Skip to content
2000
Volume 28, Issue 2
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Jinwei decoction can enhance the anti-inflammatory effect of glucocorticoid (GC) on chronic obstructive pulmonary disease (COPD) by restoring the activity of human histone deacetylase-2 (HDAC2). However the upstream mechanism of Jinwei decoction on HDAC2 expression is not clear.

Objective

To explore the target of Jinwei decoction to enhance the anti-inflammatory effect of GC on COPD through microRNA155-5p (miR-155-5p) by network pharmacology and experimental verification.

Methods

The TCMSP database was used to screen active ingredients and target genes of Jinwei decoction, and miRWalk2.0 was used to predict downstream target genes of miR-155-5p. COPD-related genes were identified by searching GeneCards, Grugbank and OMIM databases; Venny 2.1 was used to screen intersection genes; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of intersection genes were analyzed by R software. Protein-protein interactions (PPIs) were analyzed by Cytoscape 3.7.2 software to identify core genes. Finally, interactions between main compounds and potential targets were verified by molecular docking. A COPD cell model was established by 5% cigarette smoke extract (CSE)-induced bronchial epithelial cell (BEAS-2B), and the results of network pharmacology were verified by experiments.

Results

Two hundred thirty-one active ingredients, 352 Jinwei decoction drug targets, 5949 miR-155-5p target genes, 8286 COPD target genes, and 127 intersection genes were identified. Twelve core proteins of PPI networks may be involved. GO enrichment analysis showed that regulation of membrane potential, response to steroid hormone, and histone modification were involved; KEGG pathway enrichment analysis concentrated in the PI3K-Akt, mitogen-activated protein kinase (MAPK), HIF-1, and other signaling pathways. The molecular docking results showed that quercetin, luteolin and stigmasterol have higher affinity with PTGS2, HIF1A and AKT1. The results of cell experiments revealed that Jinwei decoction not only enhances the anti-inflammatory effect of GC in the COPD cell model but also reverses the high expression of miR-155-5p、PI3k、Akt, and low expression of HDAC2, thereby inhibiting the inflammatory response of COPD.

Conclusion

Jinwei decoction can regulate HDAC2 activity and enhance the anti-inflammatory effect of GC on COPD by modulating miR-155-5p. Its mechanism of action may be related to its effect on the PI3K-Akt through miR-155-5p.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073279344240215050056
2024-03-06
2025-11-06
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/2/CCHTS-28-2-12.html?itemId=/content/journals/cchts/10.2174/0113862073279344240215050056&mimeType=html&fmt=ahah

