Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The development of MI following ischemia damage is influenced by oxidative stress. Myocardial Infarction (MI) generates myocardial ischemia injury, which damages the cardiomyocytes. Ischemia builds up to a critical level over time in MI, causing permanent myocardial cell damage or death.

Aim

The current study sought to determine whether Prunetin (PRU) could protect against Isoproterenol (ISO)-induced cardiac heart failure in rats by examining cardiac diagnostic markers, lipid peroxidation products, enzymatic and non-enzymatic antioxidant levels, and histological changes.

Methods

PRU (20 mg/kg bwt) was orally administered for 19 days to rats, and after the treatment, ISO (85 mg/kg bwt) was subcutaneously administered with an intermission of 24 h for a couple of days to induce myocardial infarction on 20th and 21st days. ISO-treated rats exhibited considerable alterations in cardiac-sensitive markers in the serum. The levels of lipid peroxidation markers augmented drastically in the plasma and myocardium. Enzymatic antioxidant levels in erythrocytes and myocardium and the states of non-enzymatic antioxidants were diminished in the plasma and heart tissue of ISO-treated rats. The histopathological examination of heart tissue exhibited cardiac damage in ISO-induced rats.

Results

The oral administration of PRU significantly lowered the levels of lipid peroxidation and biochemical indicators, while significantly improving the antioxidant system function of ISO-interposed rats. In PRU-treated ISO-injected rats, histological examinations revealed suppressed myocardial destruction.

Conclusion

Our research shows that oral pretreatment of PRU prevented ISO-induced oxidative stress in MI.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073276721240322063120
2025-05-01
2025-10-25
Loading full text...

Full text loading...

