Skip to content
2000
Volume 28, Issue 9
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aims and Objective

This study aimed to identify the bioactive compounds and explore the multi-target mechanisms of Bunge (SMB) against coronary heart disease (CHD) using an integrated serum pharmacochemistry and network pharmacology approach.

Materials and Methods

The chemical constituents of SMB were characterized by UPLC-MS. The absorbed ingredients and metabolites after oral SMB administration were identified in rat serum. Therapeutic targets of SMB against CHD were predicted by intersecting the targets of absorbed compounds from databases and CHD-associated genes. Protein-protein interaction network, pathway analysis, molecular docking, and molecular dynamic simulation were performed.

Results

A total of 61 SMB-derived compounds were identified in rat serum. Network analysis revealed 111 candidate targets highly related to CHD pathways. Further topological analysis identified 10 hub targets and 20 key active compounds, constructing an informative compound-target-pathway network. PTGS2 and TNF were predicted as primary targets of SMB against CHD based on molecular dynamic simulation.

Conclusion

This integrated approach identified bioactive compounds and multi-target mechanisms of SMB against CHD. The results provide scientific evidence supporting SMB's clinical efficacy and reveal potential anti-CHD targets.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073248528231120135004
2024-01-09
2025-09-09
Loading full text...

Full text loading...

References

  1. DibbenG. FaulknerJ. OldridgeN. ReesK. ThompsonD.R. ZwislerA.D. TaylorR.S. Exercise-based cardiac rehabilitation for coronary heart disease.Cochrane Libr.2021202111CD00180010.1002/14651858.CD001800.pub4 34741536
    [Google Scholar]
  2. RothG.A. JohnsonC. AbajobirA. Abd-AllahF. AberaS.F. AbyuG. AhmedM. AksutB. AlamT. AlamK. AllaF. Alvis-GuzmanN. AmrockS. AnsariH. ÄrnlövJ. AsayeshH. AteyT.M. Avila-BurgosL. AwasthiA. BanerjeeA. BaracA. BärnighausenT. BarregardL. BediN. Belay KetemaE. BennettD. BerheG. BhuttaZ. BitewS. CarapetisJ. CarreroJ.J. MaltaD.C. Castañeda-OrjuelaC.A. Castillo-RivasJ. Catalá-LópezF. ChoiJ.Y. ChristensenH. CirilloM. CooperL.Jr CriquiM. CundiffD. DamascenoA. DandonaL. DandonaR. DavletovK. DharmaratneS. DorairajP. DubeyM. EhrenkranzR. El Sayed ZakiM. FaraonE.J.A. EsteghamatiA. FaridT. FarvidM. FeiginV. DingE.L. FowkesG. GebrehiwotT. GillumR. GoldA. GonaP. GuptaR. HabtewoldT.D. Hafezi-NejadN. HailuT. HailuG.B. HankeyG. HassenH.Y. AbateK.H. HavmoellerR. HayS.I. HorinoM. HotezP.J. JacobsenK. JamesS. JavanbakhtM. JeemonP. JohnD. JonasJ. KalkondeY. KarimkhaniC. KasaeianA. KhaderY. KhanA. KhangY.H. KheraS. KhojaA.T. KhubchandaniJ. KimD. KolteD. KosenS. KrohnK.J. KumarG.A. KwanG.F. LalD.K. LarssonA. LinnS. LopezA. LotufoP.A. El RazekH.M.A. MalekzadehR. MazidiM. MeierT. MelesK.G. MensahG. MeretojaA. MezgebeH. MillerT. MirrakhimovE. MohammedS. MoranA.E. MusaK.I. NarulaJ. NealB. NgalesoniF. NguyenG. ObermeyerC.M. OwolabiM. PattonG. PedroJ. QatoD. QorbaniM. RahimiK. RaiR.K. RawafS. RibeiroA. SafiriS. SalomonJ.A. SantosI. Santric MilicevicM. SartoriusB. SchutteA. SepanlouS. ShaikhM.A. ShinM.J. ShishehborM. ShoreH. SilvaD.A.S. SobngwiE. StrangesS. SwaminathanS. Tabarés-SeisdedosR. Tadele AtnafuN. TesfayF. ThakurJ.S. ThriftA. Topor-MadryR. TruelsenT. TyrovolasS. UkwajaK.N. UthmanO. VasankariT. VlassovV. VollsetS.E. WakayoT. WatkinsD. WeintraubR. WerdeckerA. WestermanR. WiysongeC.S. WolfeC. WorkichoA. XuG. YanoY. YipP. YonemotoN. YounisM. YuC. VosT. NaghaviM. MurrayC. