Skip to content
2000
Volume 28, Issue 9
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Medicinal plants play a crucial role in traditional medicine, where they are extensively employed by traditional physicians for treating a wide array of ailments. (Linn), commonly known as the Wood apple and belonging to the Rutaceae family, is widely cultivated in countries, such as Pakistan, India, and Sri Lanka. The various parts of including its roots, leaves, fruits, stem, and even the whole plant, have been traditionally used in the treatment of numerous conditions, such as constipation, diarrhea, dysentery, skin diseases, asthma, astringent, diabetes, jaundice, and dyspepsia and act as diuretic agents, cardiotonic, cardiac stimulant, and hepato-protectant. Extensive research has revealed that possesses a rich chemical composition, including quinones, lignans, flavonoids, sterols, coumarins, alkaloids, triterpenoids, phenolic acids, and volatile oils, present in its stem, leaves, fruits, stem bark, and roots. These chemical constituents contribute to its diverse therapeutic properties. In recent years, numerous studies have explored the ethano-pharmacological properties of extracts, highlighting their anticancer, antidiabetic, anti-diarrheal, antimicrobial, antiulcer, wound healing, antioxidant, hepatoprotective, antibacterial, antifungal, larvicidal, neuroprotective, antispermatogenic, antihistaminic, diuretic, and adsorbent activities. This comprehensive review focuses on the traditional uses, biological activities, and phytoconstituents isolated from different parts of Linn. The gathered information provides valuable insights into the therapeutic potential of this plant, serving as a foundation for further research and the development of novel pharmaceuticals. The integration of traditional knowledge with scientific evidence enhances the understanding of the medicinal properties of fostering its utilization in modern medicine and healthcare systems.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073285538240417051928
2024-04-25
2025-12-10
Loading full text...

Full text loading...

References

  1. SivaM. ShanmugamK.R. ShanmugamB. VenkataS.G. RaviS. SathyaveluR.K. MallikarjunaK. Ocimum sanctum: A review on the pharmacological properties.Int. J. Basic Clin. Pharmacol.20165558565
    [Google Scholar]
  2. RodriguesS. de BritoE.S. de SilvaO.E. Wood apple—limonia acidissima.Exotic FruitsAcademic Press201844344610.1016/B978‑0‑12‑803138‑4.00060‑5
    [Google Scholar]
  3. VidhyaR. NarainA. Development of preserved products using under exploited fruit, wood apple.Am. J. Food Technol.20116427928810.3923/ajft.2011.279.288
    [Google Scholar]
  4. IslamM.H. RahmanA.H. Folk medicine as practiced in bagha upazila of rajshahi district, bangladesh.Plant. Environ. Dev.201761324
    [Google Scholar]
  5. KamatC.D. KhandelwalK.R. BodhankarS.L. AmbawadeS.D. MhetreN.A. Hepatoprotective activity of leaves of Feronia elephantum Correa (Rutaceae) against ccl4-induced liver damage in rats.J. Nat. Med.20033148154
    [Google Scholar]
  6. IlaiyarajaN. LikhithK.R. Sharath BabuG.R. KhanumF. Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM).Food Chem.201517334835410.1016/j.foodchem.2014.10.03525466032
    [Google Scholar]
  7. Priya DarsiniD.T. MaheshuV. VishnupriyaM. NishaaS. SasikumarJ.M. Antioxidant potential and amino acid analysis of underutilized tropical fruit Limonia acidissima L.Free Radic. Antioxid.20133626910.1016/j.fra.2013.08.001
    [Google Scholar]
  8. PanchawatS. AmetaC. Medicinal importance of plant metabolites.Chemistry of Biologically Potent Natural Products and Synthetic CompoundsWiley2021119
    [Google Scholar]
  9. YadavV. SinghA.K. Appa RaoV.V. SinghS. SarojP.L. Wood apple variability - an underutilized dry land fruit from Gujarat, India.Int. J. Curr. Microbiol. Appl. Sci.20187654855510.20546/ijcmas.2018.706.063
    [Google Scholar]
  10. MuthumperumalC. ParthasarathyN. Angiosperms, climbing plants in tropical forests of southern Eastern Ghats, Tamil Nadu, India.Check List.20095092111
    [Google Scholar]
  11. MurrinieE.D. YudonoP. PurwantoroA. SulistyaniE. Morphological and physiological changes during growth and development of wood-apple Feronia limonia (L.) Swingle fruit.Int. J. Bot.2017132758110.3923/ijb.2017.75.81
    [Google Scholar]
  12. BandaraB. GunatilakaA. WijeratneE. AdikaramN. Antifungal constituents of Limonia acidissima.Planta Med.198854437437510.1055/s‑2006‑9624733222382
    [Google Scholar]
  13. KimW. FanY.Y. SmithR. PatilB. JayaprakashaG.K. McMurrayD.N. ChapkinR.S. Dietary curcumin and limonin suppress CD4+ T-cell proliferation and interleukin-2 production in mice.J. Nutr.200913951042104810.3945/jn.108.10277219321585
    [Google Scholar]
  14. WijeratneE.M.K. BandaraB.M.R. GunatilakaA.A.L. TezukaY. KikuchiT. Chemical constituents of three Rutaceae species from Sri Lanka.J. Nat. Prod.19925591261126910.1021/np50087a013
    [Google Scholar]
  15. RahmanM.M. GrayA.I. Antimicrobial constituents from the stem bark of Feronia limonia.Phytochemistry2002591737710.1016/S0031‑9422(01)00423‑X11754947
    [Google Scholar]
  16. Hyun KimK. Keun HaS. Yeou KimS. Joo YounH. Ro LeeK. Constituents of Limonia acidissima inhibit LPS-induced nitric oxide production in BV-2 microglia.J. Enzyme Inhib. Med. Chem.201025688789210.3109/1475636090351415620578973
    [Google Scholar]
  17. ZargaM.H.A. Three new simple indole alkaloids from Limonia acidissima.J. Nat. Prod.198649590190410.1021/np50047a022
    [Google Scholar]
  18. AdikaramN.K.B. AbhayawardhaneY. GunatilakaA.A.L. BandaraB.M.R. WijeratneM.K. Antifungal activity, acid and sugar content in the wood apple (Limonia acidissima) and their relation to fungal development.Plant Pathol.198938225826510.1111/j.1365‑3059.1989.tb02141.x
    [Google Scholar]
  19. DarA.I. MasarG. JadhawV. BansalS.K. SaxenaR.C. Isolation and structural elucidation of the novel flavone glycoside from Feronia limonia L.J. Pharm. Res.20137869770410.1016/j.jopr.2013.04.058
    [Google Scholar]
  20. KimK. LeeI. KimK. HaS. KimS. LeeK. New benzamide derivatives and NO production inhibitory compounds from Limonia acidissima.Planta Med.200975101146115110.1055/s‑0029‑118551219343623
    [Google Scholar]
  21. KimK.H. HaS.K. KimS.Y. KimS.H. LeeK.R. LimodissiminA. A New dimeric coumarin from Limonia acidissima. Bull. Korean Chem. Soc.20093092135213710.5012/bkcs.2009.30.9.2135
    [Google Scholar]
  22. MacLeodJ.K. MoellerP.D.R. BandaraB.M.R. GunatilakaL.A.A. WijeratneE.M.K. Acidissimin, a new limonoid from Limonia acidissima.J. Nat. Prod.198952488288510.1021/np50064a040
    [Google Scholar]
  23. ChengM.J. LeeK.H. TsaiI.L. ChenI.S. Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides.Bioorg. Med. Chem.200513215915592010.1016/j.bmc.2005.07.05016140017
    [Google Scholar]
  24. TalapatraS.K. ChaudhuriM.K. TalapatraB. Coumarins of the root bark of Feronia elephantum.Phytochemistry197312123623710.1016/S0031‑9422(00)84671‑3
    [Google Scholar]
  25. AgrawalA. SiddiquiI.R. SinghJ. Coumarins from the roots of Feronia limonia.Phytochemistry19892841229123110.1016/0031‑9422(89)80215‑8
    [Google Scholar]
  26. RaoK.M. BalakrishnaN. LaxmaiahA. VenkaiahK. BrahmamG.N.V. Diet and nutritional status of adolescent tribal population in nine states of India.Asia Pac. J. Clin. Nutr.2006151647116500880
    [Google Scholar]
  27. IntekhabJ. SiddiquiN.U. Aslamd. Flavone glycoside from the roots of Fironia limonia.Orient. J. Chem.200824331
    [Google Scholar]
  28. Tamil SelviM. ThirugnanasampandanR. SundarammalS. Antioxidant and cytotoxic activities of essential oil of Ocimum canum Sims. from India.J. Saudi Chem. Soc.20151919710010.1016/j.jscs.2011.12.026
    [Google Scholar]
  29. EluruJ.R. TaranalliA.D. KawatraS. Anti-tumour activity of Limonia acidissima L. methanolic extract in mice model of Dalton’s ascitic lymphoma.Int. J. Pharmacogn. Phytochem. Res2015710941100
    [Google Scholar]
  30. KumarC.S. MaheshA. AntonirajM.G. VaideviS. RuckmaniK. Ultrafast synthesis of stabilized gold nanoparticles using aqueous fruit extract of Limonia acidissima L. and conjugated epirubicin: Targeted drug delivery for treatment of breast cancer.RSC Advances2016632268742688210.1039/C6RA01482H