References

  1. ShahzadS. MateenS. MariyathM.P.M. NaeemS.S. AkhtarK. RizviW. MoinS. Protective effect of syringaldehyde on biomolecular oxidation, inflammation and histopathological alterations in isoproterenol induced cardiotoxicity in rats.Biomed. Pharmacother.201810862563310.1016/j.biopha.2018.09.05530245462
    [Google Scholar]
  2. PullaiahC.P. NelsonV.K. RayapuS. G vN.K. KedamT. Exploring cardioprotective potential of esculetin against isoproterenol induced myocardial toxicity in rats: In vivo and in vitro evidence.BMC Pharmacol. Toxicol.20212214310.1186/s40360‑021‑00510‑034266475
    [Google Scholar]
  3. RonaG. Catecholamine cardiotoxicity.J. Mol. Cell. Cardiol.198517429130610.1016/S0022‑2828(85)80130‑93894676
    [Google Scholar]
  4. RathoreN. JohnS. KaleM. BhatnagarD. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues.Pharmacol. Res.199838429730310.1006/phrs.1998.03659774493
    [Google Scholar]
  5. RahalA. KumarA. SinghV. YadavB. TiwariR. ChakrabortyS. DhamaK. Oxidative stress, prooxidants, and antioxidants: The interplay.BioMed Res. Int.2014201411910.1155/2014/76126424587990
    [Google Scholar]
  6. MorisD. SpartalisM. SpartalisE. KarachaliouG.S. KaraolanisG.I. TsourouflisG. TsilimigrasD.I. TzatzakiE. TheocharisS. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox.Ann. Transl. Med.201751632610.21037/atm.2017.06.2728861423
    [Google Scholar]
  7. JungH.A. KimA.R. ChungH.Y. ChoiJ.S. in vitro antioxidant activity of some selectedprunus species in Korea.Arch. Pharm. Res.200225686587210.1007/BF0297700612510840
    [Google Scholar]
  8. LeeJ. YangG. LeeK. LeeM.H. EomJ.W. HamI. ChoiH.Y. Anti-inflammatory effect of Prunus yedoensis through inhibition of nuclear factor-κB in macrophages.BMC Complement. Altern. Med.20131319210.1186/1472‑6882‑13‑9223631356
    [Google Scholar]
  9. MatsudaH. NakamuraS. KuboM. Studies of cuticle drugs from natural sources. II. Inhibitory effects of Prunus plants on melanin biosynthesis.Biol. Pharm. Bull.199417101417142010.1248/bpb.17.14177874069
    [Google Scholar]
  10. YangG. HamI. ChoiH.Y. Anti-inflammatory effect of prunetin via the suppression of NF-κB pathway.Food Chem. Toxicol.20135812413210.1016/j.fct.2013.03.03923597450
    [Google Scholar]
  11. AkilaP. AsaikumarL. VennilaL. Chlorogenic acid ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes.Biomed. Pharmacother.20178558259110.1016/j.biopha.2016.11.06727908708
    [Google Scholar]
  12. JiangZ.Y. HuntJ.V. WolffS.P. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein.Anal. Biochem.1992202238438910.1016/0003‑2697(92)90122‑N1519766
    [Google Scholar]
  13. NiehausW.G.Jr SamuelssonB. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation.Eur. J. Biochem.19686112613010.1111/j.1432‑1033.1968.tb00428.x4387188
    [Google Scholar]
  14. SinhaA.K. Colorimetric assay of catalase.Anal. Biochem.197247238939410.1016/0003‑2697(72)90132‑74556490
    [Google Scholar]
  15. HabigW.H. PabstM.J. JakobyW.B. Glutathione s-transferases.J. Biol. Chem.1974249227130713910.1016/S0021‑9258(19)42083‑84436300
    [Google Scholar]
  16. KakkarP. DasB. ViswanathanP.N. A modified spectrophotometric assay of superoxide dismutase.Indian J. Biochem. Biophys.19842121301326490072
    [Google Scholar]
  17. BakerH. FrankO. De-AngelisB. FeingoldS. Plasma tocopherol in man atvarious times after ingesting free or acetylated tocopherol.Nutr. Res.198021531536
    [Google Scholar]
  18. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑613650640
    [Google Scholar]
  19. RoeJ.H. KuetherC.A. The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenylhydrazine derivavative of dehydroascorbic acid.J. Biol. Chem.1943147239940710.1016/S0021‑9258(18)72395‑8
    [Google Scholar]
  20. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  21. JunqueiraL.C.U. BignolasG. BrentaniR.R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections.Histochem. J.197911444745510.1007/BF0100277291593
    [Google Scholar]
  22. FootN.C. The masson trichrome staining methods in routine laboratory use.Stain Technol.19338310111010.3109/10520293309116112
    [Google Scholar]
  23. ZhangB. WangH. YangZ. CaoM. WangK. WangG. ZhaoY. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway.Hum. Exp. Toxicol.202039121596160610.1177/096032712093453732602371