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015.J. Am. Coll. Cardiol.201770112510.1016/j.jacc.2017.04.052 28527533
    [Google Scholar]
  3. HoenP.W. WhooleyM.A. MartensE.J. NaB. van MelleJ.P. de JongeP. Differential associations between specific depressive symptoms and cardiovascular prognosis in patients with stable coronary heart disease.J. Am. Coll. Cardiol.2010561183884410.1016/j.jacc.2010.03.080 20813281
    [Google Scholar]
  4. DongY. ChenH. GaoJ. LiuY. LiJ. WangJ. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease.J. Mol. Cell. Cardiol.2019136274110.1016/j.yjmcc.2019.09.001 31505198
    [Google Scholar]
  5. SagrisM. TheofilisP. AntonopoulosA.S. OikonomouE. PaschalioriC. GaliatsatosN. TsioufisK. TousoulisD. Inflammation in Coronary Microvascular Dysfunction.Int. J. Mol. Sci.202122241347110.3390/ijms222413471 34948272
    [Google Scholar]
  6. CrosierR. AustinP.C. KoD.T. LawlerP.R. StukelT.A. FarkouhM.E. WangX. SpertusJ.A. RossH.J. LeeD.S. Intensity of guideline-directed medical therapy for coronary heart disease and ischemic heart failure outcomes.Am. J. Med.20211345672681.e410.1016/j.amjmed.2020.10.017 33181105
    [Google Scholar]
  7. GoelP.K. SahuA.K. KasturiS. RoyS. ShahN. ParikhP. ChadhaD.S. Guiding Principles for the Clinical Use and Selection of Microcatheters in Complex Coronary Interventions.Front. Cardiovasc. Med.2022972460810.3389/fcvm.2022.724608 35355971
    [Google Scholar]
  8. GuptaV. MittalM. MittalV. SharmaA.K. SaxenaN.K. A novel feature extraction-based ECG signal analysis.J. Inst. Eng. (India): Series B,2021102590391310.1007/s40031‑021‑00591‑9
    [Google Scholar]
  9. GuptaV. MittalM. MittalV. FrWT-PPCA-Based R-peak Detection for Improved Management of Healthcare System.J. Inst. Electron. Telecommun. Eng.20236985064507810.1080/03772063.2021.1982412
    [Google Scholar]
  10. GuptaV. MittalM. MittalV. A novel FrWT based arrhythmia detection in ECG signal using YWARA and PCA.Wirel. Pers. Commun.202212421229124610.1007/s11277‑021‑09403‑1
    [Google Scholar]
  11. TangH. HoseinA. Mattioli-BelmonteM. Traditional Chinese Medicine and orthopedic biomaterials: Host of opportunities from herbal extracts.Mater. Sci. Eng. C202112011176010.1016/j.msec.2020.111760 33545901
    [Google Scholar]
  12. WangR. ZhaoH. HuangJ. WangH. LiJ. LuY. DiL. Salviae Miltiorrhizae RadixChallenges and strategies in progress of drug delivery system for traditional Chinese medicine et (Danshen).Chin. Herb. Med.2020131788910.1016/j.chmed.2020.08.001 36117766
    [Google Scholar]
  13. WangM.X. LiuY.Y. HuB.H. WeiX.H. ChangX. SunK. FanJ.Y. LiaoF.L. WangC.S. ZhengJ. HanJ.Y. Total salvianolic acid improves ischemia-reperfusion-induced microcirculatory disturbance in rat mesentery.World J. Gastroenterol.201016425306531610.3748/wjg.v16.i42.5306 21072893
