Skip to content
2000
Volume 28, Issue 2
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Objective

Mesangial proliferative glomerulonephritis (MsPGN) is an important cause of chronic kidney disease. Abnormal proliferation of mesangial cells and immune-inflammatory response are its important pathological manifestations. Currently, there is no ideal treatment for this disease. Fufang Banbianlian Injection (FBI) has anti-inflammatory, antioxidant, and immune-enhancing effects, and is mostly used for the treatment of bronchitis, pneumonia, and respiratory tract infections in children.

Methods

A rat model of MsPGN was established and treated with FBI. The efficacy was tested through pathological experiments and urine protein quantification. Network pharmacology methods were used to predict the signaling pathways and key proteins that exert the efficacy of FBI, and were screened through molecular docking experiments. The active substances that work were verified through cell experiments.

Results

The results confirmed that intervention with FBI can inhibit the proliferation of glomerular cells and reduce the infiltration of macrophages, thereby reducing the pathological damage of rats with mesangial proliferative nephritis; it has been found to have an obvious therapeutic effect. Molecular docking results have shown kaempferol (Kae), the main component of FBI, to have a good affinity for key targets. The results of verification experiments showed that FBI and its active ingredient Kae may play a therapeutic role by regulating the NF-κB signaling pathway in mesangial cells, inhibiting its activation and the secretion of proinflammatory cytokines.

Conclusion

Through network pharmacology, molecular docking, and experimental verification, it was confirmed that FBI and its active ingredient Kae can reduce the molecular mechanism of pathological damage of MsPGN by regulating the NF-κB signaling pathway and providing potential therapeutic drugs for the treatment of this disease.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073272415231119133102
2024-01-08
2025-09-19
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/2/CCHTS-28-2-07.html?itemId=/content/journals/cchts/10.2174/0113862073272415231119133102&mimeType=html&fmt=ahah

