Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

v-RAF murine sarcoma viral homolog B1 (BRAF) is one of the most frequently mutated kinases in human cancers. BRAF exhibits three classes of mutations: Class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600).

Methods

In this paper, the protein-ligand interaction site of all three mutants: BRAF monomer, BRAF homodimer BRAF:14-3-3, and BRAF heterodimer BRAF:14-3-3:MEK (Mitogen extracellular Kinase) has been discussed. FDA-approved drugs still have limitations against all three classes of mutants, especially against the second and third classes. Using the DesPot grid model, 1114 new compounds were designed. Using virtual screening, the three PDB Ids 4XV2 for monomers, 7MFF for homodimers, and 4MNE for heterodimers were used for 1114 newly designed compounds.

Results

Dabrafenib, encorafenib, sorafenib and vemurafenib were included as standard drugs. The top 10 hit molecules were identified for each protein. Additional binding studies were performed using molecular docking studies on the protein-ligand site of each PDB identifier. Absorption, distribution, metabolism, excretion (ADME) and toxicity studies were also performed.

Conclusion

It was identified that top-hit molecules had better binding and interaction activity than standard in all three classes of mutants.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073273813231113071010
2024-01-17
2025-10-27
Loading full text...

Full text loading...

References

  1. MalumbresM. BarbacidM. RAS oncogenes: The first 30 years.Nat. Rev. Cancer20033645946510.1038/nrc1097 12778136
    [Google Scholar]
  2. KumarP. SinghA.K. KumarA. TharejaS. Current insights into the role of BRAF inhibitors in treatment of melanoma.Anticancer. Agents Med. Chem.202323327829710.2174/1871520622666220624164152 35761499
    [Google Scholar]
  3. NambaH. NakashimaM. HayashiT. HayashidaN. MaedaS. RogounovitchT.I. OhtsuruA. SaenkoV.A. KanematsuT. YamashitaS. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers.J. Clin. Endocrinol. Metab.20038894393439710.1210/jc.2003‑030305 12970315
    [Google Scholar]
  4. IbrahimP.N. ZhangJ. ZhangC. BollagG. Case History.Annu. Rep. Med. Chem.20134843544910.1016/B978‑0‑12‑417150‑3.00026‑0
    [Google Scholar]
  5. JonesJ.C. RenfroL.A. Al-ShamsiH.O. SchrockA.B. RankinA. ZhangB.Y. KasiP.M. VossJ.S. LealA.D. SunJ. RossJ. AliS.M. HubbardJ.M. KippB.R. McWilliamsR.R. KopetzS. WolffR.A. GrotheyA. Non-V600BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer.J. Clin. Oncol.201735232624263010.1200/JCO.2016.71.4394 28486044
    [Google Scholar]
  6. DanknerM. RoseA.A.N. RajkumarS. SiegelP.M. WatsonI.R. Classifying BRAF alterations in cancer: New rational therapeutic strategies for actionable mutations.Oncogene201837243183319910.1038/s41388‑018‑0171‑x 29540830
    [Google Scholar]
  7. DhomenN. MaraisR. New insight into BRAF mutations in cancer.Curr. Opin. Genet. Dev.2007171313910.1016/j.gde.2006.12.005 17208430
    [Google Scholar]
  8. LokhandwalaP.M. TsengL.H. RodriguezE. ZhengG. PallavajjallaA. GockeC.D. EshlemanJ.R. LinM.T. Clinical mutational profiling and categorization of BRAF mutations in melanomas using next generation sequencing.BMC Cancer201919166510.1186/s12885‑019‑5864‑1 31277584
    [Google Scholar]
  9. ŚmiechM. LeszczyńskiP. KonoH. WardellC. TaniguchiH. Emerging BRAF mutations in cancer progression and their possible effects on transcriptional networks.Genes20201111134210.3390/genes11111342 33198372
