Skip to content
2000
Volume 28, Issue 2
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Luteolin, a flavonoid found in various medicinal plants, has shown promising antioxidant, anti-inflammatory, and anti-aging properties. The cartilaginous endplate (CEP) represents a crucial constituent of the intervertebral disc (IVD), assuming a pivotal responsibility in upholding both the structural and functional stability of the IVD.

Objective

Exploring the precise mechanism underlying the protective effects of luteolin against senescence and degeneration of endplate chondrocytes (EPCs).

Methods

Relevant targets associated with luteolin and aging were obtained from publicly available databases. To ascertain cellular functions and signaling pathways, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed. Core genes were identified through the construction of a protein-protein interaction (PPI) network. Molecular docking (MD) was utilized to assess the binding affinity of luteolin to these core genes. Finally, the impact of luteolin on the senescence and degeneration of EPCs was evaluated in an cellular senescence model induced by tert-butyl hydroperoxide (TBHP).

Results

There are 145 overlapping targets between luteolin and senescence. Analysis using GO revealed that these targets primarily participate in cellular response to oxidative stress and reactive oxygen species. KEGG analysis demonstrated that these markers mainly associate with signaling pathways such as p53 and PI3K-Akt. MD simulations exhibited luteolin’s binding affinity to P53, Cyclin-dependent kinase (CDK)2, and CDK4. Cell cycle, cell proliferation, and β-galactosidase assays confirmed that luteolin mitigated senescence in SW1353 cells. Western blot assays exhibited that luteolin significantly suppressed the expression of Matrix Metallopeptidase (MMP) 13, P53, and P21, while concurrently promoting CDK2, CDK4, and Collagen Type II Alpha 1 (COL2A1) expression.

Conclusion

In summary, luteolin demonstrated beneficial properties against aging and degeneration in EPCs, offering novel insights to mitigate the progression of intervertebral disc degeneration (IVDD).

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073273675231114112804
2024-01-30
2025-09-19
Loading full text...

Full text loading...