    [Google Scholar]
  31. PradhanD. TripathyG. PatanaikS. Anticancer activity of Limonia acidissima Linn (Rutaceae) fruit extracts on human breast cancer cell lines.Trop. J. Pharm. Res.201211341341910.4314/tjpr.v11i3.10
    [Google Scholar]
  32. TripathyG. PradhanD. PradhanS. DasmohapatraT. Evaluation of plant extracts against lung cancer using H460 cell line.Asian J. Pharm. Clin. Res.20169227229
    [Google Scholar]
  33. RahulG. SamtaJ. SaxenaA.M. Effect of ethanolic extract of Feronia elephantum correa fruits on blood glucose levels in normal and streptozotocin-induced diabetic rats.Nat. Prod. Radiance200983236
    [Google Scholar]
  34. MishraA. GargG.P. Antidiabetic activity of fruit pulp of Feronia elephantum Corr.Pharmacogn. J.2011320273210.5530/pj.2011.20.6
    [Google Scholar]
  35. priyaE.M. GothandamK.M. KarthikeyaS. Antidiabetic activity of Feronia limonia and Artocarpus heterophyllus in streptozotocin induced diabetic rats.Am. J. Food Technol.201171434910.3923/ajft.2012.43.49
    [Google Scholar]
  36. SenthilkumarK.L. KumawatB.K. RajkumarM. Antidiarrheal activity of bark extracts of Limonia acidissima Linn.Res. J. Pharm. Biol. Chem. Sci.20101550553
    [Google Scholar]
  37. IslamF. AzadA.K. FaysalM. AzadM.A.K. IslamS. AminM.A. SultanaN. DolaF.Y. RahmanM.M. BeghM.Z.A. A comparative study of analgesic, anti-diarrhoeal and antimicrobial activities of methanol and acetone extracts of fruits peels of Limonia acidissima L. (Rutaceae).J. Drug Deliv. Ther.2020101-s626510.22270/jddt.v10i1‑s.3882
    [Google Scholar]
  38. MurthyH.N. DalawaiD. Bioactive compounds of wood apple (Limonia acidissima L.).Bioactive compounds in underutilized fruits and nutsSpringer2020543569
    [Google Scholar]
  39. MishraA. AroraS. GuptaR. PuniaR.K. SharmaA.K. Effect of Feronia elephantum (Corr) fruit pulp extract on indomethacin-induced gastric ulcer in albino rats.Trop. J. Pharm. Res.20098509514
    [Google Scholar]
  40. IlangoK. ChitraV. Wound healing and anti-oxidant activities of the fruit pulp of Limonia acidissima linn (rutaceae) in rats.Trop. J. Pharm. Res.20109322323010.4314/tjpr.v9i3.56281
    [Google Scholar]
  41. NanasombatS. KhanhaK. Phan-imJ. JitaiedJ. WannasomboonS. PatradisakornS. WongsilA. Antimicrobial and antioxidant activities of Thai local fruit extracts: application of a selected fruit extract, Phyllanthus emblica linn. as a natural preservative in raw ground pork during refrigerated storage.T. onl. J. Sci. Technol.2012217
    [Google Scholar]
  42. SujithaS. VenkatalakshmiP. Insights into the invitro antioxidant, anti-inflammatory and anticancer activities of Limonia acidissima fruits.Int. J. Life Sci. Pharma Res.202111111
    [Google Scholar]
  43. KalpanaS. MaheshwariP.G. TasleemS.M. NazeerS. RubeenaS. KumarS.Y. Anu MalikS. Evaluation of hepatoprotective activity of the ethanolic extract of limonia acidisiima against paracetamol induced hepatotoxicity in experimental rats.Int. J. Pharm. Sci. Rev. Res.2020641697210.47583/ijpsrr.2020.v64i01.013
    [Google Scholar]
  44. MominM.M.A. KhanM.R. RayhanJ. AfroseA. RanaS. BegumA.A. Evaluation of antibacterial and antidiarrhoeal activities of Feronia limonia leaf extract.Am. J. Plant Sci.20134112181218510.4236/ajps.2013.411270
    [Google Scholar]
  45. ThomasA. PonnammalN.R. Preliminary studies on phytochemical and antibacterial activity of Limonia acidissima L. plant parts.Anc. Sci. Life2005252576122557192
    [Google Scholar]
  46. NaiduG.K. SujathaB. NaiduK.C.S. In vitro antibacterial activity analysis of leaves of Limonia acidissima. Not. Sci. Biol.20146215515710.15835/nsb629270
    [Google Scholar]
  47. GuptaC. SinghV.P. In vitro antifungal effect of the essential oils of some medicinal plants.Sci. Cult.1982148483487
    [Google Scholar]
  48. ReeganA.D. GandhiM.R. PaulrajM.G. BalakrishnaK. IgnacimuthuS. Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae).Acta Trop.2014139677610.1016/j.actatropica.2014.07.00225019220
    [Google Scholar]
  49. RahumanA.A. GopalakrishnanG. GhouseB.S. ArumugamS. HimalayanB. Effect of Feronia limonia on mosquito larvae.Fitoterapia200071555355510.1016/S0367‑326X(00)00164‑711449505
    [Google Scholar]
  50. BanerjeeS. SinghaS. LaskarS. ChandraG. Efficacy of Limonia acidissima L. (Rutaceae) leaf extract on larval immatures of Culex quinquefasciatus Say 1823.Asian Pac. J. Trop. Med.20114971171610.1016/S1995‑7645(11)60179‑X21967694
    [Google Scholar]
  51. AliS.A. RakhundeP.B. SaherS. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats.Indian J. Pharmacol.201446661762110.4103/0253‑7613.14492025538333
    [Google Scholar]
  52. ChoiS. KimK.W. ChoiJ.S. HanS.T. ParkY.I. LeeS.K. KimJ.S. ChungM.H. Angiogenic activity of β-sitosterol in the ischaemia/reperfusion-damaged brain of Mongolian gerbil.Planta Med.200268433033510.1055/s‑2002‑2675011988857
    [Google Scholar]
  53. DhanapalR. RatnaJ.V. SarathchandranI. GuptaM. Reversible antispermatogenic and antisteroidogenic activities of Feronia limonia fruit pulp in adult male rats.Asian Pac. J. Trop. Biomed.202120211024103023569995
    [Google Scholar]
  54. ChavanS. JadhavR. DamaleM. PattanS. Antihistaminic effect of Feronia elephantum bark.World J. Pharm. Pharm. Sci.2014310111016
    [Google Scholar]
  55. MahapatraP.K. PradhanD. Relaxant effects of Limonia acidissima linn (pulp) on guinea pig tracheal chains and its possible mechanism.Int. J. Pharm. Pharm. Sci.20146257263
    [Google Scholar]
  56. ParialS. JainD.C. JoshiS.B. Diuretic activity of the extracts of Limonia acidissima in rats.Rasayan J. Chem.200925356
    [Google Scholar]
  57. KrishnaD. SureshM. SrikharI.S. MadhuriN. Removal of manganese from aqueous solution by Limonia acidissima hull powder as adsorbent.i-manager’s J. Fut. Eng. Technol.201493223010.26634/jfet.9.3.2688
    [Google Scholar]
  58. SartapeA.S. MandhareA.M. JadhavV.V. RautP.D. AnuseM.A. KolekarS.S. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent.Arab. J. Chem.201710S3229S323810.1016/j.arabjc.2013.12.019
    [Google Scholar]
  59. ManoharH.D. SrinivasanD. SengottuveluS. Cardioprotective activity of Limonia acidissima against isoproterenol induced myocardial infarction in rats.Res J Pharm Technol20169554154410.5958/0974‑360X.2016.00102.5
    [Google Scholar]
  60. DubeyS. PatelM.A. BapnaR. To evaluate the antidepressant activity on Limonia acidissima (leaves).Int. J. Res. Publ. Rev2022336203626
    [Google Scholar]
  61. MaliK.K. SutarG.V. DiasR.J. DevadeO.A. Evaluation of nootropic activity of Limonia acidissima against scopolamine-induced amnesia in rats.Turk J Pharm Sci20211813910.4274/tjps.galenos.2019.3031633631923
    [Google Scholar]
  62. TripathyG. PradhanD. Estimation of immunomodulatory activity of Limonia acidissima Linn.Asian J. Pharm. Clin. Res.20141219221
    [Google Scholar]
  63. SunithaK. MohanG.K. Screening of Limonia acidissima fruit pulp for immunomodulatory activity.Res. J. Pharm. Biol. Chem. Sci.20134439444
    [Google Scholar]
  64. ChellappandianM. NathanS.S. SrinivasanV.P. KarthiS. KalaivaniK. HunterW.B. AliH.M. SalemM.Z.M. Abdel-MegeedA. Volatile toxin of Limonia acidissima (L.) produced larvicidal, developmental, repellent, and adulticidal toxicity effects on Aedes aegypti (L.).Toxin Rev.202241111912810.1080/15569543.2020.1851723
    [Google Scholar]
  65. GhoshP. SilP. DasS. ThakurS. KokkeW.C.M.C. AkihisaT. ShimizuN. TamuraT. MatsumotoT. Tyramine derivatives from the fruit of Limonia acidissima.J. Nat. Prod.19915451389139310.1021/np50077a024
    [Google Scholar]
  66. GuptaS. SeshadriT. SharmaC. SharmaN. Chemical components of Feronia limonea.Planta Med.1979365959610.1055/s‑0028‑1097248461562
    [Google Scholar]
  67. AliM.S. PervezM.K. Marmenol: A 7-geranyloxycoumarin from the leaves of Aegle marmelos corr.Nat. Prod. Res.200418214114610.1080/1478641031000160803714984087
    [Google Scholar]
  68. Al-GhamdiM.S. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa.J. Ethnopharmacol.2001761454810.1016/S0378‑8741(01)00216‑111378280
    [Google Scholar]
  69. KawaseM. TanakaT. SoharaY. TaniS. SakagamiH. HauerH. ChatterjeeS.S. Structural requirements of hydroxylated coumarins for in vitro anti-Helicobacter pylori activity.In Vivo200317550951214598616
