clin. Chin. Mater. Medica.20183419019310.13412/j.cnki.zyyl.2018.01.048
    [Google Scholar]
  26. ZhengX.H. YangJ. YangY.H. Research progress on pharmacological effects of gallic acid.Chin. J. Hosp. Pharm.2017379498+10210.13286/j.cnki.chinhosppharmacyj.2017.01.22
    [Google Scholar]
  27. ZhangJ. ZhangW. YangL. ZhaoW. LiuZ. WangE. WangJ. Phytochemical gallic acid alleviates nonalcoholic fatty liver disease via AMPK-ACC-PPARa axis through dual regulation of lipid metabolism and mitochondrial function.Phytomedicine202310915458910.1016/j.phymed.2022.154589 36610145
    [Google Scholar]
  28. XuZ. XuM. LiuP. ZhangS. ShangR. QiaoY. CheL. RibbackS. CiglianoA. EvertK. PascaleR.M. DombrowskiF. EvertM. ChenX. CalvisiD.F. ChenX. The mTORC2‐Akt1 cascade is crucial for c‐Myc to promote hepatocarcinogenesis in mice and humans.Hepatology20197051600161310.1002/hep.30697 31062368
    [Google Scholar]
  29. WreeA. McGeoughM.D. InzaugaratM.E. EguchiA. SchusterS. JohnsonC.D. PeñaC.A. GeislerL.J. PapouchadoB.G. HoffmanH.M. FeldsteinA.E. NLRP3 inflammasome driven liver injury and fibrosis: Roles of IL‐17 and TNF in mice.Hepatology201867273674910.1002/hep.29523 28902427
    [Google Scholar]
  30. HumptonT.J. HallH. KiourtisC. NixonC. ClarkW. HedleyA. ShawR. BirdT.G. BlythK. VousdenK.H. p53-mediated redox control promotes liver regeneration and maintains liver function in response to CCl4.Cell Death Differ.202229351452610.1038/s41418‑021‑00871‑3 34628485
    [Google Scholar]
  31. WuQ.B. ZhouH.W. FengX.X. The role of interleukin-12 and transforming growth factor β1 in alcoholic liver disease.Chin. J. Hepatol.20111912938939 22553800
    [Google Scholar]
  32. PfütznerA. HannaM. AndorY. SachsenheimerD. DemircikF. WittigT. de FaireJ. Chronic uptake of a probiotic nutritional supplement (AB001) inhibits absorption of ethylalcohol in the intestine tract – results from a randomized double-blind crossover study.Nutr. Metab. Insights2022151178638822110891910.1177/11786388221108919 35769391
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073278353231226100219
Loading
/content/journals/cchts/10.2174/0113862073278353231226100219
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test