References

  1. RuanD. HeQ. DingY. HouL. LiJ. LukK.D.K. Intervertebral disc transplantation in the treatment of degenerative spine disease: A preliminary study.Lancet2007369956699399910.1016/S0140‑6736(07)60496‑6 17382826
    [Google Scholar]
  2. DeyoR.A. MirzaS.K. Herniated lumbar intervertebral disk.N. Engl. J. Med.2016374181763177210.1056/NEJMcp1512658 27144851
    [Google Scholar]
  3. OegemaT.R.Jr Biochemistry of the intervertebral disc.Clin. Sports Med.199312341943810.1016/S0278‑5919(20)30404‑X 8364983
    [Google Scholar]
  4. GullbrandS.E. PetersonJ. MastropoloR. LawrenceJ.P. LopesL. LotzJ. LedetE.H. Drug-induced changes to the vertebral endplate vasculature affect transport into the intervertebral disc in vivo.J. Orthop. Res.201432121694170010.1002/jor.22716 25185989
    [Google Scholar]
  5. MalandrinoA. LacroixD. HellmichC. ItoK. FergusonS.J. NoaillyJ. The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc.Osteoarthritis Cartilage20142271053106010.1016/j.joca.2014.05.005 24857972
    [Google Scholar]
  6. HenryN. ClouetJ. Le BideauJ. Le VisageC. GuicheuxJ. Innovative strategies for intervertebral disc regenerative medicine: From cell therapies to multiscale delivery systems.Biotechnol. Adv.201836128129410.1016/j.biotechadv.2017.11.009 29199133
    [Google Scholar]
  7. DolanP. LuoJ. PollintineP. LandhamP.R. StefanakisM. AdamsM.A. Intervertebral disc decompression following endplate damage: Implications for disc degeneration depend on spinal level and age.Spine201338171473148110.1097/BRS.0b013e318290f3cc 23486408
    [Google Scholar]
  8. DuranS. Cavusoglu, M.; Hatipoglu, H.G.; Sozmen CCılız, D.; Sakman, B. Association between measures of vertebral endplate morphology and lumbar intervertebral disc degeneration.Can. Assoc. Radiol. J.201768221021610.1016/j.carj.2016.11.002 28216287
    [Google Scholar]
  9. WangJ. UrygaA.K. ReinholdJ. FiggN. BakerL. FiniganA. GrayK. KumarS. ClarkeM. BennettM. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability.Circulation2015132201909191910.1161/CIRCULATIONAHA.115.016457 26416809
    [Google Scholar]
  10. BaarM.P. PerdigueroE. Muñoz-CánovesP. de KeizerP.L.J. Musculoskeletal senescence: A moving target ready to be eliminated.Curr. Opin. Pharmacol.20184014715510.1016/j.coph.2018.05.007 29883814
    [Google Scholar]
  11. LeeS. SchmittC.A. The dynamic nature of senescence in cancer.Nat. Cell Biol.20192119410110.1038/s41556‑018‑0249‑2 30602768
    [Google Scholar]
  12. ZhangP. KishimotoY. GrammatikakisI. GottimukkalaK. CutlerR.G. ZhangS. AbdelmohsenK. BohrV.A. Misra SenJ. GorospeM. MattsonM.P. Senolytic therapy alleviates Aβ--associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model.Nat. Neurosci.201922571972810.1038/s41593‑019‑0372‑9 30936558
    [Google Scholar]
  13. WangF. CaiF. ShiR. WangX.H. WuX.T. Aging and age related stresses: A senescence mechanism of intervertebral disc degeneration.Osteoarthritis Cartilage201624339840810.1016/j.joca.2015.09.019 26455958
    [Google Scholar]
  14. ZhaoC.Q. ZhangY.H. JiangS.D. LiH. JiangL.S. DaiL.Y. ADAMTS-5 and intervertebral disc degeneration: The results of tissue immunohistochemistry and in vitro cell culture.J. Orthop. Res.201129571872510.1002/jor.21285 21437951
    [Google Scholar]
  15. BedoreJ. LeaskA. SéguinC.A. Targeting the extracellular matrix: Matricellular proteins regulate cell–extracellular matrix communication within distinct niches of the intervertebral disc.Matrix Biol.20143712413010.1016/j.matbio.2014.05.005 24874179
    [Google Scholar]
  16. NeuhouserM.L. Dietary flavonoids and cancer risk: Evidence from human population studies.Nutr. Cancer20045011710.1207/s15327914nc5001_1 15572291