    [Google Scholar]
  70. SinghG. KaurA. KaurJ. BhattiM.S. SinghP. BhattiR. Bergapten inhibits chemically induced nociceptive behavior and inflammation in mice by decreasing the expression of spinal PARP, iNOS, COX-2 and inflammatory cytokines.Inflammopharmacology201927474976010.1007/s10787‑019‑00585‑630953227
    [Google Scholar]
  71. KueteV. MetunoR. NgameniB. TsafackA.M. NgandeuF. FotsoG.W. BezabihM. EtoaF.X. NgadjuiB.T. AbegazB.M. BengV.P. Antimicrobial activity of the methanolic extracts and compounds from Treculia obovoidea (Moraceae).J. Ethnopharmacol.2007112353153610.1016/j.jep.2007.04.01017532157
    [Google Scholar]
  72. ShikishimaY. TakaishiY. HondaG. ItoM. TakedaY. KodzhimatovO.K. AshurmetovO. LeeK.H. Chemical constituents of Prangos tschiniganica; structure elucidation and absolute configuration of coumarin and furanocoumarin derivatives with anti-HIV activity.Chem. Pharm. Bull.200149787788010.1248/cpb.49.87711456095
    [Google Scholar]
  73. LinC.P. LinC.S. LinH.H. LiK.T. KaoS.H. TsaoS.M. Bergapten induces G1 arrest and pro‐apoptotic cascade in colorectal cancer cells associating with p53/p21/PTEN axis.Environ. Toxicol.201934330331110.1002/tox.2268530576070
    [Google Scholar]
  74. PannoM. GiordanoF. PalmaM. BartellaV. RagoV. MaggioliniM. SisciD. LanzinoM. De AmicisF. AndòS. Evidence that bergapten, independently of its photoactivation, enhances p53 gene expression and induces apoptosis in human breast cancer cells.Curr. Cancer Drug Targets20099446948110.2174/15680090978848678619519316
    [Google Scholar]
  75. ChenG. XuQ. DaiM. LiuX. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways.Biochem. Biophys. Res. Commun.2019509232933410.1016/j.bbrc.2018.12.11230579598
    [Google Scholar]
  76. LiX.J. ZhuZ. HanS.L. ZhangZ.L. Bergapten exerts inhibitory effects on diabetes-related osteoporosis via the regulation of the PI3K/AKT, JNK/MAPK and NF-κB signaling pathways in osteoprotegerin knockout mice.Int. J. Mol. Med.20163861661167210.3892/ijmm.2016.279427840967
    [Google Scholar]
  77. TangD.Z. YangF. YangZ. HuangJ. ShiQ. ChenD. WangY.J. Psoralen stimulates osteoblast differentiation through activation of BMP signaling.Biochem. Biophys. Res. Commun.2011405225626110.1016/j.bbrc.2011.01.02121219873
    [Google Scholar]
  78. WangY. HongC. ZhouC. XuD. QuH. Screening antitumor compounds psoralen and isopsoralen from Psoralea corylifolia L. seeds.Evid. Based Complement. Alternat. Med.201120111710.1093/ecam/nen08719131395
    [Google Scholar]
  79. MaciągM. MichalakA. WoźniakS.K. ZykubekM. CiszewskiA. BudzyńskaB. Zebrafish and mouse models for anxiety evaluation – A comparative study with xanthotoxin as a model compound.Brain Res. Bull.202016513914510.1016/j.brainresbull.2020.09.02433049351
    [Google Scholar]
  80. ŁuszczkiJ.J. Andres-MachM. GleńskM. Skalicka-WoźniakK. Anticonvulsant effects of four linear furanocoumarins, bergapten, imperatorin, oxypeucedanin, and xanthotoxin, in the mouse maximal electroshock-induced seizure model: A comparative study.Pharmacol. Rep.20106261231123610.1016/S1734‑1140(10)70387‑X21273683
    [Google Scholar]
  81. CaoL.H. LeeH.S. QuanZ.S. LeeY.J. JinY. Vascular protective effects of xanthotoxin and its action mechanism in rat aorta and human vascular endothelial cells.J. Vasc. Res.202057631332410.1159/00050911232726786
    [Google Scholar]
  82. IssaM.Y. ElshalM.F. FathallahN. AbdelkawyM.A. BishrM. SalamaO. AbulfadlY.S. Potential anticancer activity of the furanocoumarin derivative xanthotoxin isolated from Ammi majus L. fruits: In vitro and in silico studies.Molecules202227394310.3390/molecules2703094335164207
    [Google Scholar]
  83. ZagajaM. MachA.M. WoźniakS.K. RękasA.R. WróbelK.M.W. GleńskM. ŁuszczkiJ.J. Assessment of the combined treatment with umbelliferone and four classical antiepileptic drugs against maximal electroshock-induced seizures in mice.Pharmacology2015963-417518010.1159/00043870426279465
    [Google Scholar]
  84. KleinerH.E. VulimiriS.V. StarostM.F. ReedM.J. DiGiovanniJ. Oral administration of the citrus coumarin, isopimpinellin, blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene in SENCAR mice.Carcinogenesis200223101667167510.1093/carcin/23.10.166712376476
    [Google Scholar]
  85. RobertsonA.L. OgryzkoN.V. HenryK.M. LoynesC.A. FoulkesM.J. MeloniM.M. WangX. FordC. JacksonM. InghamP.W. WilsonH.L. FarrowS.N. SolariR. FlowerR.J. JonesS. WhyteM.K.B. RenshawS.A. Identification of benzopyrone as a common structural feature in compounds with anti-inflammatory activity in a zebrafish phenotypic screen.Dis. Model. Mech.201696dmm.02493510.1242/dmm.02493527079522
    [Google Scholar]
  86. Mainzen PrinceP.S. KumarM.R. SelvakumariC.J. Effects of gallic acid on brain lipid peroxide and lipid metabolism in streptozotocin‐induced diabetic Wistar rats.J. Biochem. Mol. Toxicol.201125210110710.1002/jbt.2036520957663
    [Google Scholar]
  87. PunithavathiV.R. PrinceP.S.M. KumarR. SelvakumariJ. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats.Eur. J. Pharmacol.2011650146547110.1016/j.ejphar.2010.08.05920863784
    [Google Scholar]
  88. CoutoA.G. KassuyaC.A.L. CalixtoJ.B. PetrovickP.R. Anti-inflammatory, antiallodynic effects and quantitative analysis of gallic acid in spray dried powders from Phyllanthus niruri leaves, stems, roots and whole plant.Rev. Bras. Farmacogn.201323112413110.1590/S0102‑695X2013000100017
    [Google Scholar]
  89. RasoolyR. ChoiH.Y. DoP. MorroniG. BresciniL. CirioniO. GiacomettiA. ApostolidisE. whISOBAXTM inhibits bacterial pathogenesis and enhances the effect of antibiotics.Antibiotics20209526410.3390/antibiotics905026432438609
    [Google Scholar]
  90. GoyalR.K. PatelS.S. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats.Pharmacognosy Res.20113423924510.4103/0974‑8490.8974322224046
    [Google Scholar]
  91. KratzJ.M. FröhnerA.C.R. KollingD.J. LealP.C. Cirne-SantosC.C. YunesR.A. NunesR.J. TrybalaE. BergströmT. FrugulhettiI.C.P.P. BarardiC.R.M. SimõesC.M.O. Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate.Mem. Inst. Oswaldo Cruz2008103543744210.1590/S0074‑0276200800050000518797755
    [Google Scholar]
  92. NairaN. KarvekarM.D. Stability studies and evaluation of the semi solid dosage form of the rutin, quercitin, ellagic acid, gallic acid and sitosterol isolated from the leaves of Tectona grandis for wound healing activity.Arch. Appl. Sci. Res.201134351
    [Google Scholar]
  93. SimeonovaR. VitchevaV. Kondeva-BurdinaM. KrastevaI. ManovV. MitchevaM. Hepatoprotective and antioxidant effects of saponarin, isolated from Gypsophila trichotoma Wend. on paracetamol-induced liver damage in rats.BioMed Res. Int.2013201311010.1155/2013/75712623878818
    [Google Scholar]
  94. MinS.Y. ParkC.H. YuH.W. ParkY.J. Anti-inflammatory and anti-allergic effects of saponarin and its impact on signaling pathways of RAW 264.7, RBL-2H3, and HaCaT Cells.Int. J. Mol. Sci.20212216843110.3390/ijms2216843134445132
    [Google Scholar]
  95. DuG.J. ZhangZ. WenX.D. YuC. CalwayT. YuanC.S. WangC.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea.Nutrients20124111679169110.3390/nu411167923201840
    [Google Scholar]
  96. ZhangX. LiJ. LiY. LiuZ. LinY. HuangJ. Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells.Fitoterapia202014510463410.1016/j.fitote.2020.10463432454171
    [Google Scholar]
  97. IkedaI. KobayashiM. HamadaT. TsudaK. GotoH. ImaizumiK. NozawaA. SugimotoA. KakudaT. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate.J. Agric. Food Chem.200351257303730710.1021/jf034728l14640575
    [Google Scholar]
  98. PeungvichaP. TemsiririrkkulR. PrasainJ.K. TezukaY. KadotaS. ThirawarapanS.S. WatanabeH. 4-Hydroxybenzoic acid: A hypoglycemic constituent of aqueous extract of Pandanus odorus root.J. Ethnopharmacol.1998621798410.1016/S0378‑8741(98)00061‑09720616
    [Google Scholar]
  99. RoussetB. Antithyroid effect of a food or drug preservative: 4-hydroxybenzoic acid methyl ester.Experientia198137217717810.1007/BF019632186263671
    [Google Scholar]
  100. KosováM. HrádkováI. MátlováV. KadlecD. ŠmidrkalJ. FilipV. Antimicrobial effect of 4-hydroxybenzoic acid ester with glycerol.J. Clin. Pharm. Ther.201540443644010.1111/jcpt.1228526012359