References

  1. BrightlingC. GreeningN. Airway inflammation in COPD: Progress to precision medicine.Eur. Respir. J.2019542190065110.1183/13993003.00651‑2019 31073084
    [Google Scholar]
  2. McGeachieM.J. SordilloJ.E. DahlinA. WangA.L. LutzS.M. TantisiraK.G. PanganibanR. LuQ. SajuthiS. UrbanekC. KellyR. SaefB. EngC. OhS.S. KhoA.T. Croteau-ChonkaD.C. WeissS.T. RabyB.A. MakA.C.Y. Rodriguez-SantanaJ.R. BurchardE.G. SeiboldM.A. WuA.C. Expression of SMARCD1 interacts with age in association with asthma control on inhaled corticosteroid therapy.Respir. Res.20202113110.1186/s12931‑020‑1295‑4 31992292
    [Google Scholar]
  3. NavanandanN. MoranE. SmithH. HochH. MistryR.D. Primary care provider preferences for glucocorticoid management of acute asthma exacerbations in children.J. Asthma202158454755310.1080/02770903.2019.1709869 31877252
    [Google Scholar]
  4. ReddyA.T. LakshmiS.P. BannoA. ReddyR.C. Glucocorticoid receptor α mediates roflumilast’s ability to restore dexamethasone sensitivity in COPD.Int. J. Chron. Obstruct. Pulmon. Dis.20201512513410.2147/COPD.S230188 32021151
    [Google Scholar]
  5. KoF.W.S. SinD.D. Twenty-five years of respirology: Advances in COPD.Respirology2020251171910.1111/resp.13734 31840889
    [Google Scholar]
  6. Global Initiative for Chronic Obstructive Lung DiseaseGlobal strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease.Available from: https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf (Accessed November 15, 2019).
  7. SapeyE. StockleyR.A. Getting stuck or choosing to stay? Neutrophil transit times in the lung in acute inflammation and COPD.Thorax201974763163210.1136/thoraxjnl‑2018‑213000 31097614
    [Google Scholar]
  8. KnoblochJ. JungckD. KronsbeinJ. StoelbenE. ItoK. KochA. LABAs and p38MAPK inhibitors reverse the corticosteroid-insensitivity of IL-8 in airway smooth muscle cells of COPD.J. Clin. Med.2019812205810.3390/jcm8122058 31766770
    [Google Scholar]
  9. MeiD. TanW.S.D. WongW.S.F. Pharmacological strategies to regain steroid sensitivity in severe asthma and COPD.Curr. Opin. Pharmacol.201946738110.1016/j.coph.2019.04.010 31078066
    [Google Scholar]
  10. LiK. TaoN. ZhengL. SunT. LL-37 restored glucocorticoid sensitivity impaired by virus dsRNA in lung.Int. Immunopharmacol.20207910605710.1016/j.intimp.2019.106057 31877496
    [Google Scholar]
  11. ZhuM. YeM. WangJ. YeL. JinM. Construction of potential miRNA-mRNA regulatory network in COPD plasma by bioinformatics analysis.Int. J. Chron. Obstruct. Pulmon. Dis.2020152135214510.2147/COPD.S255262 32982206
    [Google Scholar]
  12. NotarteK.I. SenanayakeS. MacaranasI. AlbanoP.M. MundoL. FennellE. LeonciniL. MurrayP. MicroRNA and other non-coding RNAs in Epstein-Barr virus-associated cancers.Cancers 20211315390910.3390/cancers13153909 34359809
    [Google Scholar]
  13. DienerC. KellerA. MeeseE. Emerging concepts of miRNA therapeutics: From cells to clinic.Trends Genet.202238661362610.1016/j.tig.2022.02.006 35303998
    [Google Scholar]
  14. HobbsB.D. TantisiraK.G. MicroRNAs in COPD: Small molecules with big potential.Eur. Respir. J.2019534190051510.1183/13993003.00515‑2019 31023868
    [Google Scholar]
  15. TangH. MaoJ. YeX. ZhangF. KerrW.G. ZhengT. ZhuZ. SHIP-1, a target of miR-155, regulates endothelial cell responses in lung fibrosis.FASEB J.20203422011202310.1096/fj.201902063R 31907997
    [Google Scholar]
  16. RoffelM.P. BrackeK.R. HeijinkI.H. MaesT. miR-223: A key regulator in the innate immune response in asthma and COPD.Front. Med.2020719610.3389/fmed.2020.00196 32509795
