Skip to content
2000
Volume 28, Issue 2
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The Danggui–Kushen herb pair (DKHP) is a classic prescription that has long been used in combination with chemotherapeutic drugs to improve the immune status of patients with breast cancer (BC), however, the active components and the underlying pharmacological mechanisms remain unclear. Therefore, this study aimed to elucidate the possible mechanism of action of DKHP against BC-based comprehensive strategy combining network pharmacology, molecular docking, and cellular experiments.

Methods

The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to obtain the relevant compounds in DKHP. Genecards and the National Center for Biotechnology Information databases were used to predict BC targets. Then, drug–compound–target, and protein–protein interaction networks were constructed to forecast the promising protein targets of DKHP and identify the primary interactions that occur between the protein targets and compounds. Finally, the predicted candidate targets were validated using docking techniques and experiments.

Results

A total of 30 potential active compounds and 173 intersecting pharmacological targets were identified in DKHP. Gene Ontology enrichment analysis revealed that the inflammatory response, positive regulation of protein phosphorylation, and cellular response to lipopolysaccharide were closely related to DKHP treatment in BC. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the PI3K/AKT pathway may be crucial for DKHP intervention in BC. Therefore, key targets could be AKT1, TP53, VEGR, CASP3, TNF, and IL6. Molecular docking analysis suggested that hyperforin, kushenin, and kushenol T had good binding ability to Akt, p53, and Caspase 3. The experiment showed that the DKHP extract promoted the apoptosis of MCF-7 cells the PI3K/Akt signaling pathway. These results corresponded to the predictions produced using the network pharmacology approach.

Conclusion

Hyperforin, kushenin, kushenol T, and other active compounds in DKHP can regulate multiple signaling pathways and targets, such as AKT1, TP53, and CASP3, thereby playing preventive and therapeutic roles in BC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073256883231120070039
2024-01-23
2025-11-06
Loading full text...

Full text loading...