References

  1. HuangK. LiR. WeiW. Sirt1 activation prevents anti-Thy 1.1 mesangial proliferative glomerulonephritis in the rat through the Nrf2/ARE pathway.Eur. J. Pharmacol.201883213814410.1016/j.ejphar.2018.05.017 29782856
    [Google Scholar]
  2. YuH. CuiS. MeiY. LiQ. WuL. DuanS. CaiG. ZhuH. FuB. ZhangL. FengZ. ChenX. Mesangial cells exhibit features of antigen-presenting cells and activate CD4+ T cell responses.J. Immunol. Res.2019201911410.1155/2019/2121849 31317046
    [Google Scholar]
  3. JiM. LuY. ZhaoC. GaoW. HeF. ZhangJ. ZhaoD. QiuW. WangY. C5a induces the synthesis of IL-6 and TNF-α in Rat Glomerular Mesangial Cells through MAPK signaling pathways.PLoS One2016119e016186710.1371/journal.pone.0161867 27583546
    [Google Scholar]
  4. HaI.S. UmE.Y. JungH.R. ParkH.W. CheongH.I. ChoiY. Glucocorticoid diminishes vascular endothelial growth factor and exacerbates proteinuria in rats with mesangial proliferative glomerulonephritis.Am. J. Kidney Dis.20023951001101010.1053/ajkd.2002.32773 11979343
    [Google Scholar]
  5. YangY. LaiW. Clinical effect of low-dose tacrolimus in adjuvant treatment of mesangial proliferative glomerulonephritis. Chinese J. Clini. Ration. Drug.Use.202114288082
    [Google Scholar]
  6. WuZ. The relevant literature of chinese medicine treatment of mesangial proliferative glomerulonephritis.China J. Chin. Med.20102503581583
    [Google Scholar]
  7. LiS. JiangH. LinZ. DengS. GuanY. WangH. ChenS. An on-line high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-deoxyribonucleic acid-4',6-diamidino-2-phenylindole-fluorescence detector system for screening the DNA-binding active compounds in Fufang Banbianlian Injection.J. Chromatogr. A20151424375010.1016/j.chroma.2015.10.079 26592560
    [Google Scholar]
  8. ZhuangY. Study on the original textual research and microscopic identification of lobelia chinensis.Res. Pract. Chin. Med.2021350316
    [Google Scholar]
  9. HanJ. Study on antitumor activity of lobelia.J. Tradit. Chin. Med.201617027172
    [Google Scholar]
  10. LiuM. ChenW. CaiY. Scutellaria barbata alcohol extract regulates the effect of circ_0092283/miR-198 on colonization and apoptosis of colorectal cancer cells.China Pharmacist2021240916061611
    [Google Scholar]
  11. NaL.I. PingW. Tie-FengS. LiH. Ya-NanH.U. Hai-TaoD.U. HuaL. [Research progress on chemical constituents, pharmacological action and quality control of Scutellaria barbata]Zhongguo Zhongyao Zazhi2020452151175128 33350227
    [Google Scholar]
  12. LiuY. Assay of total anthraquinone and flavone contents of hedyotis diffusa in henan province.DZU201935062529
    [Google Scholar]
  13. LiaoD. Oldenlandia diffusa extract promotes apoptosis of colon cancer cells by down-regulating the Hippo-YAP signaling pathway.Tradit. Chin. Med.117
    [Google Scholar]
  14. ShiL. JiZ. KangW. Clinical application of cfufang banbianlian injection.China Pharamcy2011224745084509
    [Google Scholar]
  15. SunJ. Pharmacological effects of compound injection of lobelia chinensis in rats with adriamycin - induced nephropathy.Inform. Tradit. Chin. Med201835014246
    [Google Scholar]
  16. ChenH. Network pharmacology: A new perspective of mechanism research of traditional Chinese medicine formula.Zhonghua Zhongyiyao Zazhi2019340728732876
    [Google Scholar]
  17. HeD. HuangJ. ZhangZ. DuQ. PengW. YuR. ZhangS. ZhangS. QinY. A network pharmacology-based strategy for predicting active ingredients and potential targets of liuwei dihuang pill in treating type 2 diabetes mellitus.Drug Des. Devel. Ther.2019133989400510.2147/DDDT.S216644 31819371
    [Google Scholar]
  18. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  19. TaoW. XuX. WangX. LiB. WangY. LiY. YangL. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease.J. Ethnopharmacol.2013145111010.1016/j.jep.2012.09.051 23142198
    [Google Scholar]
  20. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards version 3: The human gene integrator.Database 201020100baq02010.1093/database/baq020 20689021
    [Google Scholar]