    [Google Scholar]
  24. SunT. ZhangL. LiX. ChenF. LiY. MaX. YuF. MicroRNA-1 and circulating microvesicles mediate the protective effects of dantonic in acute myocardial infarction rat models.Front. Physiol.2018966410.3389/fphys.2018.0066430319429
    [Google Scholar]
  25. Köksal KarayildirimÇ. NalbantsoyA. Karabay YavaşoğluN.Ü. Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes.Mol. Biol. Rep.202148117251725910.1007/s11033‑021‑06719‑w34599704
    [Google Scholar]
  26. AsaikumarL. VennilaL. AkilaP. SivasangariS. KanimozhiK. PremalathaV. SindhuG. Expression of concern: Preventive effect of nerolidol on isoproterenol induced myocardial damage in wistar rats: Evidences from biochemical and histopathological studies.Drug Dev. Res.201980681482310.1002/ddr.2156431313346
    [Google Scholar]
  27. KhalilM.I. AhmmedI. AhmedR. TanvirE.M. AfrozR. PaulS. GanS.H. AlamN. Amelioration of isoproterenol-induced oxidative damage in rat myocardium by Withania somnifera leaf extract.BioMed Res. Int.2015201511010.1155/2015/62415926539517
    [Google Scholar]
  28. SabeenafarvinK. AnandanR. SenthilkumarS. ShinyK. SankarT. ThankappanT. Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats.Pharmacol. Res.200450323123610.1016/j.phrs.2004.03.00415225664
    [Google Scholar]
  29. van der LaarseA. Hypothesis: Troponin degradation is one of the factors responsible for deterioration of left ventricular function in heart failure.Cardiovasc. Res.200256181410.1016/S0008‑6363(02)00534‑512237161
    [Google Scholar]
  30. KurutasE.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state.Nutr. J.20151517110.1186/s12937‑016‑0186‑527456681
    [Google Scholar]
  31. ChenW. LiangJ. FuY. JinY. YanR. ChiJ. LiuW. LiuY. YinX. Cardioprotection of cortistatin against isoproterenol-induced myocardial injury in rats.Ann. Transl. Med.20208630910.21037/atm.2020.02.9332355753
    [Google Scholar]
  32. RathoreN. KaleM. JohnS. BhatnagarD. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat erythrocytes.Indian J. Physiol. Pharmacol.200044216116610846629
    [Google Scholar]
  33. SongL. SrilakshmiM. WuY. SaleemT.S.M. Sulforaphane attenuates isoproterenol-induced myocardial injury in mice.BioMed Res. Int.202020201710.1155/2020/361028533415146
    [Google Scholar]
  34. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.20104811812610.4103/0973‑7847.7090222228951
    [Google Scholar]
  35. PandaV.S. NaikS.R. Cardioprotective activity of Ginkgo biloba Phytosomes in isoproterenol-induced myocardial necrosis in rats: A biochemical and histoarchitectural evaluation.Exp. Toxicol. Pathol.2008604-539740410.1016/j.etp.2008.03.01018513933
    [Google Scholar]
  36. GoyalS. SharmaC. MahajanU. PatilC. AgrawalY. KumariS. AryaD. OjhaS. Protective effects of cardamom in isoproterenol-induced myocardial infarction in rats.Int. J. Mol. Sci.20151611274572746910.3390/ijms16112604026593900
    [Google Scholar]
  37. HeL. HeT. FarrarS. JiL. LiuT. MaX. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species.Cell. Physiol. Biochem.201744253255310.1159/00048508929145191
    [Google Scholar]
  38. UpadhyayR.K. Emerging risk biomarkers in cardiovascular diseases and disorders.J. Lipids2015201515010.1155/2015/97145325949827
    [Google Scholar]
  39. MohantyI. AryaD.S. DindaA. TalwarK.K. JoshiS. GuptaS.K. Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction.Basic Clin. Pharmacol. Toxicol.200494418419010.1111/j.1742‑7843.2004.pto940405.x15078343
    [Google Scholar]
  40. PrabuS.M. ShagirthaK. RenugadeviJ. Naringenin in combination with vitamins C and E potentially protects oxidative stress-mediated hepatic injury in cadmium-intoxicated rats.J. Nutr. Sci. Vitaminol.201157217718510.3177/jnsv.57.17721697638
    [Google Scholar]
  41. GengX. LiuH. YuwenQ. WangJ. ZhangS. ZhangX. SunJ. Protective effects of zingerone on high cholesterol diet-induced atherosclerosis through lipid regulatory signaling pathway.Hum. Exp. Toxicol.202140101732174510.1177/0960327121100617033845646
    [Google Scholar]
  42. WengS.T. LaiQ.L. CaiM.T. WangJ.J. ZhuangL.Y. ChengL. MoY.J. LiuL. ZhangY.X. QiaoS. Detecting vulnerable carotid plaque and its component characteristics: Progress in related imaging techniques.Front. Neurol.20221398214710.3389/fneur.2022.98214736188371