    [Google Scholar]
  17. YashinA. YashinY. XiaX. NemzerB. Antioxidant activity of spices and their impact on human health: A review.Antioxidants2017637010.3390/antiox6030070 28914764
    [Google Scholar]
  18. HartmannT. Diversity and variability of plant secondary metabolism: A mechanistic view.Entomol. Exp. Appl.199680117718810.1111/j.1570‑7458.1996.tb00914.x
    [Google Scholar]
  19. HarborneJ.B. WilliamsC.A. Advances in flavonoid research since 1992.Phytochemistry200055648150410.1016/S0031‑9422(00)00235‑1 11130659
    [Google Scholar]
  20. HavsteenB.H. The biochemistry and medical significance of the flavonoids.Pharmacol. Ther.2002962-36720210.1016/S0163‑7258(02)00298‑X 12453566
    [Google Scholar]
  21. HeimK.E. TagliaferroA.R. BobilyaD.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships.J. Nutr. Biochem.2002131057258410.1016/S0955‑2863(02)00208‑5 12550068
    [Google Scholar]
  22. AzizN. KimM.Y. ChoJ.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies.J. Ethnopharmacol.201822534235810.1016/j.jep.2018.05.019 29801717
    [Google Scholar]
  23. AL-Megrin W.A.; Alkhuriji, A.F.; Yousef, A.O.S.; Metwally, D.M.; Habotta, O.A.; Kassab, R.B.; Abdel Moneim, A.E.; El-Khadragy, M.F. Antagonistic efficacy of luteolin against lead acetate exposure-associated with hepatotoxicity is mediated via antioxidant, anti-inflammatory, and anti-apoptotic activities.Antioxidants2019911010.3390/antiox9010010 31877779
    [Google Scholar]
  24. YanY. JunC. LuY. JiangmeiS. Combination of metformin and luteolin synergistically protects carbon tetrachloride-induced hepatotoxicity: Mechanism involves antioxidant, anti-inflammatory, antiapoptotic, and Nrf2/HO-1 signaling pathway.Biofactors201945459860610.1002/biof.1521 31336028
    [Google Scholar]
  25. ChenY. ChenD. LiuS. YuanT. GuoJ. FangL. DuG. Systematic elucidation of the mechanism of genistein against pulmonary hypertension via network pharmacology approach.Int. J. Mol. Sci.20192022556910.3390/ijms20225569 31703458
    [Google Scholar]
  26. LiR. MaX. SongY. ZhangY. XiongW. LiL. ZhouL. Anti-colorectal cancer targets of resveratrol and biological molecular mechanism: Analyses of network pharmacology, human and experimental data.J. Cell. Biochem.20191207112651127310.1002/jcb.28404 30719773
    [Google Scholar]
  27. LiuT. ChenW. ChenX. LiangQ. TaoW. JinZ. XiaoY. ChenL. Network pharmacology identifies the mechanisms of action of taohongsiwu decoction against essential hypertension.Med. Sci. Monit.202026e92068210.12659/MSM.920682 32187175
    [Google Scholar]
  28. MaT. SunY. JiangC. XiongW. YanT. WuB. JiaY. A Combined network pharmacology and molecular docking approach to investigate candidate active components and multitarget mechanisms of hemerocallis flowers on antidepressant effect.Evid. Based Complement. Alternat. Med.2021202111710.1155/2021/7127129 34306154
    [Google Scholar]
  29. KhanS.A. LeeT.K.W. Network-pharmacology-based study on active phytochemicals and molecular mechanism of cnidium monnieri in treating hepatocellular carcinoma.Int. J. Mol. Sci.20222310540010.3390/ijms23105400 35628212
    [Google Scholar]
  30. XieC. TangH. LiuG. LiC. Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking.Front. Aging Neurosci.20221494016610.3389/fnagi.2022.940166 36051307
    [Google Scholar]
  31. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  32. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  33. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards Version 3: The human gene integrator.Database 201020100baq02010.1093/database/baq020 20689021
    [Google Scholar]