  21. PiñeroJ. BravoÀ. Queralt-RosinachN. Gutiérrez-SacristánA. Deu-PonsJ. CentenoE. García-GarcíaJ. SanzF. FurlongL.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants.Nucleic Acids Res.201745D1D833D83910.1093/nar/gkw943 27924018
    [Google Scholar]
  22. AmbergerJ.S. HamoshA. Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics,201758 1.2.11.2.12
    [Google Scholar]
  23. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky11316323986
    [Google Scholar]
  24. WuG. Targets prediction and mechanism of Zanthoxylum nitidum in intervention of inflammation based on network pharmacology.Chin. Tradit. Herbal Drugs20195003659668
    [Google Scholar]
  25. LuY. Bioinformatics analysis of proteomic profiles during the process of anti-Thy1 nephritis. Mol. Cell Proteomics, 2012114M111.00875510.1074/mcp.M111.008755
    [Google Scholar]
  26. Gómez-GuerreroC. Hernández-VargasP. López-FrancoO. Ortiz-MuñozG. EgidoJ. Mesangial cells and glomerular inflammation: From the pathogenesis to novel therapeutic approaches.Curr. Drug Targets Inflamm. Allergy20054334135110.2174/1568010054022169 16101544
    [Google Scholar]
  27. BradyH.R. DentonM.D. JimenezW. TakataS. PalliserD. BrennerB.M. Chemoattractants provoke monocyte adhesion to human mesangial cells and mesangial cell injury.Kidney Int.199242248048710.1038/ki.1992.312 1328754
    [Google Scholar]
  28. AlharbiK.S. AfzalO. AltamimiA.S.A. AlmalkiW.H. KazmiI. Al-AbbasiF.A. AlzareaS.I. MakeenH.A. AlbrattyM. A study of the molecular mechanism of quercetin and dasatinib combination as senolytic in alleviating age-related and kidney diseases.J. Food Biochem.20224612e1447110.1111/jfbc.14471 36268851
    [Google Scholar]
  29. RahmanM.D.H. BiswasP. DeyD. HannanM.A. SahabuddinM. ArafY. KwonY. EmranT.B. AliM.S. UddinM.J. An in-silico identification of potential flavonoids against kidney fibrosis targeting TGFβR-1.Life20221211176410.3390/life12111764 36362919
    [Google Scholar]
  30. TliliN. FerianiA. SaadouiE. NasriN. KhaldiA. Capparis spinosa leaves extract: Source of bioantioxidants with nephroprotective and hepatoprotective effects.Biomed. Pharmacother.20178717117910.1016/j.biopha.2016.12.052 28056421
    [Google Scholar]
  31. Tovar-PalacioC. NoriegaL.G. MercadoA. Potential of polyphenols to restore SIRT1 and NAD+ metabolism in renal disease.Nutrients202214365310.3390/nu14030653 35277012
    [Google Scholar]
  32. BandyopadhyayS. RomeroJ.R. ChattopadhyayN. Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells.Mol. Cell. Endocrinol.20082871-2576410.1016/j.mce.2008.01.015 18346843
    [Google Scholar]
  33. GasmiJ. SandersonJ.T. Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells.J. Agric. Food Chem.20105823121491215610.1021/jf103306k 21067181
    [Google Scholar]
  34. Muñoz-EspadaA.C. WatkinsB.A. Cyanidin attenuates PGE2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells.J. Nutr. Biochem.200617958959610.1016/j.jnutbio.2005.10.007 16443360
    [Google Scholar]
  35. LiC. ZhaoY. GuoZ. ZhangX. XueX. LiangX. Effective 2D-RPLC/RPLC enrichment and separation of micro-components from Hedyotis diffusa Willd. and characterization by using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry.J. Pharm. Biomed. Anal.201499354410.1016/j.jpba.2014.06.020 25061712
    [Google Scholar]
  36. LiuG. RajeshN. WangX. ZhangM. WuQ. LiS. ChenB. YaoS. Identification of flavonoids in the stems and leaves of Scutellaria baicalensis Georgi.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.201187913-141023102810.1016/j.jchromb.2011.02.050 21435957
    [Google Scholar]
  37. CasperE. The ameliorative effect of kaempferol against CdCl(2)-mediated renal damage entails activation of Nrf2 and inhibition of NF-kB.Environ. Sci. Pollut. Res. Int.20223092479024791
    [Google Scholar]
  38. MundkarM. BijalwanA. SoniD. KumarP. Neuroprotective potential of Moringa oleifera mediated by NF-kB/Nrf2/HO-1 signaling pathway: A review.J. Food Biochem.20224612e1445110.1111/jfbc.14451 36206551
    [Google Scholar]
  39. GuptaS.C. KunnumakkaraA.B. AggarwalS. AggarwalB.B. Inflammation, a double-edge sword for cancer and other age-related diseases.Front. Immunol.20189216010.3389/fimmu.2018.02160 30319623
    [Google Scholar]
