Skip to content
2000
Volume 28, Issue 2
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Lupus nephritis is an autoimmune disease, and its pathogenesis involves inflammation and autophagy disorders. Studies have demonstrated that Astragalus membranaceus can effectively suppress the progression of LN, but the underlying therapeutic target is still unclear.

Objection

This study aimed to investigate the therapeutic target whereby AM ameliorates LN.

Methods

We downloaded AM and LN-related chips from the TCMSP and GEO databases, respectively. We selected the two compound targets for the subsequent analysis WGCNA, and constructed protein interaction networks of compound targets and determined the core targets. GO, KEGG analyses were conducted on compound targets to identify enriched functional and genomic pathways. The core genes were further validated in clinical and external datasets. Molecular docking of AS with the core targets was performed using the AutoDock software, and molecular dynamics simulation was conducted for the optimal core protein ligand obtained by molecular docking by Gromacs 2020.6 software.

Results

We obtained 10 core targets, namely IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, PPARγ, AR, CXCL10, and KDR, from the 24 compound targets identified. The results of the GO enrichment analysis mainly included cell growth regulation. The results of the KEGG enrichment analysis showed that 7 out of 23 valid targets were significantly enriched in the mitogen-activated protein kinase pathway ( < 0.01). Combined with the clinical datasets, we found that IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, and PPARγ have high diagnostic values for LN. In the validation dataset, all the core targets were significantly differentially expressed, except for EGF deletion. The molecular docking and molecular dynamics simulation results showed that AM and IL-1β, CASP3, STAT1, and PPARγ all had binding energies < -5 kJ·mol-1 and good binding properties.

Conclusion

IL-1β, CASP3, STAT1, and PPARγ could be potential biomarkers and therapeutic targets in AM ameliorates LN.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073255980231113071412
2024-01-30
2025-09-18
Loading full text...

Full text loading...