    [Google Scholar]
  101. SanninoF. SansoneC. GalassoC. KildgaardS. TedescoP. FaniR. MarinoG. de PascaleD. IanoraA. ParrilliE. LarsenT.O. RomanoG. TutinoM.L. Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells.Sci. Rep.201881119010.1038/s41598‑018‑19536‑229352134
    [Google Scholar]
  102. BabaeiF. MoafizadA. DarvishvandZ. MirzababaeiM. HosseinzadehH. Nassiri-AslM. Review of the effects of vitexin in oxidative stress‐related diseases.Food Sci. Nutr.2020862569258010.1002/fsn3.156732566174
    [Google Scholar]
  103. ChooC.Y. SulongN.Y. ManF. WongT.W. Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition.J. Ethnopharmacol.2012142377678110.1016/j.jep.2012.05.06222683902
    [Google Scholar]
  104. CanÖ.D. Demir ÖzkayÜ. ÜçelU.İ. Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms.Eur. J. Pharmacol.20136991-325025710.1016/j.ejphar.2012.10.01723099258
    [Google Scholar]
  105. BektasN. ŞenelB. YenilmezE. ÖzatikO. ArslanR. Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin.Saudi Pharm. J.2020281879410.1016/j.jsps.2019.11.00831933527
    [Google Scholar]
  106. ZhuQ. MaoL.N. LiuC.P. SunY.H. JiangB. ZhangW. LiJ.X. Antinociceptive effects of vitexin in a mouse model of postoperative pain.Sci. Rep.2016611926610.1038/srep1926626763934
    [Google Scholar]
  107. de OliveiraD.D. da SilvaC.P. IglesiasB.B. BeleboniR.O. Vitexin possesses anticonvulsant and anxiolytic-like effects in murine animal models.Front. Pharmacol.202011118110.3389/fphar.2020.0118132848784
    [Google Scholar]
  108. BhavsarS. SapraP. MaitreyaB. MankadA. A review on potential of medicinal plant: Limonia acidissima L.Int. Assoc. Biol. Comput. Dig.20221215916510.56588/iabcd.v1i2.63
    [Google Scholar]
  109. SwamiG. SalviJ. KatewaS.S. In-vitro antibacterial activity of Feronia limonia (Linn.) Swingle.J. Medicinal Aromat. Plant Sci.201234163167
    [Google Scholar]
  110. AraújoF.L.O. MeloC.T.V. RochaN.F.M. MouraB.A. LeiteC.P. AmaralJ.F. Barbosa-FilhoJ.M. GutierrezS.J.C. VasconcelosS.M.M. VianaG.S.B. de SousaF.C.F. Antinociceptive effects of (O-methyl)-N-benzoyl tyramine (riparin I) from Aniba riparia (Nees) Mez (Lauraceae) in mice.Naunyn Schmiedebergs Arch. Pharmacol.2009380433734410.1007/s00210‑009‑0433‑919557396
    [Google Scholar]
  111. LimaL.S.D. Evaluation of the effect of the compound (O-Methyl)-N-(2, 6-Dihydroxybenzoyl)-tyramine (Riparin III) from the plant Aniba riparia (Nees) Mez (Lauraceae) on the morphogenesis of the central nervous system in a Gallus gallus embryo.Master's thesis, Federal University of Pernambuco2017
    [Google Scholar]
  112. de CarvalhoA.M.R. RochaN.F.M. VasconcelosL.F. RiosE.R.V. DiasM.L. SilvaM.I.G. de França FontelesM.M. FilhoJ.M.B. GutierrezS.J.C. de SousaF.C.F. Evaluation of the anti-inflammatory activity of riparin II (O-methil-N-2-hidroxi-benzoyl tyramine) in animal models.Chem. Biol. Interact.2013205316517210.1016/j.cbi.2013.07.00723872256
    [Google Scholar]
  113. SousaF.C.F. MeloC.T.V. MonteiroA.P. LimaV.T.M. GutierrezS.J.C. PereiraB.A. Barbosa-FilhoJ.M. VasconcelosS.M.M. FontelesM.F. VianaG.S.B. Antianxiety and antidepressant effects of riparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice.Pharmacol. Biochem. Behav.2004781273310.1016/j.pbb.2004.01.01915159131
    [Google Scholar]
  114. GolfakhrabadiF. AbdollahiM. ArdakaniM.R.S. SaeidniaS. AkbarzadehT. AhmadabadiA.N. EbrahimiA. YousefbeykF. HassanzadehA. KhanaviM. Anticoagulant activity of isolated coumarins (suberosin and suberenol) and toxicity evaluation of Ferulago carduchorum in rats.Pharm. Biol.201452101335134010.3109/13880209.2014.89214025017518
    [Google Scholar]
  115. GolfakhrabadiF. Shams ArdakaniM.R. SaeidniaS. AkbarzadehT. YousefbeykF. JamalifarH. KhanaviM. In vitro antimicrobial and acetylcholinesterase inhibitory activities of coumarins from Ferulago carduchorum.Med. Chem. Res.20162581623162910.1007/s00044‑016‑1595‑x
    [Google Scholar]
  116. WangJ. FuT. DongR. WangC. LiuK. SunH. HuoX. MaX. YangX. MengQ. Hepatoprotection of auraptene from the peels of citrus fruits against 17α-ethinylestradiol-induced cholestasis in mice by activating farnesoid X receptor.Food Funct.20191073839385010.1039/C9FO00318E31210195
    [Google Scholar]
  117. KimB.H. KwonJ. LeeD. MarW. Neuroprotective effect of demethylsuberosin, a proteasome activator, against mpp+-induced cell death in human neuroblastoma SH-SY5Y cells.Planta Medica Letters201521e15e1810.1055/s‑0035‑1545936
    [Google Scholar]
  118. SeidaA. KinghornA. CordellG. FarnsworthN. Isolation of bergapten and marmesin from Balanites aegyptiaca.Planta Med.1981439929310.1055/s‑2007‑97148117402017
    [Google Scholar]
  119. VimalV. DevakiT. Linear furanocoumarin protects rat myocardium against lipidperoxidation and membrane damage during experimental myocardial injury.Biomed. Pharmacother.2004586-739340010.1016/j.biopha.2003.12.00715271422
    [Google Scholar]
  120. AfekU. AharoniN. CarmeliS. The involvement of marmesin in celery resistance to pathogens during storage and the effect of temperature on its concentration.Phytopathology199585671171410.1094/Phyto‑85‑711
    [Google Scholar]
  121. AfekU. OrensteinJ. AharoniN. The involvement of marmesin and its interaction with GA 3 and psoralens in parsley decay resistance.Can. J. Plant Pathol.2002241616410.1080/07060660109506972
    [Google Scholar]
  122. JeongH.J. NaH.J. KimS.J. RimH.K. MyungN.Y. MoonP.D. HanN.R. SeoJ.U. KangT.H. KimJ.J. ChoiY. KangI.C. HongS.H. KimY.A. SeoY.W. KimH.M. UmJ.Y. Anti-inflammatory effect of Columbianetin on activated human mast cells.Biol. Pharm. Bull.20093261027103110.1248/bpb.32.102719483309
    [Google Scholar]
  123. LimaV. SilvaC.B. MafezoliJ. BezerraM.M. MoraesM.O. MourãoG.S.M.M. SilvaJ.N. OliveiraM.C.F. Antinociceptive activity of the pyranocoumarin seselin in mice.Fitoterapia2006777-857457810.1016/j.fitote.2006.09.00517055189
    [Google Scholar]
  124. FengL. SunY. SongP. XuL. WuX. WuX. ShenY. SunY. KongL. WuX. XuQ. Seselin ameliorates inflammation via targeting Jak2 to suppress the proinflammatory phenotype of macrophages.Br. J. Pharmacol.2019176231733310.1111/bph.1452130338847
    [Google Scholar]
  125. HussainE. KumarR. ChoudharyM.I. YousufS. Crystal engineering of naturally occurring seselin to obtain cocrystal with enhanced anti-leishmanial activity, Hirshfeld surface analysis, and computational insight.Cryst. Growth Des.20181884628463610.1021/acs.cgd.8b00602
    [Google Scholar]
  126. IyerD. PatilU.K. Assessment of antihyperlipidemic and antitumor effect of isolated active phytoconstituents from Apium graveolens L. through bioassay-guided procedures.J. Diet. Suppl.201916219320610.1080/19390211.2018.144892129624455
    [Google Scholar]
  127. Castro-Faria-NetoH. BozzaP. CruzH. SilvaC. ViolanteF. FilhoB.J. ThomasG. MartinsM. TibiriçáE. NoelF. CordeiroR. Yangambin: A new naturally-occurring platelet-activating factor receptor antagonist: binding and in vitro functional studies.Planta Med.199561210110510.1055/s‑2006‑9580257753913
    [Google Scholar]
  128. TibiriçáE. Cardiovascular properties of yangambin, a lignan isolated from Brazilian plants.Cardiovasc. Drug Rev.200119431332810.1111/j.1527‑3466.2001.tb00073.x11830750
    [Google Scholar]
  129. Rebouças-SilvaJ. SantosG.F. FilhoJ.M.B. BerrettaA.A. OliveiraM.F. BorgesV.M. In vitro leishmanicidal effect of Yangambin and Epi-yangambin lignans isolated from Ocotea fasciculata (Nees) Mez.Front. Cell. Infect. Microbiol.202312104573210.3389/fcimb.2022.104573236704104
    [Google Scholar]
  130. SerraM. DiazB. BarretoE. PereiraA.P. LimaM. FilhoB.J. CordeiroR. MartinsM. de SilvaP. Anti-allergic properties of the natural PAF antagonist yangambin.Planta Med.199763320721210.1055/s‑2006‑9576549225600
    [Google Scholar]
  131. WengL. ChenT.H. ZhengQ. WengW.H. HuangL. LaiD. FuY.S. WengC.F. Syringaldehyde promoting intestinal motility with suppressing α-amylase hinders starch digestion in diabetic mice.Biomed. Pharmacother.202114111186510.1016/j.biopha.2021.11186534246193
    [Google Scholar]
  132. ShahzadS. MateenS. MariyathM.P.M. NaeemS.S. AkhtarK. RizviW. MoinS. Protective effect of syringaldehyde on biomolecular oxidation, inflammation and histopathological alterations in isoproterenol induced cardiotoxicity in rats.Biomed. Pharmacother.201810862563310.1016/j.biopha.2018.09.05530245462