    [Google Scholar]
  17. De SmetE.G. Van EeckhoutteH.P. Avila CobosF. BlommeE. VerhammeF.M. ProvoostS. VerledenS.E. VenkenK. MaesT. JoosG.F. MestdaghP. BrusselleG.G. BrackeK.R. The role of miR-155 in cigarette smoke-induced pulmonary inflammation and COPD.Mucosal Immunol.202013342343610.1038/s41385‑019‑0241‑6 31819170
    [Google Scholar]
  18. HayekH. KosmiderB. BahmedK. The role of miRNAs in alveolar epithelial cells in emphysema.Biomed. Pharmacother.202114311221610.1016/j.biopha.2021.112216 34649347
    [Google Scholar]
  19. FaizA. SteilingK. RoffelM.P. PostmaD.S. SpiraA. LenburgM.E. BorggreweM. EijgenraamT.R. JonkerM.R. KoppelmanG.H. PouwelsS.D. LiuG. AlekseyevY.O. LamS. HiemstraP.S. SterkP.J. TimensW. BrandsmaC.A. HeijinkI.H. van den BergeM. Effect of long-term corticosteroid treatment on microRNA and gene-expression profiles in COPD.Eur. Respir. J.2019534180120210.1183/13993003.01202‑2018 30846474
    [Google Scholar]
  20. ZhouH. LiJ. GaoP. WangQ. ZhangJ. Mir-155: A novel target in allergic asthma.Int. J. Mol. Sci.20161710177310.3390/ijms17101773
    [Google Scholar]
  21. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. Wenzel-StorjohannA. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased NRF2 level by a flavonol-enriched n -butanol fraction from uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  22. ChenZ. ChenP. WuH. ShiR. SuW. WangY. LiP. Evaluation of naringenin as a promising treatment option for COPD based on literature review and network pharmacology.Biomolecules20201012164410.3390/biom10121644 33302350
    [Google Scholar]
  23. GuoQ. LiL. ZhengK. ZhengG. ShuH. ShiY. LuC. ShuJ. GuanD. LuA. HeX. Imperatorin and β-sitosterol have synergistic activities in alleviating collagen-induced arthritis.J. Leukoc. Biol.2020108250951710.1002/JLB.3MA0320‑440RR 32392637
    [Google Scholar]
  24. ZhangX. ZhuJ. YanJ. XiaoY. YangR. HuangR. ZhouJ. WangZ. XiaoW. ZhengC. WangY. Systems pharmacology unravels the synergic target space and therapeutic potential of Rhodiola rosea L. for non-small cell lung cancer.Phytomedicine20207915332610.1016/j.phymed.2020.153326 32992083
    [Google Scholar]
  25. GaoZ.D. SiF.C. WangW.B. SunX.J. ZhaoX.J. WangY. Clinical application and pharmacological effect of jinshui liujunjian: A review.Zhongguo Shiyan Fangjixue Zazhi20212720244250
    [Google Scholar]
  26. ZhangY. LiF.X. LiuZ. LiuY. TanG.B. Effect of jinshui liujun decoction on cigarette smoke and lipopolysaccharide-induced mucus hypersecretion of COPD in BEAS-2B cells.J. Emerg. Tradit. Chin. Med.2022311119041908
    [Google Scholar]
  27. ChenL.H. WangL.H. WangH.P. YuX. ChenH. ZhangX.D. Effects of jinshui liujun decoction in the treatment of chronic obstructive pulmonary disease in stable stage.World Chinese Med.2021160914501458
    [Google Scholar]
  28. BaiZ.P. LiuY. TanX.N. TanX.N. TanD.B. DengX.J. LiZ.P. LiuJ. TanG.B. Effects of jinshui liujunjian decoction on expressions of MUC5AC and aquaporin5 in lung tissue of COPD airway mucus hypersecretion rats model.Zhongguo Zhongyiyao Xinxi Zazhi201926085459
    [Google Scholar]
  29. LiuS. ChenJ. ZuoJ. LaiJ. WuL. GuoX. Comparative effectiveness of six Chinese herb formulas for acute exacerbation of chronic obstructive pulmonary disease: A systematic review and network meta-analysis.BMC Complement. Altern. Med.201919122610.1186/s12906‑019‑2633‑2 31438920
    [Google Scholar]
