Skip to content
2000
Volume 28, Issue 9
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Objective

To explore the mechanism of KLF15 on the biological activity and autophagy of gastric cancer cells based on the PI3K/Akt/mTOR signaling pathway.

Methods

The gastric cancer AGS cells were divided into the Con group, pcDNA-NC group, pcDNA-KLF15 group, LY294002 group and IGF-1 group. RT-PCR was used to detect the expression of KLF15 in human gastric mucosal cells and gastric cancer cells; MTT method to detect cell proliferation; Transwell method to detect cell invasion; flow cytometry to detect cell apoptosis; Western blotting to detect PI3K, Akt, mTOR in cells, LC3, Beclin1, p62 protein expression. 0.05 was used to indicate statistical significance.

Results

Compared with the human gastric mucosal cell line GES-1 cells, the expression of KLF15 in human gastric cancer cell lines MKN-28, MFC, SCG-7901 and AGS cells was significantly decreased, And the expression of KLF15 in AGS cells, was the lowest (0.006). Compared with the Con group, The expression of KLF15 in the cells of the PCDNA-KLF15 group was significantly increased (0.018); There was no significant difference in the expression of KLF15 between the Con group and the PCDNA-NC group (0.225). Compared with the Con group, the proliferation and invasion abilities of the cells in the pcDNA-KLF15 group were significantly reduced, And the apoptosis ability was significantly increased (0.019). The ratio of LC3II/LC31 and the expression of Beclin1 Protein in the control group were significantly higher than those in the Con group (0.017).

Conclusion

Overexpression of KLF15 can inhibit the proliferation and invasion of Gastric cancer cells and promote cell apoptosis and autophagy, and its mechanism may be related to the regulation of the PI3K/Akt/mTOR signaling pathway.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073255591231213053101
2024-04-08
2025-09-08
Loading full text...

Full text loading...