    [Google Scholar]
  133. Anjum MusthafaS. DabdoubW. SadiqM. RamanujamM.G. Syringaldehyde isolated from Abutilon indicum Linn. leaves exhibits broad spectrum anti-microbial activity.Mater. Today Proc.20225033533910.1016/j.matpr.2021.08.062
    [Google Scholar]
  134. JeongG.S. ByunE. LiB. LeeD.S. AnR-B. KimY-C. Neuroprotective effects of constituents of the root bark of Dictamnus dasycarpus in mouse hippocampal cells.Arch. Pharm. Res.20103381269127510.1007/s12272‑010‑0818‑920803131
    [Google Scholar]
  135. JeongY.H. ChungS.Y. HanA.R. SungM.K. JangD.S. LeeJ. KwonY. LeeH.J. SeoE.K. P-glycoprotein inhibitory activity of two phenolic compounds, (-)-syringaresinol and tricin from Sasa borealis.Chem. Biodivers.200741121610.1002/cbdv.20079000117256728
    [Google Scholar]
  136. ChoY.S. SongW.S. YoonS.H. ParkK.Y. KimM.H. Syringaresinol suppresses excitatory synaptic transmission and picrotoxin-induced epileptic activity in the hippocampus through presynaptic mechanisms.Neuropharmacology2018131688210.1016/j.neuropharm.2017.12.01429225041
    [Google Scholar]
  137. LiG. LiuC. YangL. FengL. ZhangS. AnJ. LiJ. GaoY. PanZ. XuY. LiuJ. WangY. YanJ. CuiJ. QiZ. YangL. Syringaresinol protects against diabetic nephropathy by inhibiting pyroptosis via NRF2-mediated antioxidant pathway.Cell Biol. Toxicol.202339362163910.1007/s10565‑023‑09790‑036640193
    [Google Scholar]
  138. Tuong ViL.N. TuanN.N. HungQ.T. TrinhP.T.N. DanhT.T. Thao LyN. ThaoV.N. DungL.T. α-glucosidase inhibitory activity of extracts and compounds from the leaves of Ruellia tuberosa L.Nat. Prod. J.2022125e18022119157710.2174/2210315511666210218214955
    [Google Scholar]
  139. OhJ.H. JooY.H. KaradenizF. KoJ. KongC.S. Syringaresinol inhibits UVA-induced MMP-1 expression by suppression of MAPK/AP-1 signaling in HaCaT keratinocytes and human dermal fibroblasts.Int. J. Mol. Sci.20202111398110.3390/ijms2111398132492931
    [Google Scholar]
  140. SelvarajD. MuthuS. KothaS. SiddamsettyR.S. AndavarS. JayaramanS. Syringaresinol as a novel androgen receptor antagonist against wild and mutant androgen receptors for the treatment of castration-resistant prostate cancer: molecular docking, in-vitro and molecular dynamics study.J. Biomol. Struct. Dyn.202139262163410.1080/07391102.2020.171526131928160
    [Google Scholar]
  141. SouzaP.H.S.D. CostaM.J.F. AraújoF.A.C. AlencarE.V. MachadoL.A. Two phytocompounds from Schinopsis brasiliensis show promising antiviral activity with multiples targets in Influenza A virus.An. Acad. Bras. Cienc.202193964
    [Google Scholar]
  142. LinhV.N. TuongT.N. PhongX.P. TrangD.T. NhiemN.X. AnH.D. TaiH.B. New phenylethanoid and other compounds from Passiflora foetida L., with their nitric oxide inhibitory activities.Nat. Prod. Commun.202217111934578X221141110.1177/1934578X221141163
    [Google Scholar]
  143. AgarwalS.K. SinghS.S. VermaS. KumarS. Antifungal activity of anthraquinone derivatives from Rheum emodi.J. Ethnopharmacol.2000721-2434610.1016/S0378‑8741(00)00195‑110967452
    [Google Scholar]
  144. ZhaoY.L. WangJ.B. ZhouG.D. ShanL.M. XiaoX.H. Investigations of free anthraquinones from rhubarb against α-naphthylisothiocyanate-induced cholestatic liver injury in rats.Basic Clin. Pharmacol. Toxicol.2009104646346910.1111/j.1742‑7843.2009.00389.x19389047
    [Google Scholar]
  145. GhoshS. Das SarmaM. PatraA. HazraB. Anti-inflammatory and anticancer compounds isolated from Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.J. Pharm. Pharmacol.20106291158116610.1111/j.2042‑7158.2010.01151.x20796195
    [Google Scholar]
  146. AdnanM. RasulA. HussainG. ShahM.A. SarfrazI. NageenB. RiazA. KhalidR. AsrarM. SelamogluZ. AdemŞ. SarkerS.D. Physcion and physcion 8-O-β-D-glucopyranoside: Natural anthraquinones with potential anticancer activities.Curr. Drug Targets202122548850410.2174/18735592MTEwDNjQiz33050858
    [Google Scholar]
  147. LozanoJ.M. Cuca SuárezL.E. In vitro antimicrobial properties of secondary metabolites from Peltostigma guatemalense, a Colombian Rutaceae specie, against the Plasmodium falciparum parasite and bacterial strains.Rev. Colomb. Cienc. Quim. Farm.200837164176
    [Google Scholar]
  148. BadaouiM.I. Alabdul MagidA. BenkhaledM. BensouiciC. HarakatD. NazabadiokoV.L. HabaH. Pyrroloquinolone A, a new alkaloid and other phytochemicals from A tractylis cancellata L. with antioxidant and anticholinesterase activities.Nat. Prod. Res.202135182997300310.1080/14786419.2019.168257531698943
    [Google Scholar]
  149. LandiN. RagucciS. CulurcielloR. RussoR. VallettaM. PedoneP.V. PizzoE. MaroD.A. Ribotoxin-like proteins from Boletus edulis: Structural properties, cytotoxicity and in vitro digestibility.Food Chem.202135912993110.1016/j.foodchem.2021.12993133940474
    [Google Scholar]
  150. BarkerS.A. MontiJ.A. ChristianS.T. N, N-dimethyltryptamine: An endogenous hallucinogen.Int. Rev. Neurobiol.1981228311010.1016/S0074‑7742(08)60291‑36792104
    [Google Scholar]
  151. JennerP. MarsdenC.D. ThankiC.M. Behavioural changes induced by N,N-dimethyltryptamine in rodents [proceedings].Br. J. Pharmacol.1978632380P276408
    [Google Scholar]
  152. SzaboA. KovacsA. FrecskaE. RajnavolgyiE. PsychedelicN. Psychedelic N,N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptamine modulate innate and adaptive inflammatory responses through the sigma-1 receptor of human monocyte-derived dendritic cells.PLoS One201498e10653310.1371/journal.pone.010653325171370
    [Google Scholar]
  153. NardaiS. LászlóM. SzabóA. AlpárA. HanicsJ. ZaholaP. MerkelyB. FrecskaE. NagyZ. N,N-dimethyltryptamine reduces infarct size and improves functional recovery following transient focal brain ischemia in rats.Exp. Neurol.202032711324510.1016/j.expneurol.2020.11324532067950
    [Google Scholar]
  154. OsórioF.L. SanchesR.F. MacedoL.R. dos SantosR.G. OliveiraM.J.P. AnaW.L. de AraujoD.B. RibaJ. CrippaJ.A. HallakJ.E. Antidepressant effects of a single dose of ayahuasca in patients with recurrent depression: A preliminary report.Rev. Bras. Psiquiatr.2015371132010.1590/1516‑4446‑2014‑149625806551
    [Google Scholar]
  155. VallinayagamS. RajendranK. SekarV. Pro-apoptotic property of phytocompounds from Naringi crenulata in HER2+ breast cancer cells in vitro.Biotechnol. Biotechnol. Equip.202135130331410.1080/13102818.2020.1868333
    [Google Scholar]
  156. GaoZ. MaloneyD.J. DedkovaL.M. HechtS.M. Inhibitors of DNA polymerase β: Activity and mechanism.Bioorg. Med. Chem.20081684331434010.1016/j.bmc.2008.02.07118343122
    [Google Scholar]
  157. BalestrieriE. PizzimentiF. FerlazzoA. GiofrèS.V. IannazzoD. PipernoA. RomeoR. ChiacchioM.A. MastinoA. MacchiB. Antiviral activity of seed extract from Citrus bergamia towards human retroviruses.Bioorg. Med. Chem.20111962084208910.1016/j.bmc.2011.01.02421334901
    [Google Scholar]
  158. KimJ. JayaprakashaG.K. PatilB.S. Obacunone exhibits anti-proliferative and anti-aromatase activity in vitro by inhibiting the p38 MAPK signaling pathway in MCF-7 human breast adenocarcinoma cells.Biochimie2014105364410.1016/j.biochi.2014.06.00224927687
    [Google Scholar]
  159. GaoY. HouR. LiuF. LiuH. FeiQ. HanY. CaiR. PengC. QiY. Obacunone causes sustained expression of MKP‐1 thus inactivating p38 MAPK to suppress pro‐inflammatory mediators through intracellular MIF.J. Cell. Biochem.2018119183784910.1002/jcb.2624828657665
    [Google Scholar]
  160. BaiY. WangW. WangL. MaL. ZhaiD. WangF. ShiR. LiuC. XuQ. ChenG. LuZ. Obacunone attenuates liver fibrosis with enhancing anti-oxidant effects of GPx-4 and inhibition of EMT.Molecules202126231810.3390/molecules2602031833435504
    [Google Scholar]
  161. Chidambara MurthyK.N. JayaprakashaG.K. PatilB.S. Obacunone and obacunone glucoside inhibit human colon cancer (SW480) cells by the induction of apoptosis.Food Chem. Toxicol.20114971616162510.1016/j.fct.2011.04.01421515332
    [Google Scholar]
  162. HuangD.R. DaiC.M. LiS.Y. LiX.F. Obacunone protects retinal pigment epithelium cells from ultra-violet radiation-induced oxidative injury.Aging2021138110101102510.18632/aging.20243733535179
    [Google Scholar]