References

  1. TsokosG.C. LoM.S. ReisP.C. SullivanK.E. New insights into the immunopathogenesis of systemic lupus erythematosus.Nat. Rev. Rheumatol.2016121271673010.1038/nrrheum.2016.186 27872476
    [Google Scholar]
  2. ZucchiD. ElefanteE. SchiliròD. SignoriniV. TrentinF. BortoluzziA. TaniC. One year in review 2022: Systemic lupus erythema-tosus.Clin. Exp. Rheumatol.202240141410.55563/clinexprheumatol/nolysy 35088691
    [Google Scholar]
  3. AndersH.J. SaxenaR. ZhaoM. ParodisI. SalmonJ.E. MohanC. Lupus nephritis.Nat. Rev. Dis. Primers202061710.1038/s41572‑019‑0141‑9 31974366
    [Google Scholar]
  4. JaryalA. VikrantS. Current status of lupus nephritis.Indian J. Med. Res.2017145216717810.4103/ijmr.IJMR_163_16 28639592
    [Google Scholar]
  5. CrocaS.C. RodriguesT. IsenbergD.A. Assessment of a lupus nephritis cohort over a 30-year period.Rheumatology20115081424143010.1093/rheumatology/ker101 21415024
    [Google Scholar]
  6. HoussiauF.A. GinzlerE.M. Current treatment of lupus nephritis.Lupus200817542643010.1177/0961203308090029 18490421
    [Google Scholar]
  7. YapD.Y.H. ChanT.M.B. Cell abnormalities in systemic lupus erythematosus and lupus nephritis—role in pathogenesis and effect of immunosuppressive treatments.Int. J. Mol. Sci.20192024623110.3390/ijms20246231 31835612
    [Google Scholar]
  8. PodestàM.A. FaravelliI. PonticelliC. Autophagy in lupus nephritis: A delicate balance between regulation and disease.Autoimmun. Rev.202221810313210.1016/j.autrev.2022.103132 35690243
    [Google Scholar]
  9. LechM. AndersH.J. The pathogenesis of lupus nephritis.J. Am. Soc. Nephrol.20132491357136610.1681/ASN.2013010026 23929771
    [Google Scholar]
  10. YeX. ZhouX. ZhangH. Autophagy in immune-related renal disease.J. Immunol. Res.2019201911010.1155/2019/5071687 31815154
    [Google Scholar]
  11. WangL. LawH. The Role of Autophagy in Lupus Nephritis.Int. J. Mol. Sci.20151610251542516710.3390/ijms161025154 26506346
    [Google Scholar]
  12. ShaoB.M. XuW. DaiH. TuP. LiZ. GaoX.M. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb.Biochem. Biophys. Res. Commun.200432041103111110.1016/j.bbrc.2004.06.065 15249203
    [Google Scholar]
  13. ZhangH.W. LinZ.X. XuC. LeungC. ChanL.S. Astragalus (a traditional Chinese medicine) for treating chronic kidney disease.Cochrane Libr.20141010CD00836910.1002/14651858.CD008369.pub2 25335553
    [Google Scholar]
  14. DongM. LiJ. YangD. LiM. WeiJ. Biosynthesis and pharmacological activities of flavonoids, triterpene saponins and polysaccha-rides derived from astragalus membranaceus.Molecules20232813501810.3390/molecules28135018 37446680
    [Google Scholar]
  15. WangP. WangZ. ZhangZ. CaoH. KongL. MaW. RenW. A review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of the Astragalus memeranaceus.Front. Pharmacol.202314124231810.3389/fphar.2023.1242318 37680711
    [Google Scholar]
  16. dos SantosM. PolettiP.T. FaveroG. StacchiottiA. BonominiF. MontanariC.C. BonaS.R. MarroniN.P. RezzaniR. VeroneseF.V. Protective effects of quercetin treatment in a pristane-induced mouse model of lupus nephritis.Autoimmunity2018512698010.1080/08916934.2018.1442828 29480020
    [Google Scholar]
  17. WuD.J. AdamopoulosI.E. Autophagy and autoimmunity.Clin. Immunol.2017176556210.1016/j.clim.2017.01.007 28095319
    [Google Scholar]
  18. ChenH.Y. ChiangY.F. HongY.H. ShiehT.M. HuangT.C. AliM. ChangH.Y. WangK.L. HsiaS.M. Quercetin ameliorates renal injury and pyroptosis in lupus nephritis through inhibiting IL-33/ST2 pathway in vitro and in vivo.Antioxidants20221111223810.3390/antiox11112238 36421424