    [Google Scholar]
  14. SuC.Y. MingQ.L. RahmanK. HanT. QinL.P. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology.Chin. J. Nat. Med.201513316318210.1016/S1875‑5364(15)30002‑9 25835361
    [Google Scholar]
  15. XueR. FangZ. ZhangM. YiZ. WenC. ShiT. TCMID: Traditional Chinese medicine integrative database for herb molecular mechanism analysis.Nucleic Acids Res.201241D1D1089D109510.1093/nar/gks1100 23203875
    [Google Scholar]
  16. MaF.X. XueP.F. WangY.Y. WangY.N. XueS.Y. [Research progress of serum pharmacochemistry of traditional Chinese medicine].Zhongguo Zhongyao Zazhi,20174271265127010.19540/j.cnki.cjcmm.20170224.010 29052384
    [Google Scholar]
  17. LeeA.Y. ParkW. KangT.W. ChaM.H. ChunJ.M. Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis.J. Ethnopharmacol.201822115115910.1016/j.jep.2018.04.027 29698773
    [Google Scholar]
  18. WeiJ. YuY. ZhangY. LiL. LiX. ShaoJ. LiY. Integrated serum pharmacochemistry and network pharmacology approach to explore the effective components and potential mechanisms of menispermi rhizoma against myocardial ischemia.Front Chem.20221086997210.3389/fchem.2022.869972 35665070
    [Google Scholar]
  19. RenJ. DongH. HanY. YangL. ZhangA. SunH. LiY. YanG. WangX.J. Network pharmacology combined with metabolomics approach to investigate the protective role and detoxification mechanism of Yunnan Baiyao formulation.Phytomedicine20207715326610.1016/j.phymed.2020.153266 32629383
    [Google Scholar]
  20. XuD. YuH. YuQ. WuS. LiuD. LinY. ZhangY. ZhengC. Salvia miltiorrhiza increases the expression of transcription factor Foxp3 in experimental murine colitis.Mol. Med. Rep.2014951947195110.3892/mmr.2014.1986 24573301
    [Google Scholar]
  21. de LeonV.N.O. ManzanoJ.A.H. PilapilD.Y.H.IV FernandezR.A.T. ChingJ.K.A.R. QuimqueM.T.J. AgbayJ.C.M. NotarteK.I.R. MacabeoA.P.G. Anti-HIV reverse transcriptase plant polyphenolic natural products with in silico inhibitory properties on seven non-structural proteins vital in SARS-CoV-2 pathogenesis.J. Genet. Eng. Biotechnol.202119110410.1186/s43141‑021‑00206‑2 34272647
    [Google Scholar]
  22. FernandezR.A. QuimqueM.T. NotarteK.I. ManzanoJ.A. PilapilD.Y.IV de LeonV.N. San JoseJ.J. VillalobosO. MuralidharanN.H. GromihaM.M. BrogiS. MacabeoA.P.G. Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein.J. Biomol. Struct. Dyn.20224022122091222010.1080/07391102.2021.1969281 34463219
    [Google Scholar]
  23. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. Wenzel-StorjohannA. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased NRF2 Level by a flavonol-enriched n -butanol fraction from Uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  24. QuimqueM.T. NotarteK.I. LetadaA. FernandezR.A. PilapilD.Y.IV PueblosK.R. AgbayJ.C. DahseH.M. Wenzel-StorjohannA. TasdemirD. KhanA. WeiD.Q. Gose MacabeoA.P. Potential cancer- and alzheimer’s disease-targeting phosphodiesterase inhibitors from Uvaria alba: Insights from In vitro and consensus virtual screening.ACS Omega20216128403841710.1021/acsomega.1c00137 33817501