  34. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT.I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The genecards suite: From gene data mining to disease genome sequence analyses.Curr. Protoc. Bioinformatics201654130133
    [Google Scholar]
  35. SayersE.W. BeckJ. BoltonE.E. BourexisD. BristerJ.R. CaneseK. ComeauD.C. FunkK. KimS. KlimkeW. Marchler-BauerA. LandrumM. LathropS. LuZ. MaddenT.L. O’LearyN. PhanL. RangwalaS.H. SchneiderV.A. SkripchenkoY. WangJ. YeJ. TrawickB.W. PruittK.D. SherryS.T. Database resources of the national center for biotechnology information.Nucleic Acids Res.202149D1D10D1710.1093/nar/gkaa892 33095870
    [Google Scholar]
  36. SayersE.W. AgarwalaR. BoltonE.E. BristerJ.R. CaneseK. ClarkK. ConnorR. FioriniN. FunkK. HefferonT. HolmesJ.B. KimS. KimchiA. KittsP.A. LathropS. LuZ. MaddenT.L. Marchler-BauerA. PhanL. SchneiderV.A. SchochC.L. PruittK.D. OstellJ. Database resources of the national center for biotechnology information.Nucleic Acids Res.201947D1D23D2810.1093/nar/gky1069 30395293
    [Google Scholar]
  37. MaX. ZhangX. KongY. SuB. WuL. LiuD. WangX. Therapeutic effects of Panax notoginseng saponins in rheumatoid arthritis: Network pharmacology and experimental validation.Bioengineered2022136144381444910.1080/21655979.2022.2086379 36694450
    [Google Scholar]
  38. GanX. ZhongL. ShenF. FengJ. LiY. LiS. CaiW. XuB. Network pharmacology to explore the molecular mechanisms of prunella vulgaris for treating hashimoto’s thyroiditis.Front. Pharmacol.20211270089610.3389/fphar.2021.700896 34690752
    [Google Scholar]
  39. LuY.C. JayakumarT. DuannY.F. ChouY.C. HsiehC.Y. YuS.Y. SheuJ.R. HsiaoG. Chondroprotective role of sesamol by inhibiting MMPs expression via retaining NF-κB signaling in activated SW1353 cells.J. Agric. Food Chem.20115994969497810.1021/jf1046738 21428299
    [Google Scholar]
  40. GuJ. LinH. ZhangY. XuT. WangT. XueX. ZhangW. LiuH. Activation of GPR40 Suppresses AGE-Induced Reduction of Type II Collagen and Aggrecan in Human SW1353 Chondrocytes.Drug Des. Devel. Ther.2020142371237910.2147/DDDT.S239273 32606604
    [Google Scholar]
  41. ChenD. XiaD. PanZ. XuD. ZhouY. WuY. CaiN. TangQ. WangC. YanM. ZhangJ.J. ZhouK. WangQ. FengY. WangX. XuH. ZhangX. TianN. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo.Cell Death Dis.2016710e244110.1038/cddis.2016.334 27787519
    [Google Scholar]
  42. PriyadarshaniP. LiY. YaoL. Advances in biological therapy for nucleus pulposus regeneration.Osteoarthritis Cartilage201624220621210.1016/j.joca.2015.08.014 26342641
    [Google Scholar]
  43. HarfeB.D. Intervertebral disc repair and regeneration: Insights from the notochord.Semin. Cell Dev. Biol.20221273910.1016/j.semcdb.2021.11.012 34865989
    [Google Scholar]
  44. DingL. Jiang, Z.; Wu, J.; Li, D.; Wang, H.; Lu, W.; Zeng, Q.; Xu, G. β- catenin signalling inhibits cartilage endplate chondrocyte homeostasis in vitro .Mol. Med. Rep.201920156757210.3892/mmr.2019.10301 31180546
    [Google Scholar]
  45. KimC.H. ChungC.K. ParkC.S. ChoiB. KimM.J. ParkB.J. Reoperation rate after surgery for lumbar herniated intervertebral disc disease: Nationwide cohort study.Spine201338758159010.1097/BRS.0b013e318274f9a7 23023591
    [Google Scholar]
  46. zhu, L.; Yu, C.; Zhang, X.; Yu, Z.; Zhan, F.; Yu, X.; Wang, S.; He, F.; Han, Y.; Zhao, H. The treatment of intervertebral disc degeneration using Traditional Chinese Medicine.J. Ethnopharmacol.202026311311710.1016/j.jep.2020.113117 32738389
    [Google Scholar]
  47. GendrischF. EsserP.R. SchemppC.M. WölfleU. Luteolin as a modulator of skin aging and inflammation.Biofactors202147217018010.1002/biof.1699 33368702
    [Google Scholar]