  40. LaurindoL.F. SantosA.R.O. CarvalhoA.C.A. BecharaM.D. GuiguerE.L. GoulartR.A. Vargas SinatoraR. AraújoA.C. BarbalhoS.M. Phytochemicals and regulation of NF-kB in inflammatory bowel diseases: An overview of in vitro and in vivo] effects.Metabolites20231319610.3390/metabo13010096 36677021
    [Google Scholar]
  41. JinM. YinZ. WeiK. XieY. BaiX. FuB. FengZ. LiQ. ChenX. Metanephric mesenchyme-derived Foxd1+ mesangial precursor cells alleviate mesangial proliferative glomerulonephritis.J. Mol. Med. 201997455356110.1007/s00109‑019‑01749‑1 30810761
    [Google Scholar]
  42. BaiJ. WuL. ChenX. WangL. LiQ. ZhangY. WuJ. CaiG. ChenX. Suppressor of cytokine signaling-1/STAT1 regulates renal inflammation in mesangial proliferative glomerulonephritis models.Front. Immunol.20189198210.3389/fimmu.2018.01982 30214448
    [Google Scholar]
  43. BokemeyerD. OstendorfT. KunterU. LindemannM. KramerH.J. FloegeJ.U.C.D.R.G.E.N. Differential activation of mitogen-activated protein kinases in experimental mesangioproliferative glomerulonephritis.J. Am. Soc. Nephrol.200011223224010.1681/ASN.V112232 10665930
    [Google Scholar]
  44. BhasinH.K. AbueloJ.G. NayakR. EsparzaA.R. Mesangial proliferative glomerulonephritis.Lab. Invest.19783912129 355724
    [Google Scholar]
  45. NiuY. LiS. LinZ. LiuM. WangD. WangH. ChenS. Development of propidium iodide as a fluorescence probe for the on-line screening of non-specific DNA-intercalators in Fufang Banbianlian Injection.J. Chromatogr. A2016146310210910.1016/j.chroma.2016.08.013 27522151
    [Google Scholar]
  46. HallerH. BertramA. NadrowitzF. MenneJ. Monocyte chemoattractant protein-1 and the kidney.Curr. Opin. Nephrol. Hypertens.2016251424910.1097/MNH.0000000000000186 26625862
    [Google Scholar]
  47. CarswellE.A. OldL.J. KasselR.L. GreenS. FioreN. WilliamsonB. An endotoxin-induced serum factor that causes necrosis of tumors.Proc. Natl. Acad. Sci. USA19757293666367010.1073/pnas.72.9.3666 1103152
    [Google Scholar]
  48. TeschG.H. Diabetic nephropathy – is this an immune disorder?Clin. Sci. 2017131162183219910.1042/CS20160636 28760771
    [Google Scholar]
  49. EardleyK.S. ZehnderD. QuinklerM. LepeniesJ. BatesR.L. SavageC.O. HowieA.J. AduD. CockwellP. The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease.Kidney Int.20066971189119710.1038/sj.ki.5000212 16609683
    [Google Scholar]
  50. ChowF.Y. Nikolic-PatersonD.J. OzolsE. AtkinsR.C. RollinB.J. TeschG.H. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice.Kidney Int.2006691738010.1038/sj.ki.5000014 16374426
    [Google Scholar]
  51. FaliniB. FlenghiL. PileriS. GambacortaM. BigernaB. DurkopH. EitelbachF. ThieleJ. PaciniR. CavaliereA. PG-M1: A new monoclonal antibody directed against a fixative-resistant epitope on the macrophage-restricted form of the CD68 molecule.Am. J. Pathol.1993142513591372 7684194
    [Google Scholar]
  52. RicardoS.D. van GoorH. EddyA.A. Macrophage diversity in renal injury and repair.J. Clin. Invest.2008118113522353010.1172/JCI36150 18982158
    [Google Scholar]
  53. ChalmersS.A. ChituV. HerlitzL.C. SahuR. StanleyE.R. PuttermanC. Macrophage depletion ameliorates nephritis induced by pathogenic antibodies.J. Autoimmun.201557425210.1016/j.jaut.2014.11.007 25554644
    [Google Scholar]
  54. RenJ. XuY. LuX. WangL. IdeS. HallG. SoumaT. PrivratskyJ.R. SpurneyR.F. CrowleyS.D. Twist1 in podocytes ameliorates podocyte injury and proteinuria by limiting CCL2-dependent macrophage infiltration.JCI Insight2021615e14810910.1172/jci.insight.148109 34369383
    [Google Scholar]
  55. GordonS. The macrophage: Past, present and future.Eur. J. Immunol.200737S1S9S1710.1002/eji.200737638 17972350
    [Google Scholar]
  56. MosserD.M. EdwardsJ.P. Exploring the full spectrum of macrophage activation.Nat. Rev. Immunol.200881295896910.1038/nri2448 19029990
    [Google Scholar]
  57. MartinezF.O. HelmingL. GordonS. Alternative activation of macrophages: An immunologic functional perspective.Annu. Rev. Immunol.200927145148310.1146/annurev.immunol.021908.132532 19105661
    [Google Scholar]
  58. DuffieldJ.S. The inflammatory macrophage: A story of Jekyll and Hyde.Clin. Sci. 20031041273810.1042/cs1040027 12519085