    [Google Scholar]
  25. NabelE.G. BraunwaldE. A tale of coronary artery disease and myocardial infarction.N. Engl. J. Med.20123661546310.1056/NEJMra1112570 22216842
    [Google Scholar]
  26. TangX. YangJ. FengZ. PiaoJ. YanQ. GaoC. Study of Scraping with Copper Stone Based on Theory of Midnight-Noon Ebb-Flow in Angina Pectoris with Coronary Heart Disease of Qi Stagnation and Blood Stasis.Evid. Based Complement. Alternat. Med.202120211810.1155/2021/2677696 34580594
    [Google Scholar]
  27. DuanL. XiongX.J. WangJ. [Activating blood circulation to remove stasis and therapeutic angiogenesis of coronary heart disease].Chung Kuo Chung Hsi I Chieh Ho Tsa Chih2013331115611566 24483121
    [Google Scholar]
  28. LvL. YuanX. JiangL. Effects of compound Danshen dropping pills on adverse cardiovascular events and quality of life after percutaneous coronary intervention in patients with coronary heart disease.Medicine (Baltimore)20221018e2899410.1097/MD.0000000000028994 35212312
    [Google Scholar]
  29. ShenQ. WangH. QuanB. SunX. WuG. HuangD. WangQ. LuoP. Rapid quantification of bioactive compounds in Salvia miltiorrhiza Bunge derived decoction pieces, dripping pill, injection, and tablets by polarity-switching UPLC-MS/MS.Front Chem.20221096474410.3389/fchem.2022.964744 35910733
    [Google Scholar]
  30. HanY. SunH. ZhangA. YanG. WangX. Chinmedomics, a new strategy for evaluating the therapeutic efficacy of herbal medicines.Pharmacol. Ther.202021610768010.1016/j.pharmthera.2020.107680 32956722
    [Google Scholar]
  31. LuoT. LuY. YanS. XiaoX. RongX. GuoJ. Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective.Chin. J. Integr. Med.2020261728010.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  32. HaoD.C. XiaoP.G. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Salviabased Drug Discovery.Curr. Drug Metab.201818121071108410.2174/1389200218666170531111624 28558633
    [Google Scholar]
  33. MaS. ZhangD. LouH. SunL. JiJ. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages.J. Ethnopharmacol.201618819319910.1016/j.jep.2016.05.018 27178632
    [Google Scholar]
  34. SuhS.J. JinU.H. ChoiH.J. ChangH.W. SonJ.K. LeeS.H. JeonS.J. SonK.H. ChangY.C. LeeY.C. KimC.H. Cryptotanshinone from Salvia miltiorrhiza BUNGE has an inhibitory effect on TNF-α-induced matrix metalloproteinase-9 production and HASMC migration via down-regulated NF-κB and AP-1.Biochem. Pharmacol.200672121680168910.1016/j.bcp.2006.08.013 16999937
    [Google Scholar]
  35. NagappanA. KimJ.H. JungD.Y. JungM.H. Cryptotanshinone from the Salvia miltiorrhiza Bunge Attenuates Ethanol-Induced Liver Injury by Activation of AMPK/SIRT1 and Nrf2 Signaling Pathways.Int. J. Mol. Sci.201921126510.3390/ijms21010265 31906014
    [Google Scholar]
  36. MaioneF. De FeoV. CaiazzoE. De MartinoL. CicalaC. MascoloN. Tanshinone IIA, a major component of Salvia milthorriza Bunge, inhibits platelet activation via Erk-2 signaling pathway.J. Ethnopharmacol.201415521236124210.1016/j.jep.2014.07.010 25038434
    [Google Scholar]
  37. ChenL. GuoQ.H. ChangY. ZhaoY.S. LiA.Y. JiE.S. Tanshinone IIA ameliorated endothelial dysfunction in rats with chronic intermittent hypoxia.Cardiovasc. Pathol.201731475310.1016/j.carpath.2017.06.008 28985491