    [Google Scholar]
  10. JohnsonD.B. NebhanC.A. NoelM.S. MEK inhibitors in non-V600 BRAF mutations and fusions.Oncotarget202011443900390310.18632/oncotarget.27788 33216832
    [Google Scholar]
  11. DhomenN. MaraisR. BRAF signaling and targeted therapies in melanoma.Hematol. Oncol. Clin. North Am2009233529545 ix10.1016/j.hoc.2009.04.00119464601
    [Google Scholar]
  12. BergdorfK.N. LeeL.A. WeissV.L. BRAF molecular testing in cytopathology: Implications for diagnosis, prognosis, and targeted therapeutics.Cancer Cytopathol.2020128191110.1002/cncy.22209 31765065
    [Google Scholar]
  13. RichtigG. HoellerC. KashoferK. AigelsreiterA. HeinemannA. KwongL.N. PichlerM. RichtigE. Beyond the BRAFV 600E hotspot: Biology and clinical implications of rare BRAF gene mutations in melanoma patients.Br. J. Dermatol.2017177493694410.1111/bjd.15436 28278349
    [Google Scholar]
  14. LeonardiG.C. FalzoneL. SalemiR. ZanghìA. SpandidosD.A. MccubreyJ.A. CandidoS. LibraM. Cutaneous melanoma: From pathogenesis to therapy (Review).Int. J. Oncol.20185241071108010.3892/ijo.2018.4287 29532857
    [Google Scholar]
  15. OttavianoM. GiuntaE. TortoraM. CurviettoM. AttademoL. BossoD. CardalesiC. RosanovaM. De PlacidoP. PietroluongoE. RiccioV. MucciB. ParolaS. VitaleM. PalmieriG. DanieleB. SimeoneE. BRAF gene and melanoma: Back to the future.Int. J. Mol. Sci.2021227347410.3390/ijms22073474 33801689
    [Google Scholar]
  16. SinghA.K. SonawaneP. KumarA. SinghH. NaumovichV. PathakP. GrishinaM. KhalilullahH. JaremkoM. EmwasA.H. VermaA. KumarP. Challenges and opportunities in the crusade of BRAF inhibitors: From 2002 to 2022.ACS Omega2023831278192784410.1021/acsomega.3c00332 37576670
    [Google Scholar]
  17. OwsleyJ. SteinM.K. PorterJ. In, G.K.; Salem, M.; O’Day, S.; Elliott, A.; Poorman, K.; Gibney, G.; VanderWalde, A. Prevalence of class I–III BRAF mutations among 114,662 cancer patients in a large genomic database.Exp. Biol. Med.20212461313910.1177/1535370220959657 33019809
    [Google Scholar]
  18. SchirripaM. BiasonP. LonardiS. PellaN. PinoM.S. UrbanoF. AntoniottiC. CremoliniC. CoralloS. PietrantonioF. GelsominoF. CascinuS. OrlandiA. MunariG. MalapelleU. SaggioS. FontaniniG. RuggeM. MescoliC. LazziS. Reggiani BonettiL. LanzaG. Dei TosA.P. De MaglioG. MartiniM. BergamoF. ZagonelV. LoupakisF. FassanM. Class 1, 2, and 3 BRAF-mutated metastatic colorectal cancer: A detailed clinical, pathologic, and molecular characterization.Clin. Cancer Res.201925133954396110.1158/1078‑0432.CCR‑19‑0311 30967421
    [Google Scholar]
  19. YaoZ. TorresN.M. TaoA. GaoY. LuoL. LiQ. de StanchinaE. Abdel-WahabO. SolitD.B. PoulikakosP.I. RosenN. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition.Cancer Cell201528337038310.1016/j.ccell.2015.08.001 26343582
    [Google Scholar]
  20. FreemanA.K. RittD.A. MorrisonD.K. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling.Mol. Cell201349475175810.1016/j.molcel.2012.12.018 23352452
    [Google Scholar]
  21. RajakulendranT. SahmiM. LefrançoisM. SicheriF. TherrienM. A dimerization-dependent mechanism drives RAF catalytic activation.Nature2009461726354254510.1038/nature08314 19727074
    [Google Scholar]