    [Google Scholar]
  19. HuT. YueJ. TangQ. ChengK.W. ChenF. PengM. ZhouQ. WangM. The effect of quercetin on diabetic nephropathy (DN): A systematic review and meta-analysis of animal studies.Food Funct.20221394789480310.1039/D1FO03958J 35416188
    [Google Scholar]
  20. RenJ. LiJ. LiuX. FengY. GuiY. YangJ. HeW. DaiC. Quercetin inhibits fibroblast activation and kidney fibrosis involving the suppression of mammalian target of rapamycin and β-catenin signaling.Sci. Rep.2016612396810.1038/srep23968 27052477
    [Google Scholar]
  21. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.051 27077332
    [Google Scholar]
  22. WuL. ChenY. ChenM. YangY. CheZ. LiQ. YouX. FuW. Application of network pharmacology and molecular docking to elucidate the potential mechanism of Astragalus–Scorpion against prostate cancer.Andrologia2021539e1416510.1111/and.14165 34185887
    [Google Scholar]
  23. XuJ. ZhangZ. ZhouK. LiY. WanJ. MaoT. JiX. LiuJ. LinQ. Integration of network pharmacology and molecular docking technology reveals the mechanism of the herbal pairing of Codonopsis Pilosula (Franch.) Nannf and Astragalus Membranaceus (Fisch.) Bge on chronic heart failure.Ann. Palliat. Med.20211077942795910.21037/apm‑21‑1469 34353081
    [Google Scholar]
  24. MartinezJ. CunhaL.D. ParkS. YangM. LuQ. OrchardR. LiQ.Z. YanM. JankeL. GuyC. LinkermannA. VirginH.W. GreenD.R. RETRACTED ARTICLE: Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells.Nature2016533760111511910.1038/nature17950 27096368
    [Google Scholar]
  25. RockelJ.S. KapoorM. Autophagy: Controlling cell fate in rheumatic diseases.Nat. Rev. Rheumatol.201612951753110.1038/nrrheum.2016.92 27334205
    [Google Scholar]
  26. FrangouE. ChrysanthopoulouA. MitsiosA. KambasK. ArelakiS. AngelidouI. ArampatzioglouA. GakiopoulouH. BertsiasG.K. VerginisP. RitisK. BoumpasD.T. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A).Ann. Rheum. Dis.201978223824810.1136/annrheumdis‑2018‑213181 30563869
    [Google Scholar]
  27. TianR. YuanL. HuangY. ZhangR. LyuH. XiaoS. GuoD. AliD.W. MichalakM. ChenX.Z. ZhouC. TangJ. Perturbed autophagy intervenes systemic lupus erythematosus by active ingredients of traditional Chinese medicine.Front. Pharmacol.202313105360210.3389/fphar.2022.1053602 36733375
    [Google Scholar]
  28. KellerC.W. AdamopoulosI.E. LünemannJ.D. Autophagy pathways in autoimmune diseases.J. Autoimmun.202313610303010.1016/j.jaut.2023.103030 37001435
    [Google Scholar]
  29. ZhouX.J. KlionskyD.J. ZhangH. Podocytes and autophagy: A potential therapeutic target in lupus nephritis.Autophagy201915590891210.1080/15548627.2019.1580512 30755075
    [Google Scholar]
  30. HaoW. RovinB.H. FriedmanA. Mathematical model of renal interstitial fibrosis.Proc. Natl. Acad. Sci. USA201411139141931419810.1073/pnas.1413970111 25225370
    [Google Scholar]
  31. LiuF.C. LeeH.C. LiaoC.C. LiA.H. YuH.P. Tropisetron protects against acetaminophen-induced liver injury via suppressing hepatic oxidative stress and modulating the activation of JNK/ERK MAPK Pathways.BioMed Res. Int.201620161910.1155/2016/1952947 27891510
    [Google Scholar]
  32. BaL. GaoJ. ChenY. QiH. DongC. PanH. ZhangQ. ShiP. SongC. GuanX. CaoY. SunH. Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways.Phytomedicine20195815276510.1016/j.phymed.2018.11.025 31005720
    [Google Scholar]