    [Google Scholar]
  38. ZhangZ. HeH. QiaoY. HuangJ. WuZ. XuP. YinD. HeM. Tanshinone IIA pretreatment protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3 η.Oxid. Med. Cell. Longev.2018201811310.1155/2018/3583921 30050654
    [Google Scholar]
  39. NiuX.L. IchimoriK. YangX. HirotaY. HoshiaiK. LiM. NakazawaH. Tanshinone II-A inhibits low density lipoprotein oxidation in vitro.Free Radic. Res.200033330531210.1080/10715760000301471 10993484
    [Google Scholar]
  40. ChenX. YuJ. ZhongB. LuJ. LuJ.J. LiS. LuY. Pharmacological activities of dihydrotanshinone I, a natural product from Salvia miltiorrhiza Bunge.Pharmacol. Res.201914510425410.1016/j.phrs.2019.104254 31054311
    [Google Scholar]
  41. KoJ.S. RyuS.Y. KimY.S. ChungM.Y. KangJ.S. RhoM.C. LeeH.S. KimY.K. Inhibitory activity of diacylglycerol acyltransferase by tanshinones from the root of Salvia miltiorrhiza.Arch. Pharm. Res.200225444644810.1007/BF02976599 12214853
    [Google Scholar]
  42. ParkJ.W. LeeS.H. YangM.K. LeeJ.J. SongM.J. RyuS.Y. ChungH.J. WonH.S. LeeC.S. KwonS.H. YunY.P. ChoiW.S. ShinH.S. 15,16-Dihydrotanshinone I, a major component from Salvia miltiorrhiza Bunge (Dansham), inhibits rabbit platelet aggregation by suppressing intracellular calcium mobilization.Arch. Pharm. Res.2008311475310.1007/s12272‑008‑1119‑4 18277607
    [Google Scholar]
  43. LamF.F.Y. YeungJ.H.K. ChanK.M. OrP.M.Y. Dihydrotanshinone, a lipophilic component of Salvia miltiorrhiza (danshen), relaxes rat coronary artery by inhibition of calcium channels.J. Ethnopharmacol.2008119231832110.1016/j.jep.2008.07.011 18682284
    [Google Scholar]
  44. Giménez-BastidaJ.A. Ávila-GálvezM.Á. Carmena-BargueñoM. Pérez-SánchezH. EspínJ.C. González-SarríasA. Physiologically relevant curcuminoids inhibit angiogenesis via VEGFR2 in human aortic endothelial cells.Food Chem. Toxicol.202216611325410.1016/j.fct.2022.113254 35752269
    [Google Scholar]
  45. SheuM.J. LinH.Y. YangY.H. ChouC.J. ChienY.C. WuT.S. WuC.H. Demethoxycurcumin, a major active curcuminoid from Curcuma longa, suppresses balloon injury induced vascular smooth muscle cell migration and neointima formation: An in vitro and in vivo study.Mol. Nutr. Food Res.20135791586159710.1002/mnfr.201200462 23520190
    [Google Scholar]
  46. SungK.C. KimK.S. LeeS. Hypoxic regulation of VEGF, HIF-1(alpha) in coronary collaterals development.Korean J. Intern. Med. (Korean. Assoc. Intern. Med.)200520429530210.3904/kjim.2005.20.4.295 16491827
    [Google Scholar]
  47. DeguchiJ. AikawaM. TungC.H. AikawaE. KimD.E. NtziachristosV. WeisslederR. LibbyP. Inflammation in Atherosclerosis.Circulation20061141556210.1161/CIRCULATIONAHA.106.619056 16801460
    [Google Scholar]
  48. LiY. XiaJ. JiangN. XianY. JuH. WeiY. ZhangX. Corin protects H2O2-induced apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes.Biomed. Pharmacother.20189759459910.1016/j.biopha.2017.10.090 29101802
    [Google Scholar]
  49. LintonM.F. MoslehiJ.J. BabaevV.R. Akt Signaling in Macrophage Polarization, Survival, and Atherosclerosis.Int. J. Mol. Sci.20192011270310.3390/ijms20112703 31159424