  22. SinghA.K. NovakJ. KumarA. SinghH. TharejaS. PathakP. GrishinaM. VermaA. YadavJ.P. KhalilullahH. PathaniaV. NandanwarH. JaremkoM. EmwasA.H. KumarP. Gaussian field-based 3D-QSAR and molecular simulation studies to design potent pyrimidine–sulfonamide hybrids as selective BRAF V600E inhibitors.RSC Adv.20221246301813020010.1039/D2RA05751D 36329938
    [Google Scholar]
  23. RöringM. HerrR. FialaG.J. HeilmannK. BraunS. EisenhardtA.E. HalbachS. CapperD. von DeimlingA. SchamelW.W. SaundersD.N. BrummerT. Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling.EMBO J.201231112629264710.1038/emboj.2012.100 22510884
    [Google Scholar]
  24. AbdelgalilA.A. AlkahtaniH.M. Al-JenoobiF.I. Sorafenib.Profiles Drug Subst. Excip. Relat. Methodol.20194423926610.1016/bs.podrm.2018.11.003 31029219
    [Google Scholar]
  25. KainthlaR. KimK.B. FalchookG.S. Dabrafenib.Small Mol. Oncol.20142014227240
    [Google Scholar]
  26. ShirleyM. Encorafenib and binimetinib: First global approvals.Drugs201878121277128410.1007/s40265‑018‑0963‑x 30117021
    [Google Scholar]
  27. FlahertyK.T. YasothanU. KirkpatrickP. Vemurafenib.Nat. Rev. Drug Discov.2011101181181210.1038/nrd3579 22037033
    [Google Scholar]
  28. BollagG. HirthP. TsaiJ. ZhangJ. IbrahimP.N. ChoH. SpevakW. ZhangC. ZhangY. HabetsG. BurtonE.A. WongB. TsangG. WestB.L. PowellB. ShellooeR. MarimuthuA. NguyenH. ZhangK.Y.J. ArtisD.R. SchlessingerJ. SuF. HigginsB. IyerR. D’AndreaK. KoehlerA. StummM. LinP.S. LeeR.J. GrippoJ. PuzanovI. KimK.B. RibasA. McArthurG.A. SosmanJ.A. ChapmanP.B. FlahertyK.T. XuX. NathansonK.L. NolopK. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma.Nature2010467731559659910.1038/nature09454 20823850
    [Google Scholar]
  29. OkimotoR.A. LinL. OlivasV. ChanE. MarkegardE. RymarA. NeelD. ChenX. HemmatiG. BollagG. BivonaT.G. Preclinical efficacy of a RAF inhibitor that evades paradoxical MAPK pathway activation in protein kinase BRAF -mutant lung cancer.Proc. Natl. Acad. Sci.201611347134561346110.1073/pnas.1610456113 27834212
    [Google Scholar]
  30. AlqathamaA. BRAF in malignant melanoma progression and metastasis: Potentials and challenges.Am. J. Cancer Res.202010411031114 32368388
    [Google Scholar]
  31. WaizeneggerI.C. BaumA. SteurerS. StadtmüllerH. BaderG. SchaafO. Garin-ChesaP. SchlattlA. SchweiferN. HaslingerC. ColbatzkyF. MousaS. KalkuhlA. KrautN. AdolfG.R. A novel RAF kinase inhibitor with DFG-Out–binding mode: High efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation.Mol. Cancer Ther.201615335436510.1158/1535‑7163.MCT‑15‑0617 26916115
    [Google Scholar]
  32. WangP.F. QiuH.Y. ZhuH.L. A patent review of BRAF inhibitors: 2013-2018.Expert Opin. Ther. Pat.201929859560310.1080/13543776.2019.1640680 31280615
    [Google Scholar]
  33. ErogluZ. OzgunA. Updates and challenges on treatment with BRAF/MEK-inhibitors in melanoma.Expert Opin. Orphan Drugs20186954555110.1080/21678707.2018.1512402 30574432
    [Google Scholar]
  34. TseA. VerkhivkerG.M. Exploring molecular mechanisms of paradoxical activation in the BRAF kinase dimers: Atomistic simulations of conformational dynamics and modeling of allosteric communication networks and signaling pathways.PLoS One20161111e016658310.1371/journal.pone.0166583 27861609
    [Google Scholar]
  35. OnealP.A. KwitkowskiV. LuoL. ShenY.L. SubramaniamS. ShordS. GoldbergK.B. McKeeA.E. KaminskasE. FarrellA. PazdurR. FDA approval summary: Vemurafenib for the treatment of patients with erdheim-chester disease with the BRAF V600 mutation.Oncologist201823121520152410.1634/theoncologist.2018‑0295 30120160