  163. QianP. JinH.W. YangX.W. New limonoids from coptidis rhizoma–euodiae fructus couple.J. Asian Nat. Prod. Res.201416433334410.1080/10286020.2014.88135524498938
    [Google Scholar]
  164. ZhangJ.J. LuoG. HeR.L. ZhouL.M. Inhibiting effects of limonin on human hepatocarcinoma cells SMMC-7721 in vitro.Sichuan. J. Asian Nat. Prod. Res.200729157160
    [Google Scholar]
  165. AkihisaT. YokokawaS. OgiharaE. MatsumotoM. ZhangJ. KikuchiT. KoikeK. AbeM. Melanogenesis‐inhibitory and cytotoxic activities of limonoids, alkaloids, and phenolic compounds from phellodendron amurense bark.Chem. Biodivers.2017147e170010510.1002/cbdv.20170010528425165
    [Google Scholar]
  166. KimJ. LeeI. SeoJ. JungM. KimY. YimN. BaeK. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3‐L1 cells.Phytother. Res.201024101543154810.1002/ptr.318620878708
    [Google Scholar]
  167. YangX.B. QianP. YangX.W. LiuJ.X. GongN.B. LvY. Limonoid constituents of Euodia rutaecarpa var. bodinieri and their inhibition on NO production in lipopolysaccharide-activated RAW264.7 macrophages.J. Asian Nat. Prod. Res.201315101130113810.1080/10286020.2013.81739223869424
    [Google Scholar]
  168. IwataH. TezukaY. KadotaS. HiratsukaA. WatabeT. Mechanism-based inactivation of human liver microsomal CYP3A4 by rutaecarpine and limonin from Evodia fruit extract.Drug Metab. Pharmacokinet.2005201344510.2133/dmpk.20.3415770073
    [Google Scholar]
  169. YoonJ.S. SungS.H. KimY.C. Neuroprotective limonoids of root bark of Dictamnus dasycarpus. J. Nat. Prod.200871220821110.1021/np070588o18198838
    [Google Scholar]
  170. MandadiK. RamirezM. JayaprakashaG.K. FarajiB. LihonoM. DeyhimF. PatilB.S. Citrus bioactive compounds improve bone quality and plasma antioxidant activity in orchidectomized rats.Phytomedicine2009166-751352010.1016/j.phymed.2008.09.00118930642
    [Google Scholar]
  171. OnoE. InoueJ. HashidumeT. ShimizuM. SatoR. Anti-obesity and anti-hyperglycemic effects of the dietary citrus limonoid nomilin in mice fed a high-fat diet.Biochem. Biophys. Res. Commun.2011410367768110.1016/j.bbrc.2011.06.05521693102
    [Google Scholar]
  172. YangN. WangJ. LiuC. SongY. ZhangS. ZiJ. ZhanJ. MasilamaniM. CoxA. WegrzynN.A. SampsonH. LiX.M. Berberine and limonin suppress IgE production by human B cells and peripheral blood mononuclear cells from food-allergic patients.Ann. Allergy Asthma Immunol.20141135556564.e410.1016/j.anai.2014.07.02125155085
    [Google Scholar]
  173. Al RehailyA.J. El TahirK.E. MossaJ.S. RafatullahS. Pharmacological studies of various extracts and the major constituent, lupeol, obtained from hexane extract of Teclea nobilis in rodents.Nat. Prod. Sci.200177682
    [Google Scholar]
  174. SudhaharV. VeenaC.K. VaralakshmiP. Antiurolithic effect of lupeol and lupeol linoleate in experimental hyperoxaluria.J. Nat. Prod.20087191509151210.1021/np070314118717586
    [Google Scholar]
  175. GeethaT. VaralakshmiP. LathaR.M. Effect of triterpenes from Crataeva nurvala stem bark on lipid peroxidation in adjuvant induced arthritis in rats.Pharmacol. Res.199837319119510.1006/phrs.1997.02789602466
    [Google Scholar]
  176. AhmedY. SohrabM.H. Al-RezaS.M. TareqF.S. HasanC.M. SattarM.A. Antimicrobial and cytotoxic constituents from leaves of Sapium baccatum.Food Chem. Toxicol.201048254955210.1016/j.fct.2009.11.03019932731
    [Google Scholar]
  177. SunithaS. NagarajM. VaralakshmiP. Hepatoprotective effect of lupeol and lupeol linoleate on tissue antioxidant defence system in cadmium-induced hepatotoxicity in rats.Fitoterapia200172551652310.1016/S0367‑326X(01)00259‑311429246
    [Google Scholar]
  178. YouY.J. NamN.H. KimY. BaeK.H. AhnB.Z. Antiangiogenic activity of lupeol from Bombax ceiba .Antiangiogenic activity of lupeol from Bombax ceiba.Phytother. Res.200317434134410.1002/ptr.114012722136
    [Google Scholar]
  179. SaleemM. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene.Cancer Lett.2009285210911510.1016/j.canlet.2009.04.03319464787
    [Google Scholar]
  180. AndradeO.R.R. JiménezG.S. EspañaC.P. ÁvilaR.G. V.MolinaR. SotoE.S. α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: An anti-hyperglycemic agent.J. Ethnopharmacol.20071091485310.1016/j.jep.2006.07.00216920301
    [Google Scholar]
  181. SudhaharV. KumarS.A. SudharsanP.T. VaralakshmiP. Protective effect of lupeol and its ester on cardiac abnormalities in experimental hypercholesterolemia.Vascul. Pharmacol.200746641241810.1016/j.vph.2006.12.00517336164
    [Google Scholar]
  182. HarishB.G. KrishnaV. KumarS.H.S. AhamedK.B.M. SharathR. SwamyK.H.M. Wound healing activity and docking of glycogen-synthase-kinase-3-β-protein with isolated triterpenoid lupeol in rats.Phytomedicine200815976376710.1016/j.phymed.2007.11.01718222664
    [Google Scholar]
  183. ShirwaikarA. SettyM. BommuP. KrishnanandB. Effect of lupeol isolated from Crataeva nurvala Buch.-Ham. stem bark extract against free radical induced nephrotoxicity in rats.Indian J. Exp. Biol.200442768669015339033
    [Google Scholar]
  184. LiW.H. ChangS.T. ChangS.C. ChangH.T. Isolation of antibacterial diterpenoids from Cryptomeria japonica bark.Nat. Prod. Res.200822121085109310.1080/1478641080226751018780250
    [Google Scholar]
  185. BackhouseN. RosalesL. ApablazaC. GoïtyL. ErazoS. NegreteR. TheodoluzC. RodríguezJ. DelporteC. Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae.J. Ethnopharmacol.2008116226326910.1016/j.jep.2007.11.02518164566
    [Google Scholar]
  186. AwadA.B. DownieA.C. FinkC.S. Inhibition of growth and stimulation of apoptosis by beta-sitosterol treatment of MDA-MB-231 human breast cancer cells in culture.Int. J. Mol. Med.20005554154510.3892/ijmm.5.5.54110762659
    [Google Scholar]
  187. ChoiW. KimH.S. ParkS.H. KimD. HongY.D. KimJ.H. ChoJ.Y. Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy.J. Ginseng Res.202246453654210.1016/j.jgr.2021.08.00335818428
    [Google Scholar]
  188. DeviR.R. ArumughanC. Antiradical efficacy of phytochemical extracts from defatted rice bran.Food Chem. Toxicol.200745102014202110.1016/j.fct.2007.04.02017574716
    [Google Scholar]
  189. BouicP.J.D. EtsebethS. LiebenbergR.W. AlbrechtC.F. PegelK. Van JaarsveldP.P. Beta-sitosterol and beta-sitosterol glucoside stimulate human peripheral blood lymphocyte proliferation: Implications for their use as an immunomodulatory vitamin combination.Int. J. Immunopharmacol.1996181269370010.1016/S0192‑0561(97)85551‑89172012
    [Google Scholar]
  190. RaichtR.F. CohenB.I. SheferS. MosbachE.H. Sterol balance studies in the rat. Effects of dietary cholesterol and β-sitosterol on sterol balance and rate-limiting enzymes of sterol metabolism.Biochim. Biophys. Acta Lipids Lipid Metab.1975388337438410.1016/0005‑2760(75)90096‑X1137717
    [Google Scholar]
  191. XiaoM. YangZ. JiuM. YouJ. The antigastroulcerative activity of beta-sitosterol-beta-D-glucoside and its aglycone in rats.J. West China Univ. Med. Sci19722398101
    [Google Scholar]
  192. VillaseñorI.M. AngeladaJ. CanlasA.P. EchegoyenD. Bioactivity studies on β‐sitosterol and its glucoside.Phytother. Res.200216541742110.1002/ptr.91012203259
    [Google Scholar]
  193. BaeH. SongG. LimW. Stigmasterol causes ovarian cancer cell apoptosis by inducing endoplasmic reticulum and mitochondrial dysfunction.Pharmaceutics202012648810.3390/pharmaceutics1206048832481565
    [Google Scholar]
  194. GuptaM. NathR. SrivastavaN. ShankerK. KishorK. BhargavaK. Anti-inflammatory and antipyretic activities of β-sitosterol.Planta Med.198039615716310.1055/s‑2008‑10749196967611
    [Google Scholar]
  195. ChenW.P. YuC. HuP.F. BaoJ.P. TangJ.L. WuL.D. Stigmasterol blocks cartilage degradation in rabbit model of osteoarthritis.Acta Biochim. Pol.201259453754110.18388/abp.2012_208823074702
    [Google Scholar]
  196. BattaA.K. XuG. HondaA. MiyazakiT. SalenG. Stigmasterol reduces plasma cholesterol levels and inhibits hepatic synthesis and intestinal absorption in the rat.Metabolism200655329229910.1016/j.metabol.2005.08.02416483871
    [Google Scholar]
  197. GómezM.A. GarcíaM.D. SáenzM.T. Cytostatic activity of Achillea ageratum L.Phytother. Res.200115763363410.1002/ptr.83711746850
    [Google Scholar]