  33. HeY. SheH. ZhangT. XuH. ChengL. YepesM. ZhaoY. MaoZ. p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1.J. Cell Biol.2018217131532810.1083/jcb.201701049 29196462
    [Google Scholar]
  34. BehlT. UpadhyayT. SinghS. ChigurupatiS. AlsubayielA.M. ManiV. Vargas-De-La-CruzC. UivarosanD. BusteaC. SavaC. StoicescuM. RaduA.F. BungauS.G. Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis.Molecules20212621657010.3390/molecules26216570 34770980
    [Google Scholar]
  35. WuC.Y. HuaK.F. ChuC.L. YangS.R. ArbiserJ.L. YangS.S. LinY.C. LiuF.C. YangS.M. KaS.M. ChenA. Tris DBA amelio-rates accelerated and severe lupus nephritis in mice by activating regulatory t cells and autophagy and inhibiting the NLRP3 Inflammasome.J. Immunol.202020461448146110.4049/jimmunol.1801610 32060137
    [Google Scholar]
  36. FanJ. RenD. WangJ. LiuX. ZhangH. WuM. YangG. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo.Cell Death Dis.202011212610.1038/s41419‑020‑2317‑3 32071301
    [Google Scholar]
  37. RakeshR. PriyaDharshini, L.C.; Sakthivel, K.M.; Rasmi, R.R. Role and regulation of autophagy in cancer.Biochim. Biophys. Acta Mol. Basis Dis.20221868716640010.1016/j.bbadis.2022.166400 35341960
    [Google Scholar]
  38. ZhangZ. ChenW. ZhangS. BaiJ. LiuB. YungK.K.L. KoJ.K.S. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy.Phytomedicine202210615440610.1016/j.phymed.2022.154406 36029643
    [Google Scholar]
  39. YongH.Y. KohM.S. MoonA. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer.Expert Opin. Investig. Drugs200918121893190510.1517/13543780903321490 19852565
    [Google Scholar]
  40. WangX.X. ZhangB. XiaR. JiaQ.Y. Inflammation, apoptosis and autophagy as critical players in vascular dementia.Eur. Rev. Med. Pharmacol. Sci.202024189601961410.26355/eurrev_202009_23048 33015803
    [Google Scholar]
  41. BaburÖ. MelroseA.R. CunliffeJ.M. KlimekJ. PangJ. SeppA.L.I. Zilberman-RudenkoJ. Tassi YungaS. ZhengT. Parra-IzquierdoI. MinnierJ. McCartyO.J.T. DemirE. ReddyA.P. WilmarthP.A. DavidL.L. AslanJ.E. Phosphoproteomic quantitation and causal analysis reveal pathways in GPVI/ITAM-mediated platelet activation programs.Blood2020136202346235810.1182/blood.2020005496 32640021
    [Google Scholar]
  42. JinJ.Q. HanJ.S. HaJ. BaekH.S. LimD.J. Lobeglitazone, A peroxisome proliferator-activated receptor-gamma agonist, inhibits papillary thyroid cancer cell migration and invasion by Suppressing p38 MAPK Signaling Pathway.Endocrinol. Metab. 20213651095111010.3803/EnM.2021.1155 34645125
    [Google Scholar]
  43. MariñoG. Niso-SantanoM. BaehreckeE.H. KroemerG. Self-consumption: The interplay of autophagy and apoptosis.Nat. Rev. Mol. Cell Biol.2014152819410.1038/nrm3735 24401948
    [Google Scholar]
  44. AsadiM. TaghizadehS. KavianiE. VakiliO. Taheri-AnganehM. TahamtanM. SavardashtakiA. Caspase‐3: Structure, function, and biotechnological aspects.Biotechnol. Appl. Biochem.20226941633164510.1002/bab.2233 34342377
    [Google Scholar]
  45. TanakaT. WarnerB.M. MichaelD.G. NakamuraH. OdaniT. YinH. AtsumiT. NoguchiM. ChioriniJ.A. LAMP3 inhibits au-tophagy and contributes to cell death by lysosomal membrane permeabilization.Autophagy20221871629164710.1080/15548627.2021.1995150 34802379
    [Google Scholar]
  46. GuQ. JiaoS. DuanK. WangY.X. PetraliaR.S. LiZ. The BAD-BAX-Caspase-3 cascade modulates synaptic vesicle pools via autophagy.J. Neurosci.20214161174119010.1523/JNEUROSCI.0969‑20.2020 33303681
    [Google Scholar]