    [Google Scholar]
  36. McGettiganS.S. Dabrafenib: A new therapy for use in BRAF-mutated metastatic melanoma.J. Adv. Pract. Oncol.201453211215 25089220
    [Google Scholar]
  37. Castillejo BecerraC.M. SmithW.M. DalvinL.A. Ophthalmic adverse effects of BRAF inhibitors.Eur. J. Ophthalmol.202233211206721221132872 36217756
    [Google Scholar]
  38. SamatarAA PoulikakosPI Targeting RAS–ERK signalling in cancer: Promises and challengesNat Rev Drug Discov2014131292894210.1038/nrd428125435214
    [Google Scholar]
  39. http://dx.doi.org/10.1038/nrd4281Tang, H-C.; Chen, Y-C. Insight into molecular dynamics simulation of BRAF(V600E) and potent novel inhibitors for malignant melanoma.Int. J. Nanomedicine20151031313146 25960652
    [Google Scholar]
  40. VulpettiA. BosottiR. Sequence and structural analysis of kinase ATP pocket residues.Farmaco2004591075976510.1016/j.farmac.2004.05.010 15474052
    [Google Scholar]
  41. NiihoriT. AokiY. NarumiY. NeriG. CavéH. VerloesA. OkamotoN. HennekamR.C.M. Gillessen-KaesbachG. WieczorekD. KavamuraM.I. KurosawaK. OhashiH. WilsonL. HeronD. BonneauD. CoronaG. KanameT. NaritomiK. BaumannC. MatsumotoN. KatoK. KureS. MatsubaraY. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome.Nat. Genet.200638329429610.1038/ng1749 16474404
    [Google Scholar]
  42. SunQ. WangW. Structures of BRAF–MEK1–14-3-3 sheds light on drug discovery.Signal Transduct. Target. Ther.2019415910.1038/s41392‑019‑0096‑z 31871776
    [Google Scholar]
  43. MorS. KhatriM. punia, R.; Sindhu, S. Recent Progress in anticancer agents incorporating Pyrazole scaffold.Mini Rev. Med. Chem.202222111516310.2174/1389557521666210325115218 33823764
    [Google Scholar]
  44. van LindenO.P.J. KooistraA.J. LeursR. de EschI.J.P. de GraafC. KLIFS: A knowledge-based structural database to navigate kinase-ligand interaction space.J. Med. Chem.201457224927710.1021/jm400378w 23941661
    [Google Scholar]
  45. AgianianB. GavathiotisE. Current insights of BRAF inhibitors in cancer.Miniperspective. J. Med. Chem.201861145775579310.1021/acs.jmedchem.7b01306 29461827
    [Google Scholar]
  46. TronnierM. MitteldorfC. Treating advanced melanoma: Current insights and opportunities.Cancer Manag. Res.20146349356
    [Google Scholar]
  47. TaylorS.S. ShawA.S. KannanN. KornevA.P. Integration of signaling in the kinome: Architecture and regulation of the αC Helix.Biochim. Biophys. Acta. Proteins Proteomics20151854101567157410.1016/j.bbapap.2015.04.007 25891902
    [Google Scholar]
  48. SimanshuD.K. MorrisonD.K. A structure is worth a thousand words: New insights for RAS and RAF regulation.Cancer Discov.202212489991210.1158/2159‑8290.CD‑21‑1494 35046094
    [Google Scholar]
  49. BaljulsA. MahrR. SchwarzenauI. MüllerT. PolzienL. HekmanM. RappU.R. Single substitution within the RKTR motif impairs kinase activity but promotes dimerization of RAF kinase.J. Biol. Chem.201128618164911650310.1074/jbc.M110.194167 21454547
    [Google Scholar]
  50. KarouliaZ. WuY. AhmedT.A. XinQ. BollardJ. KreplerC. WuX. ZhangC. BollagG. HerlynM. FaginJ.A. LujambioA. GavathiotisE. PoulikakosP.I. An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling.Cancer Cell201630348549810.1016/j.ccell.2016.06.024 27523909
    [Google Scholar]