    [Google Scholar]
  50. ZhangQ. WangL. WangS. ChengH. XuL. PeiG. WangY. FuC. JiangY. HeC. WeiQ. Signaling pathways and targeted therapy for myocardial infarction.Signal Transduct. Target. Ther.2022717810.1038/s41392‑022‑00925‑z 35273164
    [Google Scholar]
  51. LiL. QuN. LiD.H. WenW.M. HuangW.Q. Coronary microembolization induced myocardial contractile dysfunction and tumor necrosis factor-α mRNA expression partly inhibited by SB203580 through a p38 mitogen-activated protein kinase pathway.Chin. Med. J. (Engl.)20111241100105 21362316
    [Google Scholar]
  52. ZachariaE. AntonopoulosA.S. OikonomouE. PapageorgiouN. PallantzaZ. MiliouA. MystakidiV.C. SimantirisS. KriebardisA. OrologasN. ValasiadiE. PapaioannouS. GaliatsatosN. AntoniadesC. TousoulisD. Plasma signature of apoptotic microvesicles is associated with endothelial dysfunction and plaque rupture in acute coronary syndromes.J. Mol. Cell. Cardiol.202013811011410.1016/j.yjmcc.2019.11.153 31783033
    [Google Scholar]
  53. RicciottiE. FitzGeraldG.A. Prostaglandins and Inflammation.Arterioscler. Thromb. Vasc. Biol.2011315986100010.1161/ATVBAHA.110.207449 21508345
    [Google Scholar]
  54. HuangQ. FeiX. LiS. XuC. TuC. JiangL. WoM. Predicting significance of COX-2 expression of peripheral blood monocyte in patients with coronary artery disease.Ann. Transl. Med.201971848310.21037/atm.2019.08.75 31700919
    [Google Scholar]
  55. DuringA. DeboucheC. RaasT. LarondelleY. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.J. Nutr.2012142101798180510.3945/jn.112.162453 22955517
    [Google Scholar]
  56. ZhangC. WuJ. XuX. PotterB.J. GaoX. Direct relationship between levels of TNF-α expression and endothelial dysfunction in reperfusion injury.Basic Res. Cardiol.2010105445346410.1007/s00395‑010‑0083‑6 20091314
    [Google Scholar]
  57. SiY. FanW. SunL. A Review of the Relationship Between CTRP Family and Coronary Artery Disease.Curr. Atheroscler. Rep.20202262210.1007/s11883‑020‑00840‑0 32468164
    [Google Scholar]
  58. LiZ. ChengQ. YuL. HeY.Y. GaoL.N. WangY. LiL. CuiY.L. GaoS. YuC.Q. Dan-Lou tablets reduces inflammatory response via suppression of the MyD88/p38 MAPK/NF-κB signaling pathway in RAW 264.7 macrophages induced by ox-LDL.J. Ethnopharmacol.202229811560010.1016/j.jep.2022.115600 35970313
    [Google Scholar]
  59. AhmadZ. NgC.T. FongL.Y. BakarN.A.A. HussainN.H.M. AngK.P. EeG.C.L. HakimM.N. Cryptotanshinone inhibits TNF-α-induced early atherogenic events in vitro.J. Physiol. Sci.201666321322010.1007/s12576‑015‑0410‑7 26732386
    [Google Scholar]
  60. RajasankarS. RamkumarM. GobiV. JanakiramanU. ManivasagamT. ThenmozhiA. EssaM. ChidambaramR. ChidambaramS. GuilleminG. Demethoxycurcumin, a natural derivative of curcumin abrogates rotenone-induced dopamine depletion and motor deficits by its antioxidative and anti-inflammatory properties in Parkinsonian rats.Pharmacogn. Mag.2018145391610.4103/pm.pm_113_17 29576695
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073248528231120135004
Loading
/content/journals/cchts/10.2174/0113862073248528231120135004
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test