    [Google Scholar]
  59. YehT.M. ChangC.D. LiuS.S. ChangC.I. ShihW.L. Tea seed kaempferol triglycoside attenuates lps-induced systemic inflammation and ameliorates cognitive impairments in a mouse model.Molecules2022277205510.3390/molecules27072055 35408453
    [Google Scholar]
  60. LiaoW.Q. CuiS.Y. OuyangQ. MeiY. CaiG.Y. FuB. MaQ. BaiX.Y. LiQ.G. ChenX.M. Modulation of macrophage polarization by human glomerular mesangial cells in response to the stimuli in renal microenvironment.J. Interferon Cytokine Res.2018381256657710.1089/jir.2018.0093 30523751
    [Google Scholar]
  61. WangM. XuH. Chong Lee ShinO.L.S. LiL. GaoH. ZhaoZ. ZhuF. ZhuH. LiangW. QianK. ZhangC. ZengR. ZhouH. YaoY. Compound α-keto acid tablet supplementation alleviates chronic kidney disease progression via inhibition of the NF-kB and MAPK pathways.J. Transl. Med.201917112210.1186/s12967‑019‑1856‑9 30975176
    [Google Scholar]
  62. ZhuJ. ZhangY. ShiL. XiaY. ZhaH. LiH. SongZ. RP105 protects against ischemic and septic acute kidney injury via suppressing TLR4/NF-κB signaling pathways.Int. Immunopharmacol.202210910890410.1016/j.intimp.2022.108904 35696803
    [Google Scholar]
  63. ZhengL. SinniahR. HsuS.I.H. Renal cell apoptosis and proliferation may be linked to nuclear factor–κB activation and expression of inducible nitric oxide synthase in patients with lupus nephritis.Hum. Pathol.200637663764710.1016/j.humpath.2006.01.002 16733202
    [Google Scholar]
  64. StrawnW.B. Pathophysiological and clinical implications of AT(1) and AT(2) angiotensin II receptors in metabolic disorders: hypercholesterolaemia and diabetesDrugs200262Spec No 1314110.2165/00003495‑200262991‑00004 12036387
    [Google Scholar]
  65. LiS. WuZ. LeW. Traditional Chinese medicine for dementia.Alzheimers Dement.20211761066107110.1002/alz.12258 33682261
    [Google Scholar]
  66. WangY. FengY. LiM. YangM. ShiG. XuanZ. YinD. XuF. Traditional Chinese Medicine in the treatment of chronic kidney diseases: Theories, applications, and mechanisms.Front. Pharmacol.20221391797510.3389/fphar.2022.917975 35924053
    [Google Scholar]
  67. YangB. XieY. GuoM. RosnerM.H. YangH. RoncoC. Nephrotoxicity and chinese herbal medicine.Clin. J. Am. Soc. Nephrol.201813101605161110.2215/CJN.11571017 29615394
    [Google Scholar]
  68. WojcikowskiK. JohnsonD.W. GobeG. Herbs or natural substances as complementary therapies for chronic kidney disease: ideas for future studies.J. Lab. Clin. Med.2006147416016610.1016/j.lab.2005.11.011 16581343
    [Google Scholar]
  69. LiS. LinZ. JiangH. TongL. WangH. ChenS. Rapid identification and assignation of the active ingredients in fufang banbianlian injection using HPLC-DAD-ESI-IT-TOF-MS.J. Chromatogr. Sci.20165471225123710.1093/chromsci/bmw055 27107094
    [Google Scholar]
  70. AlshehriA.S. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis.Arch. Physiol. Biochem.20231294984997 33625930
    [Google Scholar]
  71. LiuT. GaoY.C. QinX.J. GaoJ.R. Exploring the mechanism of Jianpi Qushi Huayu Formula in the treatment of chronic glomerulonephritis based on network pharmacology.Naunyn Schmiedebergs Arch. Pharmacol.2021394122451247010.1007/s00210‑021‑02159‑2 34618179
    [Google Scholar]
  72. MiglioriniA. EbidR. ScherbaumC.R. AndersH.J. The danger control concept in kidney disease: Mesangial cells.J. Nephrol.201326343744910.5301/jn.5000247 23475470
    [Google Scholar]
  73. LuY. MeiY. ChenL. WuL. WangX. ZhangY. FuB. ChenX. XieY. CaiG. BaiX. LiQ. ChenX. The role of transcriptional factor D-site-binding protein in circadian CCL2 gene expression in anti-Thy1 nephritis.Cell. Mol. Immunol.201916973574510.1038/s41423‑018‑0020‑4 29568121
    [Google Scholar]
  74. LiuB. LinJ. BaiL. ZhouY. LuR. ZhangP. ChenD. LiH. SongJ. LiuX. WuY. WuJ. LiangC. ZhouJ. Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β pathway.Front. Pharmacol.20191097810.3389/fphar.2019.00978 31551783
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073272415231119133102
Loading
/content/journals/cchts/10.2174/0113862073272415231119133102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test