  51. HalingJ.R. SudhamsuJ. YenI. SiderisS. SandovalW. PhungW. BravoB.J. GiannettiA.M. PeckA. MasselotA. MoralesT. SmithD. BrandhuberB.J. HymowitzS.G. MalekS. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling.Cancer Cell201426340241310.1016/j.ccr.2014.07.007 25155755
    [Google Scholar]
  52. Cotto-RiosX.M. AgianianB. GitegoN. ZacharioudakisE. GiriczO. WuY. ZouY. VermaA. PoulikakosP.I. GavathiotisE. Inhibitors of BRAF dimers using an allosteric site.Nat. Commun.2020111437010.1038/s41467‑020‑18123‑2 32873792
    [Google Scholar]
  53. Martinez FiescoJ.A. DurrantD.E. MorrisonD.K. ZhangP. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding.Nat. Commun.202213148610.1038/s41467‑022‑28084‑3 35078985
    [Google Scholar]
  54. ParkE. RawsonS. LiK. KimB.W. FicarroS.B. PinoG.G.D. SharifH. MartoJ.A. JeonH. EckM.J. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes.Nature2019575778354555010.1038/s41586‑019‑1660‑y 31581174
    [Google Scholar]
  55. TangZ. YuanX. DuR. CheungS.H. ZhangG. WeiJ. ZhaoY. FengY. PengH. ZhangY. DuY. HuX. GongW. LiuY. GaoY. LiuY. HaoR. LiS. WangS. JiJ. ZhangL. LiS. SuttonD. WeiM. ZhouC. WangL. LuoL. BGB-283, a novel RAF kinase and EGFR inhibitor, displays potent antitumor activity in BRAF -mutated colorectal cancers.Mol. Cancer Ther.201514102187219710.1158/1535‑7163.MCT‑15‑0262 26208524
    [Google Scholar]
  56. ThevakumaranN. LavoieH. CrittonD.A. TebbenA. MarinierA. SicheriF. TherrienM. Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation.Nat. Struct. Mol. Biol.2015221374310.1038/nsmb.2924 25437913
    [Google Scholar]
  57. PotemkinV. GrishinaM. Grid-based technologies for in silico screening and drug design.Curr. Med. Chem.201825293526353710.2174/0929867325666180309112454 29521207
    [Google Scholar]
  58. PotemkinV. PotemkinA. GrishinaM. Internet resources for drug discovery and design.Curr. Top. Med. Chem.201918221955197510.2174/1568026619666181129142127 30499394
    [Google Scholar]
  59. PotemkinV. GrishinaM. Electron-based descriptors in the study of physicochemical properties of compounds.Comput. Theor. Chem.2018112311010.1016/j.comptc.2017.11.010
    [Google Scholar]
  60. KantK. RawatR. BhatiV. BhosaleS. SharmaD. BanerjeeS. KumarA. Computational identification of natural product leads that inhibit mast cell chymase: An exclusive plausible treatment for Japanese encephalitis.J. Biomol. Struct. Dyn.20213941203121210.1080/07391102.2020.1726820 32036760
    [Google Scholar]
  61. KumarA. NovakJ. SinghA.K. SinghH. TharejaS. PathakP. GrishinaM. VermaA. KumarP. Virtual screening, structure based pharmacophore mapping, and molecular simulation studies of pyrido[2,3-d]pyrimidines as selective thymidylate synthase inhibitors.J. Biomol. Struct. Dyn.202311510.1080/07391102.2023.2208205 37154748
    [Google Scholar]
  62. Van Den DriesscheG. FourchesD. Adverse drug reactions triggered by the common HLA-B*57:01 variant: A molecular docking study.J. Cheminform.2017911310.1186/s13321‑017‑0202‑6 28303164
    [Google Scholar]
  63. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑8 23579614
    [Google Scholar]
  64. SanthiN. AishwaryaS. Insights from the molecular docking of withanolide derivatives to the target protein PknG from mycobacterium tuberculosis.Bioinformation2011711410.6026/97320630007001 21904430
    [Google Scholar]
  65. ShahB. ModiP. SagarS.R. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach.Life Sci.202025211765210.1016/j.lfs.2020.117652 32278693
    [Google Scholar]