  48. MuJ. MaH. ChenH. ZhangX. YeM. Luteolin prevents uvb-induced skin photoaging damage by modulating SIRT3/ROS/MAPK signaling: An in vitro and in vivo studies.Front. Pharmacol.20211272826110.3389/fphar.2021.728261 34526903
    [Google Scholar]
  49. ZhaoG. Yao-YueC. QinG.W. GuoL.H. Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons.Neurobiol. Aging201233117618610.1016/j.neurobiolaging.2010.02.013 20382451
    [Google Scholar]
  50. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  51. LiS. ZhangB. Traditional Chinese medicine network pharmacology: Theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  52. DuanZ. WangY. LuZ. TianL. XiaZ.Q. WangK. ChenT. WangR. FengZ. ShiG. XuX. BuF. DingY. JiangF. ZhouJ. WangQ. ChenY. Wumei Wan attenuates angiogenesis and inflammation by modulating RAGE signaling pathway in IBD: Network pharmacology analysis and experimental evidence.Phytomedicine202311115465810.1016/j.phymed.2023.154658 36706698
    [Google Scholar]
  53. SunL. ZhaoM. LiJ. LiuJ. WangM. ZhaoC. Exploration of the anti-liver injury active components of Shaoyao Gancao decoction by network pharmacology and experiments in vivo.Phytomedicine202311215471710.1016/j.phymed.2023.154717 36805486
    [Google Scholar]
  54. XuK. QinX. ZhangY. YangM. ZhengH. LiY. YangX. XuQ. LiY. XuP. WangX. Lycium ruthenicum Murr. anthocyanins inhibit hyperproliferation of synovial fibroblasts from rheumatoid patients and the mechanism study powered by network pharmacology.Phytomedicine202311815494910.1016/j.phymed.2023.154949 37418838
    [Google Scholar]
  55. BayerA.L. PietruskaJ. FarrellJ. McReeS. AlcaideP. HindsP.W. AKT1 Is required for a complete palbociclib-induced senescence phenotype in braf-v600e-driven human melanoma.Cancers 202214357210.3390/cancers14030572 35158840
    [Google Scholar]
  56. FilipczakP.T. LengS. TellezC.S. DoK.C. GrimesM.J. ThomasC.L. Walton-FilipczakS.R. PicchiM.A. BelinskyS.A. p53-Suppressed oncogene TET1 prevents cellular aging in lung cancer.Cancer Res.20197981758176810.1158/0008‑5472.CAN‑18‑1234 30622117
    [Google Scholar]
  57. RosenbergN. Van HaeleM. LantonT. BrashiN. BrombergZ. AdlerH. GiladiH. PeledA. GoldenbergD.S. AxelrodJ.H. SimerzinA. ChaiC. PaldorM. MarkezanaA. YaishD. ShemulianZ. GrossD. BarnoyS. GefenM. AmranO. ClaerhoutS. Fernández-VaqueroM. García-BeccariaM. HeideD. Shoshkes-CarmelM. Schmidt ArrasD. ElgavishS. NevoY. BenyaminiH. Tirnitz-ParkerJ.E.E. SanchezA. HerreraB. SafadiR. KaestnerK.H. Rose-JohnS. RoskamsT. HeikenwalderM. GalunE. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling.J. Hepatol.20227761631164110.1016/j.jhep.2022.07.029 35988690
    [Google Scholar]
  58. FurthP.A. WangW. KangK. RooneyB.L. KeeganG. MuralidaranV. ZouX. FlawsJ.A. Esr1 but Not CYP19A1 overexpression in mammary epithelial cells during reproductive senescence induces pregnancy-like proliferative mammary disease responsive to anti-hormonals.Am. J. Pathol.202319318410210.1016/j.ajpath.2022.09.007 36464512
    [Google Scholar]
  59. LeeY.H. KukM.U. SoM.K. SongE.S. LeeH. AhnS.K. KwonH.W. ParkJ.T. ParkS.C. Targeting mitochondrial oxidative stress as a strategy to treat aging and age-related diseases.Antioxidants202312493410.3390/antiox12040934 37107309
    [Google Scholar]
  60. ChenH. TuM. LiuS. WenY. ChenL. Dendrobine alleviates cellular senescence and osteoarthritis via the ROS/NF-κB Axis.Int. J. Mol. Sci.2023243236510.3390/ijms24032365 36768689
    [Google Scholar]
  61. ZhangY. PengX. XueM. LiuJ. ShangG. JiangM. ChenD. LiuB. WangY. JiaX. XuJ. ZhangF. HuY. SARS-COV-2 spike protein promotes RPE cell senescence via the ROS/P53/P21 pathway.Biogerontology202324581382710.1007/s10522‑023‑10019‑0 36738354
    [Google Scholar]