  30. LiuS. ShergisJ. ChenX. YuX. GuoX. ZhangA.L. LuC. XueC.C. Chinese herbal medicine (weijing decoction) combined with pharmacotherapy for the treatment of acute exacerbations of chronic obstructive pulmonary disease.Evid. Based Complement. Alternat. Med.2014201411210.1155/2014/257012 25165477
    [Google Scholar]
  31. WuJ. LiX. QinY. ChengJ. HaoG. JinR. ZhuC. Jinwei Tang modulates HDAC2 expression in a rat model of COPD.Exp. Ther. Med.20181532604261010.3892/etm.2018.5707 29456664
    [Google Scholar]
  32. MitaniA. AzamA. VuppusettyC. ItoK. MercadoN. BarnesP.J. Quercetin restores corticosteroid sensitivity in cells from patients with chronic obstructive pulmonary disease.Exp. Lung Res.2017439-1041742510.1080/01902148.2017.1393707 29227717
    [Google Scholar]
  33. LiuJ. YaoJ. ZhangJ. Naringenin attenuates inflammation in chronic obstructive pulmonary disease in cigarette smoke induced mouse model and involves suppression of NF-κB. J. Microbiol.Biotechnol20181006110.4014/jmb.1810.10061 30609878
    [Google Scholar]
  34. TsouY.A. HuangH.J. LinW.W.Y. ChenC.Y.C. Lead screening for chronic obstructive pulmonary disease of IKK2 inhibited by traditional chinese medicine.Evid. Based Complement. Alternat. Med.2014201411610.1155/2014/465025 24987428
    [Google Scholar]
  35. VanderstockenG. Dvorkin-GhevaA. ShenP. BrandsmaC.A. ObeidatM. BosséY. HassellJ.A. StampfliM.R. Identification of drug candidates to suppress cigarette smoke-induced inflammation via connectivity map analyses.Am. J. Respir. Cell Mol. Biol.201858672773510.1165/rcmb.2017‑0202OC 29256623
    [Google Scholar]
  36. TangW. ZhuR. LiY. LiuZ. WanT. The effect of luteolin on concentration of TNF-α and pulmonary function in patients with chronic obstructive pulmonary disease.China J. Mod. Med.2012226467
    [Google Scholar]
  37. CaoG. LiS. Effect of baicalein on the level of LTC4 in arterial plasma of patients with chronic obstructive pulmonary disease.J. Norman Bethune Univ. Med. Sci.199420589590
    [Google Scholar]
  38. Boesch-SaadatmandiC. LobodaA. WagnerA.E. StachurskaA. JozkowiczA. DulakJ. DöringF. WolfframS. RimbachG. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: Role of miR-155.J. Nutr. Biochem.201122329329910.1016/j.jnutbio.2010.02.008 20579867
    [Google Scholar]
  39. ZhuX. XiaoY. YiX. Inhibitory effect of quercetin on airway inflammation in mice with bronchial asthma.China J. Mod. Med.2020301922
    [Google Scholar]
  40. WangS. LingY. YaoY. ZhengG. ChenW. Luteolin inhibits respiratory syncytial virus replication by regulating the MiR-155/SOCS1/STAT1 signaling pathway.Virol. J.202017118710.1186/s12985‑020‑01451‑6 33239033
    [Google Scholar]
  41. GaoS. WangY. LiD. GuoY. ZhuM. XuS. MaoJ. FanG. Tanshinoneiia alleviates inflammatory response and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells.Inflammation201942126427510.1007/s10753‑018‑0891‑7 30218320
    [Google Scholar]
  42. LiZ. WangY. ZengG. ZhengX. WangW. LingY. TangH. ZhangJ. Increased miR-155 and heme oxygenase-1 expression is involved in the protective effects of formononetin in traumatic brain injury in rats.Am. J. Transl. Res.201791256535661 29312517
    [Google Scholar]
  43. StokesC.A. CondliffeA.M. Phosphoinositide 3-kinase (δ (PI3Kδ)) in respiratory disease.Biochem. Soc. Trans.201846236136910.1042/BST20170467 29523773
    [Google Scholar]
  44. SunX. ChenL. HeZ. PI3K/Akt-Nrf2 and anti-inflammation effect of macrolides in chronic obstructive pulmonary disease.Curr. Drug Metab.201920430130410.2174/1389200220666190227224748 30827233
    [Google Scholar]