  66. KakkarS. KumarS. NarasimhanB. LimS.M. RamasamyK. ManiV. ShahS.A.A. Design, synthesis and biological potential of heterocyclic benzoxazole scaffolds as promising antimicrobial and anticancer agents.Chem. Cent. J.20181219610.1186/s13065‑018‑0464‑8 30232633
    [Google Scholar]
  67. VermaA. KumarP. PaulyI. Kumar SinghA. KumarA. SinghY. TharejaS. KamalM.A. Current insights and molecular docking studies of the drugs under clinical trial as RdRp inhibitors in COVID-19 treatment.Curr. Pharm. Des.202228463677370510.2174/1381612829666221107123841 36345244
    [Google Scholar]
  68. PolitiA. DurdagiS. Moutevelis-MinakakisP. KokotosG. MavromoustakosT. Development of accurate binding affinity predictions of novel renin inhibitors through molecular docking studies.J. Mol. Graph. Model.201029342543510.1016/j.jmgm.2010.08.003 20855222
    [Google Scholar]
  69. KumarS. SinghJ. NarasimhanB. ShahS.A.A. LimS.M. RamasamyK. ManiV. Reverse pharmacophore mapping and molecular docking studies for discovery of GTPase HRas as promising drug target for bis-pyrimidine derivatives.Chem. Cent. J.201812110610.1186/s13065‑018‑0475‑5 30345469
    [Google Scholar]
  70. KandagallaS. GrishinaM. NovakJ. RimacH. SharathB.S. PotemkinV. AlteQ. AlteQ. A new complementarity principle-centered method for the evaluation of docking poses.J. Biomol. Struct. Dyn.202311510.1080/07391102.2023.2166120 36629044
    [Google Scholar]
  71. NovakJ. GrishinaM.A. PotemkinV.A. GasteigerJ. Performance of radial distribution function-based descriptors in the chemoinformatic studies of HIV-1 protease.Future Med. Chem.202012429930910.4155/fmc‑2019‑0241 31983244
    [Google Scholar]
  72. PawarV.S. LokwaniD.K. BhandariS.V. BotharaK.G. ChitreT.S. DevaleT.L. ModhaveN.S. ParikhJ.K. Design, docking study and ADME prediction of Isatin derivatives as anti-HIV agents.Med. Chem. Res.201120337038010.1007/s00044‑010‑9329‑y
    [Google Scholar]
  73. HasanM.M. KhanZ. ChowdhuryM.S. KhanM.A. MoniM.A. RahmanM.H. In silico molecular docking and ADME/T analysis of Quercetin compound with its evaluation of broad-spectrum therapeutic potential against particular diseases.Inform. Med. Unlocked20222910089410.1016/j.imu.2022.100894
    [Google Scholar]
  74. GrishinaM. PotemkinA. BolshakovO. PotemkinV. Theoretical study of the thermodynamic and kinetic factors influence on nanosized titanium dioxide particles growth features. South Ural State Uni. Bulletin.Ser. Chem.2015735360
    [Google Scholar]
  75. PotemkinV.A. PogrebnoyA.A. GrishinaM.A. Technique for energy decomposition in the study of “receptor-ligand” complexes.J. Chem. Inf. Model.20094961389140610.1021/ci800405n 19473000
    [Google Scholar]
  76. HosenS. DashR. KhatunM. AkterR. BhuiyanM. KarimM. MouriN. AhamedF. IslamK. AfrinS. In silico ADME/T and 3D QSAR analysis of KDR inhibitors.J. Appl. Pharm. Sci.20177112012810.7324/JAPS.2017.70116
    [Google Scholar]
  77. NiyathaL SinghAK KumarA SinghH YadavJP SinghK KumarP Description and in silico ADME studies of US-FDA approved drugs or drugs under clinical trial which violate the Lipinski’s rule of 5Lett Drug Des Discov2023
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073273813231113071010
Loading
/content/journals/cchts/10.2174/0113862073273813231113071010
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): active site; BRAF; cytotoxicity; heterodimer; homodimer; monomer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test