References

  1. AnastasiadiZ. LianosG.D. IgnatiadouE. HarissisH.V. MitsisM. Breast cancer in young women: An overview.Updates Surg.201769331331710.1007/s13304‑017‑0424‑1 28260181
    [Google Scholar]
  2. Osei-TwumJ.A. GedlehS. LoftersA. NnoromO. Differences in breast cancer presentation at time of diagnosis for black and white women in high resource settings.J. Immigr. Minor. Health20212361305134210.1007/s10903‑021‑01161‑3 33721146
    [Google Scholar]
  3. BodaiB.I. TusoP. Breast cancer survivorship: A comprehensive review of long-term medical issues and lifestyle recommendations.Perm. J.2015192487910.7812/TPP/14‑241 25902343
    [Google Scholar]
  4. FerlayJ. SoerjomataramI. DikshitR. EserS. MathersC. RebeloM. ParkinD.M. FormanD. BrayF. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.29210 25220842
    [Google Scholar]
  5. KaplanH.G. CalipG.S. MalmgrenJ.A. Maximizing breast cancer therapy with awareness of potential treatment-related blood disorders.Oncologist202025539139710.1634/theoncologist.2019‑0099 32073195
    [Google Scholar]
  6. KimW. LeeW.B. LeeJ.W. MinB.I. BaekS.K. LeeH.S. ChoS.H. Traditional herbal medicine as adjunctive therapy for breast cancer: A systematic review.Complement. Ther. Med.201523462663210.1016/j.ctim.2015.03.011 26275657
    [Google Scholar]
  7. MaZ. FanY. WuY. KebebeD. ZhangB. LuP. PiJ. LiuZ. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: A new strategy for antitumor treatment.Int. J. Nanomedicine2019142029205310.2147/IJN.S197889 30962686
    [Google Scholar]
  8. ZhuS. GuoS. DuanJ. QianD. YanH. ShaX. ZhuZ. UHPLC-TQ-MS coupled with multivariate statistical analysis to characterize nucleosides, nucleobases and amino acids in angelicae sinensis radix obtained by different drying methods.Molecules201722691810.3390/molecules22060918 28587175
    [Google Scholar]
  9. WuC.T. LaiJ.N. TsaiY.T. The prescription pattern of Chinese herbal products that contain dang-qui and risk of endometrial cancer among tamoxifen-treated female breast cancer survivors in Taiwan: A population-based study.PLoS One2014912e11388710.1371/journal.pone.0113887 25485843
    [Google Scholar]
  10. ZhuangS.R. ChiuH.F. ChenS.L. TsaiJ.H. LeeM.Y. LeeH.S. ShenY.C. YanY.Y. ShaneG.T. WangC.K. Effects of a Chinese medical herbs complex on cellular immunity and toxicity-related conditions of breast cancer patients.Br. J. Nutr.2012107571271810.1017/S000711451100345X 21864416
    [Google Scholar]
  11. MaC. ZhaoX. ChangJ. GuoH. WeiH. FuZ. LiY. Radix angelica sinensis and radix hedysari ultrafiltration extract protects against x-irradiation-induced cardiac fibrosis in rats.Evid. Based Complement. Alternat. Med.202020201910.1155/2020/4675851 32382291
    [Google Scholar]
  12. LaiB.Y. ChuA.J. YuB.W. JiaL.Y. FanY.Y. LiuJ.P. PeiX.H. Clinical effectiveness and safety of chinese herbal medicine compound kushen injection as an add-on treatment for breast cancer: A systematic review and meta-analysis.Evid. Based Complement. Alternat. Med.202220221011610.1155/2022/8118408 35047051
    [Google Scholar]
  13. NourmohammadiS. AungT.N. CuiJ. PeiJ.V. De IesoM.L. Harata-LeeY. QuZ. AdelsonD.L. YoolA.J. Effect of compound kushen injection, a natural compound mixture, and its identified chemical components on migration and invasion of colon, brain, and breast cancer cell lines.Front. Oncol.2019931410.3389/fonc.2019.00314 31106149
    [Google Scholar]
  14. LiY. WangK. ChenY. CaiJ. QinX. LuA. GuanD. QinG. ChenW. A system pharmacology model for decoding the synergistic mechanisms of compound kushen injection in treating breast cancer.Front. Pharmacol.20211272314710.3389/fphar.2021.723147 34899291
    [Google Scholar]
  15. CaoX. HeQ. Anti-tumor activities of bioactive phytochemicals in Sophora flavescens for breast cancer.Cancer Manag. Res.2020121457146710.2147/CMAR.S243127 32161498
    [Google Scholar]
  16. DongY. TaoB. XueX. FengC. RenY. MaH. ZhangJ. SiY. ZhangS. LiuS. LiH. ZhouJ. LiG. WangZ. XieJ. ZhuZ. Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology.BMC Complement. Altern. Med.202121122210.1186/s12906‑021‑03389‑w 34479552
    [Google Scholar]
  17. ZhangY. MaoX. GuoQ. LinN. LiS. Network pharmacology-based approaches capture essence of chinese herbal medicines.Chin. Herb. Med.20168210711610.1016/S1674‑6384(16)60018‑7
    [Google Scholar]
  18. LuoT. LuY. YanS. XiaoX. RongX. GuoJ. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective.Chin. J. Integr. Med.2020261728010.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  19. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  20. StelzerG. DalahI. SteinT. SatanowerY. RosenN. NativN. Oz-LeviD. OlenderT. BelinkyF. BahirI. KrugH. PercoP. MayerB. KolkerE. SafranM. LancetD. In-silico human genomics with GeneCards.Hum. Genomics20115670971710.1186/1479‑7364‑5‑6‑709 22155609
    [Google Scholar]