  47. MengD. LiZ. WangG. LingL. WuY. ZhangC. Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells.Biomed. Pharmacother.20181081617162710.1016/j.biopha.2018.10.005 30372864
    [Google Scholar]
  48. El-FarA.H. LebdaM.A. NoreldinA.E. AttaM.S. ElewaY.H.A. ElfekyM. MousaS.A. Quercetin attenuates pancreatic and renal d-galactose-induced aging-related oxidative alterations in rats.Int. J. Mol. Sci.20202112434810.3390/ijms21124348 32570962
    [Google Scholar]
  49. JerucJ. VizjakA. RozmanB. FerlugaD. Immunohistochemical expression of activated caspase-3 as a marker of apoptosis in glomeruli of human lupus nephritis.Am. J. Kidney Dis.200648341041810.1053/j.ajkd.2006.05.019 16931214
    [Google Scholar]
  50. SciasciaS. CozziM. BarinottiA. RadinM. CecchiI. FenoglioR. MancardiD. Wilson JonesG. RossiD. RoccatelloD. Renal fibrosis in lupus nephritis.Int. J. Mol. Sci.202223221431710.3390/ijms232214317 36430794
    [Google Scholar]
  51. BradyM.P. KorteE.A. CasterD.J. PowellD.W. TNIP1/ABIN1 and lupus nephritis. [review]Lupus Sci. Med.202071e00043710.1136/lupus‑2020‑000437 33122334
    [Google Scholar]
  52. NowlingT.K. Mesangial cells in lupus nephritis.Curr. Rheumatol. Rep.202123128310.1007/s11926‑021‑01048‑034985599
    [Google Scholar]
  53. CasterD.J. PowellD.W. Utilization of biomarkers in lupus nephritis.Adv. Chronic Kidney Dis.201926535135910.1053/j.ackd.2019.09.001 31733719
    [Google Scholar]
  54. RodeloJ. AguirreL. OrtegónK. UstárizJ. CalderonL. TabordaA. AriasL.F. GonzálezL.A. Predicting kidney outcomes among latin american patients with lupus nephritis: The prognostic value of interstitial fibrosis and tubular atrophy and tubulointerstitial inflammation.Lupus202332341142310.1177/09612033231151597 36647707
    [Google Scholar]
  55. ScheffschickA. FuchsS. MalmströmV. GunnarssonI. BraunerH. Kidney infiltrating NK cells and NK-like T-cells in lupus nephritis: Presence, localization, and the effect of immunosuppressive treatment.Clin. Exp. Immunol.2022207219920410.1093/cei/uxab035 35020891
    [Google Scholar]
  56. YungS. ChanT.M. Molecular and immunological basis of tubulo-interstitial injury in lupus nephritis: A comprehensive review.Clin. Rev. Allergy Immunol.201752214916310.1007/s12016‑016‑8533‑z 26961386
    [Google Scholar]
  57. ShenH.H. YangY.X. MengX. LuoX.Y. LiX.M. ShuaiZ.W. YeD.Q. PanH.F. NLRP3: A promising therapeutic target for auto-immune diseases.Autoimmun. Rev.201817769470210.1016/j.autrev.2018.01.020 29729449
    [Google Scholar]
  58. LiZ. GuoJ. BiL. Role of the NLRP3 inflammasome in autoimmune diseases.Biomed. Pharmacother.202013011054210.1016/j.biopha.2020.110542 32738636
    [Google Scholar]
  59. MiglioriniP. ItalianiP. PratesiF. PuxedduI. BoraschiD. The IL-1 family cytokines and receptors in autoimmune diseases.Autoimmun. Rev.202019910261710.1016/j.autrev.2020.102617 32663626
    [Google Scholar]
  60. SimsJ.E. SmithD.E. The IL-1 family: Regulators of immunity.Nat. Rev. Immunol.20101028910210.1038/nri2691 20081871
    [Google Scholar]
  61. ConosS.A. LawlorK.E. VauxD.L. VinceJ.E. LindqvistL.M. Cell death is not essential for caspase-1-mediated interleukin-1β activation and secretion.Cell Death Differ.201623111827183810.1038/cdd.2016.69 27419363
    [Google Scholar]
  62. MenkeJ. AmannK. CavagnaL. BlettnerM. WeinmannA. SchwartingA. KelleyV.R. Colony-Stimulating Factor-1.J. Am. Soc. Nephrol.201526237938910.1681/ASN.2013121356 25012167
    [Google Scholar]