    [Google Scholar]
  43. LiS. NunesJ.C. ToumoulinC. LuoL. 3D coronary artery reconstruction by 2D motion compensation based on mutual information.IRBM2018391698210.1016/j.irbm.2017.11.005
    [Google Scholar]
  44. BelderrarA. HazzabA. Real-time estimation of hospital discharge using fuzzy radial basis function network and electronic health record data.Int. J. Med. Eng. Inform.2021131758310.1504/IJMEI.2021.111870
    [Google Scholar]
  45. RamachandranS.K. ManikandanP. An efficient ALO-based ensemble classification algorithm for medical big data processing.IJMEI2020546310.1504/IJMEI.2021.111864
    [Google Scholar]
  46. MabroukS. OueslatiC. GhorbelF. Multiscale graph cuts based method for coronary artery segmentation in angiograms.IRBM201738316717510.1016/j.irbm.2017.04.004
    [Google Scholar]
  47. MaryM.C. SinghH.D. DeepakK.K. Changes in scale-invariance property of electrocardiogram as a predictor of hypertension.Int. J. Med. Eng. Infor2020123228236
    [Google Scholar]
  48. VelutJ. LentzP-A. BoulmierD. CoatrieuxJ-L. ToumoulinC. Assessment of qualitative and quantitative features in coronary artery MRA.IRBM201132422924210.1016/j.irbm.2011.05.002
    [Google Scholar]
  49. AswathG.I. VasudevanS.K. SampathN. A frugal and innovative telemedicine approach for rural India – automated doctor machine.Int. J. Med. Eng. Inform.202012327829010.1504/IJMEI.2020.107094
    [Google Scholar]
  50. MokeddemF. MezianiF. DebbalS.M. Study of murmurs and their impact on the heart variability.Int. J. Med. Eng. Inform.202012329130110.1504/IJMEI.2020.107095
    [Google Scholar]
  51. ShahoudJ.S. AmbalavananM. TivakaranV.S. Cardiac Dominance.StatPearlsTreasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  52. GuptaV. MittalM. MittalV. Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias.Wirel. Pers. Commun.202111843615364610.1007/s11277‑021‑08411‑5
    [Google Scholar]
  53. GuptaV. MittalM. QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases.J. Inst. Eng. (India): B2019100548949710.1007/s40031‑019‑00398‑9
    [Google Scholar]
  54. GuptaV. SaxenaN.K. KanungoA. KumarP. DiwaniaS. PCA as an effective tool for the detection of R-peaks in an ECG signal processing.Int. J. Syst. Assur. Eng. Manag.20221352391240310.1007/s13198‑022‑01650‑0
    [Google Scholar]
  55. GuptaV. MittalM. MittalV. A novel FrWT based arrhythmia detection in ECG signal using YWARA and PCA.Wirel. Pers. Commun.202212421229124610.1007/s11277‑021‑09403‑1
    [Google Scholar]
  56. GuptaV. SharmaA.K. PandeyP.K. JaiswalR.K. GuptaA. Pre-processing based ECG signal analysis using emerging tools.J. Inst. Electron. Telecommun. Eng.20230011210.1080/03772063.2023.2202162
    [Google Scholar]
  57. GuptaV. MittalM. MittalV. ChaturvediY. Detection of R-peaks using fractional Fourier transform and principal component analysis.J. Ambient Intell. Humaniz. Comput.202213296197210.1007/s12652‑021‑03484‑3
    [Google Scholar]
  58. GuptaV. MittalM. MittalV. SaxenaN.K. Spectrogram as an emerging tool in ECG signal processing.Recent Advances in Manufacturing, Automation, Design and Energy Technologies. Lecture Notes in Mechanical Engineering. NatarajanS.K. PrakashR. SankaranarayanasamyK. SingaporeSpringer202210.1007/978‑981‑16‑4222‑7_47
    [Google Scholar]
  59. GuptaV. Application of chaos theory for arrhythmia detection in pathological databases.Int. J. Med. Eng. Inform.202315219110.1504/IJMEI.2023.129353
    [Google Scholar]
  60. GuptaV. MittalM. MittalV. DiwaniaS. SaxenaN.K. ECG signal analysis based on the spectrogram and spider monkey optimisation technique.J. Inst. Eng. (India): B2023104115316410.1007/s40031‑022‑00831‑6
    [Google Scholar]
  61. GuptaV. Wavelet transform and vector machines as emerging tools for computational medicine.J. Ambient Intell. Humaniz. Comput.20231444595460510.1007/s12652‑023‑04582‑0
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073276721240322063120
Loading
/content/journals/cchts/10.2174/0113862073276721240322063120
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antioxidants; cardioprotective; Isoproterenol; lipid peroxidation; oral pretreatment; serum
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test