References

  1. WuL. ZhaoN. ZhouZ. ChenJ. HanS. ZhangX. BaoH. YuanW. ShuX. PLAGL2 promotes the proliferation and migration of gastric cancer cells via USP37-mediated deubiquitination of Snail1.Theranostics202111270071410.7150/thno.47800 33391500
    [Google Scholar]
  2. HuangY. YuanK. TangM. YueJ. BaoL. WuS. ZhangY. LiY. WangY. OuX. GouJ. ZhaoQ. YuanL. Melatonin inhibiting the survival of human gastric cancer cells under ER stress involving autophagy and Ras‐Raf‐MAPK signalling.J. Cell. Mol. Med.20212531480149210.1111/jcmm.16237 33369155
    [Google Scholar]
  3. NiH. QinH. SunC. LiuY. RuanG. GuoQ. XiT. XingY. ZhengL. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis.Stem Cell Res. Ther.202112132510.1186/s13287‑021‑02394‑7 34090492
    [Google Scholar]
  4. ZhaoX. ChenL. WuJ. YouJ. HongQ. YeF. Transcription factor KLF15 inhibits the proliferation and migration of gastric cancer cells via regulating the TFAP2A-AS1/NISCH axis.Biol. Direct20211612110.1186/s13062‑021‑00300‑y 34727954
    [Google Scholar]
  5. SunC.X. LiuB.J. SuY. ShiG.W. WangY. ChiJ.F. MiR-181a promotes cell proliferation and migration through targeting KLF15 in papillary thyroid cancer.Clin. Transl. Oncol.2022241667510.1007/s12094‑021‑02670‑1 34312797
    [Google Scholar]
  6. LiaoB. TianX. CTRP12 alleviates cardiomyocyte ischemia reperfusion injury via regulation of KLF15.Mol. Med. Rep.202226124710.3892/mmr.2022.12763 35656890
    [Google Scholar]
  7. HouY.M. WangX.P. ShenC.C. ChenL.T. ZhengX.X. Cervical carcinoma progression is aggravated by lncRNA ZNF281 by binding KLF15.Eur. Rev. Med. Pharmacol. Sci.2021251856105618 34604953
    [Google Scholar]
  8. BodisS. KroissS. TchindaJ. FritzC. WagnerU. BodeP.K. Myoepithelial carcinoma of soft tissue with an EWSR1-KLF15 gene fusion in an infant.Pediatr. Dev. Pathol.202124437137710.1177/1093526621999020 33734915
    [Google Scholar]
  9. ZhuK.Y. TianY. LiY.X. The functions and Prognostic value of Kruppel ‐like factors in breast cancer.Cancer Cell Int.2022222105111
    [Google Scholar]
  10. XuZ. HanX. OuD. LiuT. LiZ. JiangG. LiuJ. ZhangJ. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy.Appl. Microbiol. Biotechnol.2020104257558710.1007/s00253‑019‑10257‑8 31832711
    [Google Scholar]
  11. Pérez-HerreroE. Fernández-MedardeA. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.Eur. J. Pharm. Biopharm.201593527910.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  12. CrossD. BurmesterJ.K. Gene therapy for cancer treatment: Past, present and future.Clin. Med. Res.20064321822710.3121/cmr.4.3.218 16988102
    [Google Scholar]
  13. MunE.J. BabikerH.M. WeinbergU. KirsonE.D. Von HoffD.D. Tumor-treating fields: A fourth modality in cancer treatment.Clin. Cancer Res.201824226627510.1158/1078‑0432.CCR‑17‑1117 28765323
    [Google Scholar]
  14. ChoiA.H. KimJ. ChaoJ. Perioperative chemotherapy for resectable gastric cancer: MAGIC and beyond.World J. Gastroenterol.201521247343734810.3748/wjg.v21.i24.7343 26139980
    [Google Scholar]
  15. JoshiS.S. BadgwellB.D. Current treatment and recent progress in gastric cancer.CA Cancer J. Clin.202171326427910.3322/caac.21657 33592120
    [Google Scholar]
  16. LeongT. Evolving role of chemoradiation in the adjuvant treatment of gastric cancer.Expert Rev. Anticancer Ther.20044458559410.1586/14737140.4.4.585 15270662
    [Google Scholar]
  17. YinY. LinY. YangM. LvJ. LiuJ. WuK. LiuK. LiA. ShuaiX. CaiK. WangZ. WangG. ShenJ. ZhangP. TaoK. Neoadjuvant tislelizumab and tegafur/gimeracil/octeracil (S-1) plus oxaliplatin in patients with locally advanced gastric or gastroesophageal junction cancer: Early results of a phase 2, single-arm trial.Front. Oncol.2022121295929510.3389/fonc.2022.959295 36158692
    [Google Scholar]
  18. ZhangX. LiangH. LiZ. XueY. WangY. ZhouZ. YuJ. BuZ. ChenL. DuY. WangX. WuA. LiG. SuX. XiaoG. CuiM. WuD. ChenL. WuX. ZhouY. ZhangL. DangC. HeY. ZhangZ. SunY. LiY. ChenH. BaiY. QiC. YuP. ZhuG. SuoJ. JiaB. LiL. HuangC. LiF. YeY. XuH. WangX. YuanY. E, J.Y.; Ying, X.; Yao, C.; Shen, L.; Ji, J. Perioperative or postoperative adjuvant oxaliplatin with S-1 versus adjuvant oxaliplatin with capecitabine in patients with locally advanced gastric or gastro-oesophageal junction adenocarcinoma undergoing D2 gastrectomy (RESOLVE): An open-label, superiority and non-inferiority, phase 3 randomised controlled trial.Lancet Oncol.20212281081109210.1016/S1470‑2045(21)00297‑7 34252374
    [Google Scholar]
  19. ZhengJ. WangS. XuG. WangJ. WangY. LuoJ. WangY. YangJ. A small-scale, exploratory real-world study of nab-paclitaxel combined with oxaliplatin and tegafur in the perioperative treatment of advanced gastric cancer: A study protocol for a real-world clinical trial.J. Gastrointest. Oncol.20231421131114010.21037/jgo‑23‑131 37201078