  21. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  22. ZhangM.M. WangD. LuF. ZhaoR. YeX. HeL. AiL. WuC.J. Identification of the active substances and mechanisms of ginger for the treatment of colon cancer based on network pharmacology and molecular docking.BioData Min.2021141110.1186/s13040‑020‑00232‑9 33430939
    [Google Scholar]
  23. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  24. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  25. WuY. LiuX. LiG. Integrated bioinformatics and network pharmacology to identify the therapeutic target and molecular mechanisms of Huangqin decoction on ulcerative Colitis.Sci. Rep.202212115910.1038/s41598‑021‑03980‑8 34997010
    [Google Scholar]
  26. ZhangX. WangD. RenX. AtanasovA.G. ZengR. HuangL. System bioinformatic approach through molecular docking, network pharmacology and microarray data analysis to determine the molecular mechanism underlying the effects of rehmanniae radix praeparata on cardiovascular diseases.Curr. Protein Pept. Sci.2019201096497510.2174/1389203720666190610161535 31187710
    [Google Scholar]
  27. DongJ. ZhangL. LiuY. XuN. ZhouS. YangY. YangQ. AiX. Luteolin decreases the pathogenicity of Aeromonas hydrophilavia inhibiting the activity of aerolysin.Virulence202112116517610.1080/21505594.2020.1867455 33372840
    [Google Scholar]
  28. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem.,2009312NA10.1002/jcc.2133419499576
    [Google Scholar]
  29. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  30. PooC.L. DewadasH.D. NgF.L. FooC.N. LimY.M. Effect of traditional chinese medicine on musculoskeletal symptoms in breast cancer: A systematic review and meta-analysis.J. Pain Symptom Manage.202162115917310.1016/j.jpainsymman.2020.11.024 33278502
    [Google Scholar]
  31. ChienT.J. SongY.L. LinC.P. HsuC.H. The correlation of traditional chinese medicine deficiency syndromes, cancer related fatigue, and quality of life in breast cancer patients.J. Tradit. Complement. Med.20122320421010.1016/S2225‑4110(16)30101‑8 24716134
    [Google Scholar]
  32. KwonJ. OhK. ChoS.Y. BangM. KimH. VaidyaB. KimD. Estrogenic activity of hyperforin in MCF-7 human breast cancer cells transfected with estrogen receptor.Planta Med.201682161425143010.1055/s‑0042‑112594 27454708
    [Google Scholar]
  33. SchemppC.M. KirkinV. Simon-HaarhausB. KerstenA. KissJ. TermeerC.C. GilbB. KaufmannT. BornerC. SleemanJ.P. SimonJ.C. Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. John’s wort that acts by induction of apoptosis.Oncogene20022181242125010.1038/sj.onc.1205190 11850844
    [Google Scholar]
  34. BrattonM.R. MartinE.C. ElliottS. RhodesL.V. Collins-BurowB.M. McLachlanJ.A. WieseT.E. BoueS.M. BurowM.E. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer.J. Steroid Biochem. Mol. Biol.2015150172310.1016/j.jsbmb.2014.12.014 25771071
    [Google Scholar]
  35. SchexnayderC. StratfordR. Genistein and glyceollin effects on ABCC2 (MRP2) and ABCG2 (BCRP) in caco-2 cells.Int. J. Environ. Res. Public Health20151311710.3390/ijerph13010017 26703673
    [Google Scholar]
  36. AwadA.B. ChinnamM. FinkC.S. BradfordP.G. β-Sitosterol activates Fas signaling in human breast cancer cells.Phytomedicine2007141174775410.1016/j.phymed.2007.01.003 17350814
    [Google Scholar]
  37. OngS. ShanmugamM. FanL. FraserS. ArfusoF. AhnK. SethiG. BishayeeA. Focus on formononetin: Anticancer potential and molecular targets.Cancers 201911561110.3390/cancers11050611 31052435
    [Google Scholar]
  38. LiT. ZhangS. ChenF. HuJ. YuanS. LiC. WangX. ZhangW. TangR. Formononetin ameliorates the drug resistance of Taxol resistant triple negative breast cancer by inhibiting autophagy.Am. J. Transl. Res.2021132497514 33594306
    [Google Scholar]
  39. DaiL. WangL. TanC. CaiJ. ShenH. ZhangT. ZhiS. YangZ. HuY. ZhaoX. LiD. Sophoridine derivatives induce apoptosis and autophagy to suppress the growth of triple‐negative breast cancer through inhibition of mtor signaling.ChemMedChem2022171e20210043410.1002/cmdc.202100434 34569159
    [Google Scholar]
  40. XinqiangS. YuZ. NingningY. ErqinD. LeiW. HongtaoD. Molecular mechanism of celastrol in the treatment of systemic lupus erythematosus based on network pharmacology and molecular docking technology.Life Sci.202024011706310.1016/j.lfs.2019.117063 31734262
    [Google Scholar]
  41. ZhengJ. WuM. WangH. LiS. WangX. LiY. WangD. LiS. Network pharmacology to unveil the biological basis of health-strengthening herbal medicine in cancer treatment.Cancers 2018101146110.3390/cancers10110461 30469422
    [Google Scholar]
  42. GuoY. NieQ. MacLeanA.L. LiY. LeiJ. LiS. Multiscale modeling of inflammation-induced tumorigenesis reveals competing oncogenic and oncoprotective roles for inflammation.Cancer Res.201777226429644110.1158/0008‑5472.CAN‑17‑1662 28951462
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073256883231120070039
Loading
/content/journals/cchts/10.2174/0113862073256883231120070039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test