  45. BarnesP.J. BakerJ. DonnellyL.E. Cellular senescence as a mechanism and target in chronic lung diseases.Am. J. Respir. Crit. Care Med.2019200555656410.1164/rccm.201810‑1975TR 30860857
    [Google Scholar]
  46. SunX.J. LiZ.H. ZhangY. ZhouG. ZhangJ.Q. DengJ.M. BaiJ. LiuG.N. LiM.H. MacNeeW. ZhongX.N. HeZ.Y. Combination of erythromycin and dexamethasone improves corticosteroid sensitivity induced by CSE through inhibiting PI3K-δ/Akt pathway and increasing GR expression.Am. J. Physiol. Lung Cell. Mol. Physiol.20153092L139L14610.1152/ajplung.00292.2014 25957293
    [Google Scholar]
  47. CottageC.T. PetersonN. KearleyJ. BerlinA. XiongX. HuntleyA. ZhaoW. BrownC. MigneaultA. ZerroukiK. CrinerG. KolbeckR. ConnorJ. LemaireR. Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice.Commun. Biol.20192130710.1038/s42003‑019‑0532‑1 31428695
    [Google Scholar]
  48. KneppersA.E.M. LangenR.C.J. GoskerH.R. VerdijkL.B. Cebron LipovecN. LeermakersP.A. KeldersM.C.J.M. de TheijeC.C. OmersaD. LainscakM. ScholsA.M.W.J. Increased myogenic and protein turnover signaling in skeletal muscle of chronic obstructive pulmonary disease patients with sarcopenia.J. Am. Med. Dir. Assoc.2017187637.e1637.e1110.1016/j.jamda.2017.04.016 28578881
    [Google Scholar]
  49. BinY.F. MaN. LuY.X. SunX.J. LiangY. BaiJ. ZhangJ.Q. LiM.H. ZhongX.N. HeZ.Y. Erythromycin reverses cigarette smoke extract-induced corticosteroid insensitivity by inhibition of the JNK/c-Jun pathway.Free Radic. Biol. Med.202015249450310.1016/j.freeradbiomed.2019.11.020 31770582
    [Google Scholar]
  50. BanerjeeA. Koziol-WhiteC. PanettieriR.Jr p38 MAPK inhibitors, IKK2 inhibitors, and TNFα inhibitors in COPD.Curr. Opin. Pharmacol.201212328729210.1016/j.coph.2012.01.016 22365729
    [Google Scholar]
  51. GaoH. XieM. HeX. GaoH. Activity of sputum p38 MAPK is correlated with airway inflammation and reduced FEV1 in COPD patients.Med. Sci. Monit.2013191229123510.12659/MSM.889880 24382347
    [Google Scholar]
  52. LapperreT.S. SontJ.K. van SchadewijkA. GosmanM.M.E. PostmaD.S. BajemaI.M. TimensW. MauadT. HiemstraP.S. Smoking cessation and bronchial epithelial remodelling in COPD: A cross-sectional study.Respir. Res.2007818510.1186/1465‑9921‑8‑85 18039368
    [Google Scholar]
  53. NadelJ. BurgelP.R. The role of epidermal growth factor in mucus production.Curr. Opin. Pharmacol.20011325425810.1016/S1471‑4892(01)00045‑5 11712748
    [Google Scholar]
  54. ZhangH.X. YangJ.J. ZhangS.A. ZhangS.M. WangJ.X. XuZ.Y. LinR.Y. HIF-1α promotes inflammatory response of chronic obstructive pulmonary disease by activating EGFR/PI3K/AKT pathway.Ur. Rev. Med. Pharmacol. Sci.2018221860776084 30280794
    [Google Scholar]
  55. ArranzA. DoxakiC. VergadiE. Martinez de la TorreY. VaporidiK. LagoudakiE.D. IeronymakiE. AndroulidakiA. VenihakiM. MargiorisA.N. StathopoulosE.N. TsichlisP.N. TsatsanisC. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization.Proc. Natl. Acad. Sci. 2012109249517952210.1073/pnas.1119038109 22647600
    [Google Scholar]
  56. AndroulidakiA. IliopoulosD. ArranzA. DoxakiC. SchworerS. ZacharioudakiV. MargiorisA.N. TsichlisP.N. TsatsanisC. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs.Immunity200931222023110.1016/j.immuni.2009.06.024 19699171
    [Google Scholar]
  57. LindE.F. ElfordA.R. OhashiP.S. Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges.J. Immunol.201319031210121610.4049/jimmunol.1202700 23275599
    [Google Scholar]
  58. LiL. ShiR. ShiW. ZhangR. WuL. Oxysophocarpine protects airway epithelial cells against inflammation and apoptosis by inhibiting miR-155 expression.Future Med. Chem.202012161475148710.4155/fmc‑2020‑0120 32603606