  198. ZhangJ. ZhangC. MiaoL. MengZ. GuN. SongG. Stigmasterol alleviates allergic airway inflammation and airway hyperresponsiveness in asthma mice through inhibiting substance-P receptor.Pharm. Biol.202361144945810.1080/13880209.2023.217325236788676
    [Google Scholar]
  199. PandaS. JafriM. KarA. MehetaB.K. Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma.Fitoterapia200980212312610.1016/j.fitote.2008.12.00219105977
    [Google Scholar]
  200. LimJ.C. ParkJ.H. BudesinskyM. KasalA. HanY.H. KooB.S. LeeS.I. LeeD.U. Antimutagenic constituents from the thorns of Gleditsia sinensis.Chem. Pharm. Bull.200553556156410.1248/cpb.53.56115863930
    [Google Scholar]
  201. NayakV. NishiokaH. DeviP.U. Antioxidant and radioprotective effects of Ocimum flavonoids orientin and vicenin in Escherichia coli.Def. Sci. J.200656217918710.14429/dsj.56.1881
    [Google Scholar]
  202. YooH. KuS.K. LeeT. BaeJ.S. Orientin inhibits HMGB1-induced inflammatory responses in HUVECs and in murine polymicrobial sepsis.Inflammation20143751705171710.1007/s10753‑014‑9899‑924771074
    [Google Scholar]
  203. FuX.C. WangM.W. LiS.P. ZhangY. WangH.L. Vasodilatation produced by orientin and its mechanism study.Biol. Pharm. Bull.2005281374110.1248/bpb.28.3715635160
    [Google Scholar]
  204. FuX.C. WangM.W. LiS.P. WangH.L. Anti-apoptotic effect and the mechanism of orientin on ischaemic/reperfused myocardium.J. Asian Nat. Prod. Res.20068326527210.1080/1028602050020734716864433
    [Google Scholar]
  205. LawB.N.T. LingA.P.K. KohR.Y. ChyeS.M. WongY.P. Neuroprotective effects of orientin on hydrogen peroxide-induced apoptosis in SH-SY5Y cells.Mol. Med. Rep.20149394795410.3892/mmr.2013.187824366367
    [Google Scholar]
  206. KimJ.H. KimJ.K. AhnE.K. KoH.J. ChoY.R. LeeC.H. KimY.K. BaeG.U. OhJ.S. SeoD.W. Marmesin is a novel angiogenesis inhibitor: Regulatory effect and molecular mechanism on endothelial cell fate and angiogenesis.Cancer Lett.2015369232333010.1016/j.canlet.2015.09.02126455771
    [Google Scholar]
  207. Da SilvaR.Z. YunesR.A. de SouzaM.M. MonacheF.D. FilhoC.V. Antinociceptive properties of conocarpan and orientin obtained from Piper solmsianum C. DC. var. solmsianum (Piperaceae).J. Nat. Med.201064440240810.1007/s11418‑010‑0421‑x20473574
    [Google Scholar]
  208. de MedinaP. GenoveseS. PaillasseM.R. MazaheriM. Caze-SubraS. BystrickyK. CuriniM. PoirotS.S. EpifanoF. PoirotM. Auraptene is an inhibitor of cholesterol esterification and a modulator of estrogen receptors.Mol. Pharmacol.201078582783610.1124/mol.110.06525020702762
    [Google Scholar]
  209. AskariV.R. RahimiV.B. ZargaraniR. GhodsiR. BoskabadyM. BoskabadyM.H. Anti-oxidant and anti-inflammatory effects of auraptene on phytohemagglutinin (PHA)-induced inflammation in human lymphocytes.Pharmacol. Rep.202173115416210.1007/s43440‑020‑00083‑532166733
    [Google Scholar]
  210. OkuyamaS. MinamiS. ShimadaN. MakihataN. NakajimaM. FurukawaY. Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice.Eur. J. Pharmacol.20136991-311812310.1016/j.ejphar.2012.11.04323219792
    [Google Scholar]
  211. WangQ. ZhongS. WuH. WuQ. In vitro anti-cancer effect of marmesin by suppression of PI3K/Akt pathway in esophagus cancer cells.Esophagus202219116317410.1007/s10388‑021‑00872‑834398363
    [Google Scholar]
  212. EbrahimiS. SoukhtanlooM. PourM.Z. Anti-tumor effects of Auraptene through induction of apoptosis and oxidative stress in a mouse model of colorectal cancer.Tissue Cell20238110200410.1016/j.tice.2022.10200436603499
    [Google Scholar]
  213. HuangS.M. TsaiC.F. ChenD.R. WangM.Y. YehW.L. 53 is a key regulator for osthole-triggered cancer pathogenesis.BioMed Res. Int.2014175247
    [Google Scholar]
  214. LiL. WangX. ZhangJ.Y. ZhangL. CaoY. GuL. YuY. YangQ. ShenC. HanB. JiangY. Antifungal activity of osthol in vitro and enhancement in vivo through Eudragit S100 nanocarriers.Virulence20189155556210.1080/21505594.2017.135650328795862
    [Google Scholar]
  215. SajjadiS. EskandarianA.A. ShokoohiniaY. YousefiH.A. MansourianM. NasabA.H. MohseniN. Antileishmanial activity of prenylated coumarins isolated from Ferulago angulata and Prangos asperula.Res. Pharm. Sci.201611432433110.4103/1735‑5362.18931427651813
    [Google Scholar]
  216. MingL.G. ZhouJ. ChengG.Z. MaH.P. ChenK.M. Osthol, a coumarin isolated from common cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro.Pharmacology2011881-2334310.1159/00032877621734431
    [Google Scholar]
  217. ArungE.T. AmirtaR. ZhuQ. AmenY. ShimizuK. Effect of wood, bark and leaf extracts of Macaranga trees on cytotoxic activity in some cancer and normal cell lines.J. Indian Acad. Wood Sci.201815211511910.1007/s13196‑018‑0215‑4
    [Google Scholar]
  218. YusnainiR. NasutionR. SaidiN. ArabiaT. IdroesR. IkhsanI. BahtiarR. IqhrammullahM. Ethanolic extract from Limonia acidissima L. fruit attenuates serum uric acid level via URAT1 in potassium oxonate-induced hyperuricemic rats.Pharmaceuticals202316341910.3390/ph1603041936986518
    [Google Scholar]
  219. NainiM.A. Zargari-SamadnejadA. MehrvarzS. TanidehR. GhorbaniM. DehghanianA. HasanzarriniM. BanaeeF. HosseinabadiK.O. TanidehN. IrajiA. Anti-inflammatory, antioxidant, and healing-promoting effects of Aloe vera extract in the experimental colitis in rats.Evid. Based Complement. Alternat. Med.2021202111210.1155/2021/994524434912469
    [Google Scholar]
  220. RahmaniA. AldebasiY. SrikarS. KhanA. AlyS. Aloe vera : Potential candidate in health management via modulation of biological activities.Pharmacogn. Rev.201591812012610.4103/0973‑7847.16211826392709
    [Google Scholar]
  221. YimamM. JiaoP. MooreB. HongM. ClevelandS. ChuM. JiaQ. LeeY.C. KimH.J. NamJ.B. KimM.R. HyunE.J. JungG. DoS.G. Hepatoprotective activity of herbal composition SAL, a standardize blend comprised of Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis.J. Nutr. Metab.2016201611010.1155/2016/353097127066270
    [Google Scholar]
  222. MemarziaA. KhazdairM.R. BehrouzS. GholamnezhadZ. JafarnezhadM. SaadatS. BoskabadyM.H. Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review.Biofactors202147331135010.1002/biof.171633606322
    [Google Scholar]
  223. DoyleL. DesomayanandamP. BhuvanendranA. ThanawalaS. ShahR. SomepalliV. BachuS. Safety and efficacy of turmeric (Curcuma longa) extract and curcumin supplements in musculoskeletal health: A systematic review and meta-analysis.Altern. Ther. Health Med.2023296122437574203
    [Google Scholar]
  224. RahmanM.M. NomanM.A.A. HossainM.W. AlamR. AkterS. KabirM.M. UddinM.J. AminM.Z. SyfuddinH.M. AkhterS. KarpińskiT.M. Curcuma longa L. prevents the loss of β-tubulin in the brain and maintains healthy aging in drosophila melanogaster.Mol. Neurobiol.20225931819183510.1007/s12035‑021‑02701‑635028900
    [Google Scholar]
  225. ViljoenE. VisserJ. KoenN. MusekiwaA. A systematic review and meta-analysis of the effect and safety of ginger in the treatment of pregnancy-associated nausea and vomiting.Nutr. J.20141312010.1186/1475‑2891‑13‑2024642205
    [Google Scholar]
  226. BallesterP. CerdáB. ArcusaR. MarhuendaJ. YamedjeuK. ZafrillaP. Effect of ginger on inflammatory diseases.Molecules20222721722310.3390/molecules2721722336364048
    [Google Scholar]
  227. AsgharM.U. RahmanA. HayatZ. RafiqueM.K. BadarI.H. YarM.K. IjazM. Exploration of Zingiber officinale effects on growth performance, immunity and gut morphology in broilers.Braz. J. Biol.202383e25029610.1590/1519‑6984.25029634669804
    [Google Scholar]
  228. GinterE. SimkoV. Garlic (Allium sativum L.) and cardiovascular diseases.Bratisl. Lek Listy2010111845245621033626
    [Google Scholar]
  229. RaufA. IzneidA.T. ThiruvengadamM. ImranM. OlatundeA. ShariatiM.A. BawazeerS. NazS. ShirooieS. SilvaS.A. FarooqU. KazhybayevaG. Garlic ( Allium sativum L.): Its chemistry, nutritional composition, toxicity, and anticancer properties.Curr. Top. Med. Chem.2022221195797210.2174/156802662166621110509493934749610
    [Google Scholar]
  230. ChengH. HuangG. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide.Int. J. Biol. Macromol.201811441541910.1016/j.ijbiomac.2018.03.15629596932
    [Google Scholar]
  231. SaviraM. SariD. MachrinaY. WidjajaS. UnitlyA. IlyasS. SiregarJ. PandiaP. RusdaM. AminM. Anti inflammatory action of Allium sativum ethanol extract to prevent lung damage in smoker rat model.Med. Arh.202377317818210.5455/medarh.2023.77.178‑18237700925