  63. YungS. TsangR.C.W. SunY. LeungJ.K.H. ChanT.M. Effect of human anti-DNA antibodies on proximal renal tubular epithelial cell cytokine expression: implications on tubulointerstitial inflammation in lupus nephritis.J. Am. Soc. Nephrol.200516113281329410.1681/ASN.2004110917 16192422
    [Google Scholar]
  64. CastejonM.L. Sánchez-HidalgoM. Aparicio-SotoM. MontoyaT. Martín-LaCaveI. Fernández-BolañosJ.G. Alarcón-de-la-LastraC. Dietary oleuropein and its new acyl-derivate attenuate murine lupus nephritis through HO-1/Nrf2 activation and suppressing JAK/STAT, NF-κB, MAPK and NLRP3 inflammasome signaling pathways.J. Nutr. Biochem.20197410822910.1016/j.jnutbio.2019.108229 31698204
    [Google Scholar]
  65. WangH. XuJ. ZhangX. RenY.L. ChengM. GuoZ.L. ZhangJ.C. ChengH. XingG.L. WangS.X. YuF. ZhaoM.H. Tubular basement membrane immune complex deposition is associated with activity and progression of lupus nephritis: A large multicenter Chinese study.Lupus201827454555510.1177/0961203317732407 28954590
    [Google Scholar]
  66. LiuC.M. MaJ.Q. XieW.R. LiuS.S. FengZ.J. ZhengG.H. WangA.M. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway.Food Chem. Toxicol.201582192610.1016/j.fct.2015.05.001 25957741
    [Google Scholar]
  67. MichelH.E. MenzeE.T. Tetramethylpyrazine guards against cisplatin-induced nephrotoxicity in rats through inhibiting HMGB1/TLR4/NF-κB and activating Nrf2 and PPAR-γ signaling pathways.Eur. J. Pharmacol.201985717242210.1016/j.ejphar.2019.172422 31152701
    [Google Scholar]
  68. HeY. CaoX. GuoP. LiX. ShangH. LiuJ. XieM. XuY. LiuX. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia.Free Radic. Biol. Med.201710316517610.1016/j.freeradbiomed.2016.12.016 27979659
    [Google Scholar]
  69. IrisM. TsouP.S. SawalhaA.H. Caffeine inhibits STAT1 signaling and downregulates inflammatory pathways involved in autoimmunity.Clin. Immunol.2018192687710.1016/j.clim.2018.04.008 29678503
    [Google Scholar]
  70. CarulloG. CappelloA.R. FrattaruoloL. BadolatoM. ArmentanoB. AielloF. Quercetin and derivatives: Useful tools in inflammation and pain management.Future Med. Chem.201791799310.4155/fmc‑2016‑0186 27995808
    [Google Scholar]
  71. LiG. ShenX. WeiY. SiX. DengX. WangJ. Quercetin reduces Streptococcus suis virulence by inhibiting suilysin activity and in-flammation.Int. Immunopharmacol.201969717810.1016/j.intimp.2019.01.017 30682719
    [Google Scholar]
  72. AhmedO.M. MohamedT. MoustafaH. HamdyH. AhmedR.R. AboudE. Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress.Biomed. Pharmacother.2018101587310.1016/j.biopha.2018.02.040 29477473
    [Google Scholar]
  73. BasuA. DasA.S. MajumderM. MukhopadhyayR. Antiatherogenic roles of dietary flavonoids chrysin, quercetin, and luteolin.J. Cardiovasc. Pharmacol.2016681899610.1097/FJC.0000000000000380 27385185
    [Google Scholar]
  74. WangR. ZhangH. WangY. SongF. YuanY. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling.Int. Immunopharmacol.20174712613310.1016/j.intimp.2017.03.029 28391159
    [Google Scholar]
  75. YeZ. XiaoJ. WangR. CaiX. HuangX. Mechanism of action of ermiao san on rheumatoid arthritis based on bioinformatics and mo-lecular dynamics.Comb. Chem. High Throughput Screen.,202225132153216410.2174/138620732566622020710555935135448
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073255980231113071412
Loading
/content/journals/cchts/10.2174/0113862073255980231113071412
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test