    [Google Scholar]
  59. ZhouS. WangY. MengY. XiaoC. LiuZ. BrohawnP. HiggsB.W. JallalB. JiaQ. QuB. HuangX. TangY. YaoY. HarleyJ.B. ShenN. In vivo therapeutic success of microRNA-155 antagomir in a mouse model of lupus alveolar hemorrhage.Arthritis Rheumatol.201668495396410.1002/art.39485 26556607
    [Google Scholar]
  60. BarnesP.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease.J. Allergy Clin. Immunol.2013131363664510.1016/j.jaci.2012.12.1564 23360759
    [Google Scholar]
  61. OsoataG.O. YamamuraS. ItoM. VuppusettyC. AdcockI.M. BarnesP.J. ItoK. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2.Biochem. Biophys. Res. Commun.2009384336637110.1016/j.bbrc.2009.04.128 19410558
    [Google Scholar]
  62. HanM.K. BarretoT.A. MartinezF.J. ComstockA.T. SajjanU.S. Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease.BMJ Open Respir. Res.202071e00039210.1136/bmjresp‑2018‑000392 32071149
    [Google Scholar]
  63. FarazuddinM. MishraR. JingY. SrivastavaV. ComstockA.T. SajjanU.S. Quercetin prevents rhinovirus-induced progression of lung disease in mice with COPD phenotype.PLoS One2018137e019961210.1371/journal.pone.0199612 29975735
    [Google Scholar]
  64. GaoJ. Effects of baicalin on inflammation and oxidative stress in COPD rat.Mol. Plant Breed.20222072367241
    [Google Scholar]
  65. UedaK. NishimotoY. KimuraG. MasukoT. BarnesP.J. ItoK. KizawaY. Repeated lipopolysaccharide exposure causes corticosteroid insensitive airway inflammation via activation of phosphoinositide-3-kinase δ pathway.Biochem. Biophys. Rep.2016736737310.1016/j.bbrep.2016.07.020 28955927
    [Google Scholar]
  66. CharronC.E. ChouP-C. CouttsD.J.C. KumarV. ToM. AkashiK. PinhuL. GriffithsM. AdcockI.M. BarnesP.J. ItoK. Hypoxia-inducible factor 1α induces corticosteroid-insensitive inflammation via reduction of histone deacetylase-2 transcription.J. Biol. Chem.200928452360473605410.1074/jbc.M109.025387
    [Google Scholar]
  67. Al-RasheedN.M. FaddaL.M. AttiaH.A. AliH.M. Al-RasheedN.M. Quercetin inhibits sodium nitrite-induced inflammation and apoptosis in different rats organs by suppressing Bax, HIF1‐α, TGF‐β, Smad-2, and AKT pathways.J. Biochem. Mol. Toxicol.2017315e2188310.1002/jbt.21883 28000380
    [Google Scholar]
  68. AlcornJ.F. CroweC.R. KollsJ.K. TH17 cells in asthma and COPD.Annu. Rev. Physiol.201072149551610.1146/annurev‑physiol‑021909‑135926 20148686
    [Google Scholar]
  69. SongY. LuH.Z. XuJ.R. WangX.L. ZhouW. HouL.N. ZhuL. YuZ.H. ChenH.Z. CuiY.Y. Carbocysteine restores steroid sensitivity by targeting histone deacetylase 2 in a thiol/GSH-dependent manner.Pharmacol. Res.201591889810.1016/j.phrs.2014.12.002 25500537
    [Google Scholar]
  70. CuiW. HuG. PengJ. MuL. LiuJ. QiaoL. Quercetin exerted protective effects in a rat model of sepsis via inhibition of Reactive Oxygen Species (ROS) and downregulation of High Mobility Group Box 1 (HMGB1) protein expression.Med. Sci. Monit.2019255795580010.12659/MSM.916044 31377749
    [Google Scholar]
  71. ChanjitwiriyaK. RoytrakulS. KunthalertD. Quercetin negatively regulates IL-1β production in Pseudomonas aeruginosa-infected human macrophages through the inhibition of MAPK/NLRP3 inflammasome pathways.PLoS One2020158e023775210.1371/journal.pone.0237752 32817626
    [Google Scholar]