  62. LiuG. LiX. YangF. QiJ. ShangL. ZhangH. LiS. XuF. LiL. YuH. LiY. DongX. SongQ. ZhuF. ChenG. CaoC. JiangL. SuJ. YangL. XuX. ZhangZ. ZhaoR.C. LiB. C-phycocyanin ameliorates the senescence of mesenchymal stem cells through zdhhc5-mediated autophagy via PI3K/AKT/mTOR Pathway. Aging Dis.,2023144010.14336/AD.2023.012137163424
    [Google Scholar]
  63. HongJ. SongY. XieJ. XieJ. ChenY. LiP. LiuD. HuX. YuQ. Acrolein Promotes Aging and Oxidative Stress via the Stress Response Factor DAF-16/FOXO in Caenorhabditis elegans.Foods20221111159010.3390/foods11111590 35681340
    [Google Scholar]
  64. CalcinottoA. KohliJ. ZagatoE. PellegriniL. DemariaM. AlimontiA. Cellular Senescence: Aging, Cancer, and Injury.Physiol. Rev.20199921047107810.1152/physrev.00020.2018 30648461
    [Google Scholar]
  65. van DeursenJ.M. The role of senescent cells in ageing.Nature2014509750143944610.1038/nature13193 24848057
    [Google Scholar]
  66. TohW.S. BrittbergM. FarrJ. FoldagerC.B. GomollA.H. HuiJ.H. RichardsonJ.B. RobertsS. SpectorM. Cellular senescence in aging and osteoarthritis.Acta. Orthop., 201687Sup363614
    [Google Scholar]
  67. MartinJ.A. KlingelhutzA.J. Moussavi-HaramiF. BuckwalterJ.A. Effects of oxidative damage and telomerase activity on human articular cartilage chondrocyte senescence.J. Gerontol. A Biol. Sci. Med. Sci.2004594B324B33610.1093/gerona/59.4.B324 15071075
    [Google Scholar]
  68. YudohK. van TrieuN. NakamuraH. Hongo-MasukoK. KatoT. NishiokaK. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: Oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function.Arthritis Res.200572R380R39110.1186/ar1499 15743486
    [Google Scholar]
  69. ChenD. WuZ. WuL.N. JiangJ. HuG.N. Theaflavin attenuates TBHP-induced endothelial cells oxidative stress by activating PI3K/AKT/Nrf2 and accelerates wound healing in rats.Front. Bioeng. Biotechnol.20221083057410.3389/fbioe.2022.830574 35309982
    [Google Scholar]
  70. LiY. PanD. WangX. HuoZ. WuX. LiJ. CaoJ. XuH. DuL. XuB. Silencing ATF3 might delay tbhp-induced intervertebral disc degeneration by repressing npc ferroptosis, apoptosis, and ECM degradation.Oxid. Med. Cell. Longev.2022202211710.1155/2022/4235126 35480873
    [Google Scholar]
  71. PanY. JiaC. YuJ. WuZ. XuG. HuangY. Fibroblast growth factor 9 reduces TBHP-induced oxidative stress in chondrocytes and diminishes mouse osteoarthritis by activating ERK/Nrf2 signaling pathway.Int. Immunopharmacol.202311410960610.1016/j.intimp.2022.109606 36700776
    [Google Scholar]
  72. SrinivasU.S. TanB.W.Q. VellayappanB.A. JeyasekharanA.D. ROS and the DNA damage response in cancer.Redox Biol.20192510108410.1016/j.redox.2018.101084 30612957
    [Google Scholar]
  73. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. The hallmarks of aging.Cell201315361194121710.1016/j.cell.2013.05.039 23746838
    [Google Scholar]
  74. MijitM. CaraccioloV. MelilloA. AmicarelliF. GiordanoA. Role of p53 in the regulation of cellular senescence.Biomolecules202010342010.3390/biom10030420 32182711
    [Google Scholar]
  75. HenrotinY.E. BrucknerP. PujolJ.P.L. The role of reactive oxygen species in homeostasis and degradation of cartilage.Osteoarthritis Cartilage2003111074775510.1016/S1063‑4584(03)00150‑X 13129694
    [Google Scholar]
  76. PrieurA. BesnardE. BabledA. LemaitreJ.M. p53 and p16INK4A independent induction of senescence by chromatin-dependent alteration of S-phase progression.Nat. Commun.20112147310.1038/ncomms1473 21915115
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073273675231114112804
Loading
/content/journals/cchts/10.2174/0113862073273675231114112804
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test