    [Google Scholar]
  232. MansonM. BallH.W. BarrettM.C. ClarkH.L. JudahD.J. WilliamsonG. NealG.E. Mechanism of action of dietary chemoprotective agents in rat liver: Induction of phase I and II drug metabolizing enzymes and aflatoxin B1 metabolism.Carcinogenesis19971891729173810.1093/carcin/18.9.17299328168
    [Google Scholar]
  233. SirotkinA.V. KolesárováA. The anti-obesity and health-promoting effects of tea and coffee.Physiol. Res.202170216116810.33549/physiolres.93467433992045
    [Google Scholar]
  234. OhishiT. GotoS. MoniraP. IsemuraM. NakamuraY. Anti-inflammatory action of green tea.Antiinflamm. Antiallergy Agents Med. Chem.2016152749010.2174/187152301566616091515444327634207
    [Google Scholar]
  235. SalazarV. GabarreR.D. EscuderoG.V. Alzheimer’s disease and green tea: Epigallocatechin-3-gallate as a modulator of inflammation and oxidative stress.Antioxidants2023127146010.3390/antiox1207146037507998
    [Google Scholar]
  236. LiaoY.C. HsuL.F. HsiehL.Y. LuoY.Y. Effectiveness of green tea mouthwash for improving oral health status in oral cancer patients: A single-blind randomized controlled trial.Int. J. Nurs. Stud.202112110398510.1016/j.ijnurstu.2021.10398534186380
    [Google Scholar]
  237. FarhanM. Green tea catechins: Nature’s way of preventing and treating cancer.Int. J. Mol. Sci.202223181071310.3390/ijms23181071336142616
    [Google Scholar]
  238. WoodE. HeinS. MesnageR. FernandesF. AbhayaratneN. XuY. ZhangZ. BellL. WilliamsC. MateosR.A. Wild blueberry (poly)phenols can improve vascular function and cognitive performance in healthy older individuals: A double-blind randomized controlled trial.Am. J. Clin. Nutr.202311761306131910.1016/j.ajcnut.2023.03.01736972800
    [Google Scholar]
  239. SkrovankovaS. SumczynskiD. MlcekJ. JurikovaT. SochorJ. Bioactive compounds and antioxidant activity in different types of berries.Int. J. Mol. Sci.20151610246732470610.3390/ijms16102467326501271
    [Google Scholar]
  240. WoodE. HeinS. HeissC. WilliamsC. MateosR.A. Blueberries and cardiovascular disease prevention.Food Funct.201910127621763310.1039/C9FO02291K31776541
    [Google Scholar]
  241. MatiacevichS. CofréC.D. SilvaP. EnrioneJ. OsorioF. Quality parameters of six cultivars of blueberry using computer vision.Int. J. Food Sci.201320131810.1155/2013/41953526904598
    [Google Scholar]
  242. LinW.S. LelandJ.V. HoC.T. PanM.H. Occurrence, bioavailability, anti-inflammatory, and anticancer effects of pterostilbene.J. Agric. Food Chem.20206846127881279910.1021/acs.jafc.9b0786032064876
    [Google Scholar]
  243. HussainT. MurtazaG. WangX. ZiaM.H. AzizH. AliS. MurtazaB. FiazS. Bioassimilation of lead and zinc in rabbits fed on spinach grown on contaminated soil.Ecotoxicol. Environ. Saf.202122411263810.1016/j.ecoenv.2021.11263834419642
    [Google Scholar]
  244. LomnitskiL. BergmanM. NyskaA. Ben-ShaulV. GrossmanS. Composition, efficacy, and safety of spinach extracts.Nutr. Cancer200346222223110.1207/S15327914NC4602_1614690799
    [Google Scholar]
  245. MatsuoT. AsanoT. MizunoY. SatoS. FujinoI. SadzukaY. Water spinach and okra sprouts inhibit cancer cell proliferation.In Vitro Cell. Dev. Biol. Anim.2022582798410.1007/s11626‑022‑00650‑535132541
    [Google Scholar]
  246. TotschS.K. WaiteM.E. SorgeR.E. Dietary influence on pain via the immune system.Prog. Mol. Biol. Transl. Sci.201513143546910.1016/bs.pmbts.2014.11.01325744682
    [Google Scholar]
  247. YoshidaK. UshidaY. IshijimaT. SuganumaH. InakumaT. YajimaN. AbeK. NakaiY. Broccoli sprout extract induces detoxification-related gene expression and attenuates acute liver injury.World J. Gastroenterol.20152135100911010310.3748/wjg.v21.i35.1009126401074
    [Google Scholar]
  248. KimS.Y. YoonS. KwonS.M. ParkK.S. Lee-KimY.C. Kale juice improves coronary artery disease risk factors in hypercholesterolemic men.Biomed. Environ. Sci.2008212919710.1016/S0895‑3988(08)60012‑418548846
    [Google Scholar]
  249. KwaF.A.A. BuiB.V. ThompsonB.R. AytonL.N. Preclinical investigations on broccoli-derived sulforaphane for the treatment of ophthalmic disease.Drug Discov. Today202328910371810.1016/j.drudis.2023.10371837467881
    [Google Scholar]
  250. NestleM. Broccoli sprouts in cancer prevention.Nutr. Rev.1998564 Pt 11271309584498
    [Google Scholar]
  251. SharmaS. MandalA. KantR. JachakS. JagzapeM. Is cinnamon efficacious for glycaemic control in type-2 diabetes mellitus?J. Pak. Med. Assoc.202070112065206933341863
    [Google Scholar]
  252. VasconcelosN.G. CrodaJ. SimionattoS. Antibacterial mechanisms of cinnamon and its constituents: A review.Microb. Pathog.201812019820310.1016/j.micpath.2018.04.03629702210
    [Google Scholar]
  253. LaghaB.A. AzelmatJ. VaillancourtK. GrenierD. A polyphenolic cinnamon fraction exhibits anti-inflammatory properties in a monocyte/macrophage model.PLoS One2021161e024480510.1371/journal.pone.024480533439867
    [Google Scholar]
  254. Denkova-KostovaR. TenevaD. TomovaT. GoranovB. DenkovaZ. ShopskaV. SlavchevA. IvanovaH.Y. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine ( Citrus reticulata L.), grapefruit ( Citrus paradisi L.), lemon ( Citrus lemon L.) and cinnamon ( Cinnamomum zeylanicum Blume).Z. Naturforsch. C J. Biosci.2021765-617518510.1515/znc‑2020‑012633909955
    [Google Scholar]
  255. MomtazS. HassaniS. KhanF. ZiaeeM. AbdollahiM. Cinnamon, a promising prospect towards Alzheimer’s disease.Pharmacol. Res.201813024125810.1016/j.phrs.2017.12.01129258915
    [Google Scholar]
  256. MossM. CookJ. WesnesK. DuckettP. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults.Int. J. Neurosci.20031131153810.1080/0020745039016190312690999
    [Google Scholar]
  257. HabtemariamS. Anti-inflammatory therapeutic mechanisms of natural products: Insight from rosemary diterpenes, carnosic acid and carnosol.Biomedicines202311254510.3390/biomedicines1102054536831081
    [Google Scholar]
  258. SmetiS. HajjiH. KhmiriH. BouzidK. AttiN. Effects of partial substitution of rosemary distillation residues to oat hay on digestive aspects, milk production, and metabolic statute of Tunisian local goats.Trop. Anim. Health Prod.202153547310.1007/s11250‑021‑02908‑834553272
    [Google Scholar]
  259. Diniz do NascimentoL. MoraesA.A.B. CostaK.S. GalúcioP.J.M. TaubeP.S. CostaC.M.L. CruzN.J. de AndradeA.E.H. FariaL.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications.Biomolecules202010798810.3390/biom1007098832630297
    [Google Scholar]
  260. AhmedH.M. MinaB.M. Investigation of rosemary herbal extracts (Rosmarinus officinalis) and their potential effects on immunity.Phytother. Res.20203481829183710.1002/ptr.664832086980
    [Google Scholar]
  261. GhiasiS.S. JalalyazdiM. RamezaniJ. MoudI.A. SaniM.F. ShahlaeiS. Effect of hibiscus sabdariffa on blood pressure in patients with stage 1 hypertension.J. Adv. Pharm. Technol. Res.201910310711110.4103/japtr.JAPTR_402_1831334091
    [Google Scholar]
  262. PrasomthongJ. LimpeanchobN. DaodeeS. ChonpathompikunlertP. TunsophonS. Hibiscus sabdariffa extract improves hepatic steatosis, partially through IRS-1/Akt and Nrf2 signaling pathways in rats fed a high fat diet.Sci. Rep.2022121702210.1038/s41598‑022‑11027‑935487948
    [Google Scholar]
  263. SanouA. KonateK. DakuyoR. KaboreK. SamaH. DickoM.H. Hibiscus sabdariffa: Genetic variability, seasonality and their impact on nutritional and antioxidant properties.PLoS One2022173e026192410.1371/journal.pone.026192435294443
    [Google Scholar]
  264. NirumandM. HajialyaniM. RahimiR. FarzaeiM. ZingueS. NabaviS. BishayeeA. Dietary plants for the prevention and management of kidney stones: Preclinical and clinical evidence and molecular mechanisms.Int. J. Mol. Sci.201819376510.3390/ijms1903076529518971
    [Google Scholar]
  265. LópezH.M. VicenteO.M. EncinarJ. CatalánB.E. CarreteroS.A. JovenJ. MicolV. Multi-targeted molecular effects of hibiscus sabdariffa polyphenols: An opportunity for a global approach to obesity.Nutrients20179890710.3390/nu908090728825642
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073285538240417051928
Loading
/content/journals/cchts/10.2174/0113862073285538240417051928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test