    [Google Scholar]
  20. LiuX.W. ZhangC.C. ZhangT. MiR-376b-3p functions as a tumor suppressor by targeting KLF15 in non-small cell lung cancer.Eur. Rev. Med. Pharmacol. Sci.2020241894809486 33015790
    [Google Scholar]
  21. SunC. MaP. WangY. LiuW. ChenQ. PanY. ZhaoC. QianY. LiuJ. LiW. ShuY. KLF15 inhibits cell proliferation in gastric cancer cells via up-regulating CDKN1A/p21 and CDKN1C/p57 expression.Dig. Dis. Sci.20176261518152610.1007/s10620‑017‑4558‑2 28421457
    [Google Scholar]
  22. GaoL. QiuH. LiuJ. MaY. FengJ. QianL. ZhangJ. LiuY. BianT. KLF15 promotes the proliferation and metastasis of lung adenocarcinoma cells and has potential as a cancer prognostic marker.Oncotarget201786610995210996110.18632/oncotarget.21972 29299121
    [Google Scholar]
  23. ZhuJ. AoH. LiuM. CaoK. MaJ. UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma.J. Transl. Med.202119137410.1186/s12967‑021‑03056‑1 34461934
    [Google Scholar]
  24. CaoY. LuoY. ZouJ. OuyangJ. CaiZ. ZengX. LingH. ZengT. Autophagy and its role in gastric cancer.Clin. Chim. Acta2019489102010.1016/j.cca.2018.11.028 30472237
    [Google Scholar]
  25. SongM.J. ParkS. WonK.Y. Expression of Beclin-1, an autophagy-related protein, is associated with tumoral FOXP3 expression and Tregs in gastric adenocarcinoma: The function of Beclin-1 expression as a favorable prognostic factor in gastric adenocarcinoma.Pathol. Res. Pract.2020216515292710.1016/j.prp.2020.152927 32204925
    [Google Scholar]
  26. HanT. WangP. WangY. XunW. LeiJ. WangT. LuZ. GanM. ZhangW. YuB. WangJ.B. FAIM regulates autophagy through glutaminolysis in lung adenocarcinoma.Autophagy20221861416143210.1080/15548627.2021.1987672 34720024
    [Google Scholar]
  27. MasudaG.O. YashiroM. KitayamaK. MikiY. KasashimaH. KinoshitaH. MorisakiT. FukuokaT. HasegawaT. SakuraiK. ToyokawaT. KuboN. TanakaH. MugurumaK. MasaichiO. HirakawaK. Clinicopathological correlations of autophagy-related proteins LC3, Beclin 1 and p62 in gastric cancer.Anticancer Res.2016361129136 26722036
    [Google Scholar]
  28. TanidaI. UenoT. KominamiE. LC3 and autophagy.Methods Mol. Biol.2008445778810.1007/978‑1‑59745‑157‑4_4 18425443
    [Google Scholar]
  29. XiaoL. LiY. ZengX. ZhouZ. HuS. ZhangS. ZhouY. ZhangZ. ZhaoH. ZhaoH. BeerD.G. MaoR. ChenG. Silencing of LOC389641 impairs cell proliferation and induces autophagy via EGFR/MET signaling in lung adenocarcinoma.Aging 20211322539255210.18632/aging.202286 33318313
    [Google Scholar]
  30. YiZ.R. LinY.L. WangY.J. Effects of Elian Granules on gastric autophagy and PI3K/Akt/mTOR signaling pathway in gastric cancer rats.Chinese J. Exper. Formul.202127228491
    [Google Scholar]
  31. ErsahinT. TuncbagN. Cetin-AtalayR. The PI3K/AKT/mTOR interactive pathway.Mol. Biosyst.20151171946195410.1039/C5MB00101C 25924008
    [Google Scholar]
  32. YinZ. YangY. GuoT. VeeraraghavanV.P. WangX. Potential chemotherapeutic effect of betalain against human NON‐SMALL cell lung cancer through PI3K/Akt/MTOR signaling pathway.Environ. Toxicol.20213661011102010.1002/tox.23100 33522684
    [Google Scholar]
  33. EdiriweeraM.K. TennekoonK.H. SamarakoonS.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance.Semin. Cancer Biol.20195914716010.1016/j.semcancer.2019.05.012 31128298
    [Google Scholar]
  34. MiricescuD. TotanA. Stanescu-SpinuI.I. BadoiuS.C. StefaniC. GreabuM. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects.Int. J. Mol. Sci.202022117310.3390/ijms22010173 33375317
    [Google Scholar]
  35. FattahiS. Amjadi-MohebF. TabaripourR. AshrafiG.H. Akhavan-NiakiH. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond.Life Sci.202026211851310.1016/j.lfs.2020.118513 33011222
    [Google Scholar]
  36. ZhaoY. JiaJ. ZhangJ. XunY. XieS. LiangJ. GuoH. ZhuJ. MaS. ZhangS. Inhibition of histamine receptor H3 suppresses the growth and metastasis of human non-small cell lung cancer cells via inhibiting PI3K/Akt/mTOR and MEK/ERK signaling pathways and blocking EMT.Acta Pharmacol. Sin.20214281288129710.1038/s41401‑020‑00548‑6 33159174
    [Google Scholar]
  37. ShuX. ZhanP.P. SunL.X. YuL. LiuJ. SunL.C. YangZ.H. RanY.L. SunY.M. BCAT1 activates PI3K/AKT/mTOR pathway and contributes to the angiogenesis and tumorigenicity of gastric cancer.Front. Cell Dev. Biol.2021965926010.3389/fcell.2021.659260 34164393
    [Google Scholar]
  38. ZhangH. JiangH. ZhangH. LiuJ. HuX. ChenL. Anti-tumor efficacy of phellamurin in osteosarcoma cells: Involvement of the PI3K/AKT/mTOR pathway.Eur. J. Pharmacol.201985817247710.1016/j.ejphar.2019.172477 31228450
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073255591231213053101
Loading
/content/journals/cchts/10.2174/0113862073255591231213053101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test