  72. RajabiS. NajafipourH. Jafarinejad FarsangiS. JoukarS. BeikA. IranpourM. KordestaniZ. Perillyle alcohol and Quercetin ameliorate monocrotaline-induced pulmonary artery hypertension in rats through PARP1-mediated miR-204 down-regulation and its downstream pathway.BMC Complemen. Med. Therap.202020121810.1186/s12906‑020‑03015‑1 32660602
    [Google Scholar]
  73. YuanK. ZhuQ. LuQ. JiangH. ZhuM. LiX. HuangG. XuA. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities.J. Nutr. Biochem.20208410845410.1016/j.jnutbio.2020.108454 32679549
    [Google Scholar]
  74. PanF. ZhuL. LvH. PeiC. Quercetin promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by upregulating lncRNA MALAT1.Int. J. Mol. Med.20163851507151410.3892/ijmm.2016.2755 28026003
    [Google Scholar]
  75. BoadiW.Y. LoA. Effects of quercetin, kaempferol, and exogenous glutathione on phospho- and total- AKT in 3T3-L1 preadipocytes.J. Diet. Suppl.201815681482610.1080/19390211.2017.1401572 29345961
    [Google Scholar]
  76. ZengJ. XuH. FanP. XieJ. HeJ. YuJ. GuX. ZhangC. Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS-PAD4 pathway.J. Cell. Mol. Med.202024137590759910.1111/jcmm.15394 32427405
    [Google Scholar]
  77. ZhouB. Li, J.; Liang, X.; Pan, X.; Hao, Y.; Xie, P.; Jiang, H.; Yang, Z.; Zhong, N. β-sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice by disrupting the cross-talk between RIG-I and IFN/STAT signaling.Acta Pharmacol. Sin.20204191178119610.1038/s41401‑020‑0403‑9 32504068
    [Google Scholar]
  78. LiauP.R. WuM.S. LeeC.K. Inhibitory effects of scutellaria baicalensis root extract on linoleic acid hydroperoxide-induced lung mitochondrial lipid peroxidation and antioxidant activities.Molecules20192411214310.3390/molecules24112143 31174346
    [Google Scholar]
  79. JiQ. BouriE. LauC.K.M. RoubaudD. Dynamic connectedness and integration in cryptocurrency markets.Int. Rev. Financ. Anal.20196325727210.1016/j.irfa.2018.12.002
    [Google Scholar]
  80. JiQ. BouriE. GuptaR. RoubaudD. Network causality structures among Bitcoin and other financial assets: A directed acyclic graph approach.Q. Rev. Econ. Finance20187020321310.1016/j.qref.2018.05.016
    [Google Scholar]
  81. JiQ. ZhangD. GengJ. Information linkage, dynamic spillovers in prices and volatility between the carbon and energy markets.J. Clean. Prod.201819897297810.1016/j.jclepro.2018.07.126
    [Google Scholar]
  82. XuX. ZhangY. Network analysis of corn cash price comovements.Mach. Learn. Appl.2021610014010.1016/j.mlwa.2021.100140
    [Google Scholar]
  83. XuX. ZhangY. Network analysis of housing price comovements of a hundred Chinese cities.Natl. Inst. Econ. Rev.202326411012810.1017/nie.2021.34
    [Google Scholar]
  84. XuX. ZhangY. Network analysis of comovements among newly-built residential house price indices of seventy Chinese cities.Int. J. Hous. Mark. Analy.,2022013410.1108/IJHMA‑09‑2022‑0134
    [Google Scholar]
  85. XuX. ZhangY. Network analysis of price comovements among corn futures and cash prices.J. Agric. Food Ind. Organ.202210.1515/jafio‑2022‑0009
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073279344240215050056
Loading
/content/journals/cchts/10.2174/0113862073279344240215050056
Loading

Data & Media loading...

Supplements

All Information on TCM ingredients of Jinwei decoction (Table ). Target Genes of TCM ingredients of Jinwei decoction (Table ). Target Genes of miR-155-5p (Table ). Target Genes of COPD in GeneCards Databases (Table ). Target Genes of COPD in OMIM Databases (Table ). Target Genes of COPD in Drugbank Databases (Table ). Mass spectrometry analysis of Jinwei Tang (Word ).

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test