Current Cancer Drug Targets - Volume 6, Issue 8, 2006
Volume 6, Issue 8, 2006
-
-
Mechanisms of Resistance to Imatinib in CML Patients: A Paradigm for the Advantages and Pitfalls of Molecularly Targeted Therapy
Authors: E. Ritchie and G. NicholsOne of the challenges of cancer therapeutics is to discover targets unique to the tumor cell population. Constitutively activated tyrosine kinases play a role in the malignant phenotype in a number of different cancers. While the kinases may be present in the normal cell, the cancer cell is often dependent upon the activation of the kinase for the maintenance of malignant growth. Inhibition of kinase activation may therefore selectively inhibit malignant proliferation. In the case of chronic myelogenous leukemia (CML), the activated tyrosine kinase (BCR-ABL) is due to a chromosomal translocation that defines this disease, and is necessary for malignant transformation. Imatinib mesylate (Gleevec, Novartis) is a small molecule tyrosine kinase inhibitor, developed through the chemical modification to be selected for a small number of tyrosine kinases present in human cells. This agent is also orally bioavailable and has been found to be effective in clinical trials. We have learned much through the clinical use of this agent. 1) Specific targeting of activated signal transduction pathways may be effective in inhibiting cancer cells. 2) Cancer cells may not only be inherently resistant to small molecule inhibitors, but may also develop resistance after exposure to the inhibitor. 3) Increased knowledge regarding critical signal transduction pathways, the structure of the molecules that are being targeted and the inhibitors themselves, will allow us to understand resistance as it develops and create new molecules to bypass resistance. We will discuss imatinib as an important example of the success and pitfalls of targeted therapeutics for cancer.
-
-
-
Can we Target the Chemokine Network for Cancer Therapeutics?
Authors: Ryan Giles and Robert D. LobergThe paradigm of cancer development and metastasis has been redefined to encompass a more comprehensive interaction between the tumor and microenvironment within which the tumor cells reside. Despite the realization that this more comprehensive relationship has changed the current paradigm of cancer research, the struggle continues to more completely understand the pathogenesis of the disease and the ability to appropriately identify and design novel targets for therapy. Chemokines and chemokine receptors are being investigated for their role in tumor development and metastasis and may prove to be useful therapeutic targets. The chemokine family is a complex network of molecules that are ubiquitously expressed and perform a variety of functions most notably regulating the immune system. Here we review the importance of chemokines in the tumor-stromal interaction and discuss current concepts for targeting the chemokine network.
-
-
-
The JAK-STAT Pathway: A Therapeutic Target in Hematological Malignancies
Authors: A. Ferrajoli, S. Faderl, F. Ravandi and Z. EstrovThe development and function of hematopoietic cells depends on complex signaling pathways that are mediated by numerous cytokines and their receptors. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is prominent both in normal hematopoiesis and in hematological malignancies. STATs are phosphorylated on tyrosine residues via JAK kinases and on serine residues by a variety of serine/threonine kinases. STATs then dimerize, translocate to the nucleus and bind DNA, initiating the transcription of target genes. STAT proteins mediate cell growth, differentiation, apoptosis, transformation, and other fundamental cell functions. Recently, mutations in the JAK2 gene driving the proliferation of the neoplastic clone have been identified in myeloproliferative disorders. In addition constitutive activation of the JAK-STAT pathway has been reported in various types of leukemias such as acute myelogenous leukemia, T-LGL leukemia, and multiple myeloma. This review describes the pathophysiological role of this pathway in hematological malignancies and the potential benefits of JAK-STAT inhibition.
-
-
-
Modulation of the Cell Cycle and Induction of Apoptosis in Human Cancer Cells by Synthetic Bile Acids
Authors: Nam Deuk Kim, Eunok Im, Young Hyun Yoo and Yung Hyun ChoiIn this paper, we will outline the current understanding of cell cycle modulation and induction of apoptosis in cancer cells by natural and synthetic bile acid. Bile acid homeostasis is tightly regulated in health, and their cellular and tissue concentrations are restricted. However, when pathophysiological processes impair their biliary secretion, hepatocytes are exposed to elevated concentrations of bile acids which trigger cell death. In this context, we developed several newly synthesized bile acid derivatives. These synthetic bile acids modulated the cell cycle and induced apoptosis in several human cancer cells similar to natural bile acids. In human breast and prostate cancer cells with different tumor suppressor p53 status, synthetic bile acidinduced growth inhibition and apoptosis were associated with up-regulation of Bax and p21WAF1/CIP1 via a p53-independent pathway. In Jurkat human T cell leukemia cells, the synthetic bile acids induced apoptosis through caspase activation. In addition to this, the synthetic bile acids induced apoptosis in a JNK dependent manner in SiHa human cervical cancer cells, via induction of Bax and activation of caspases in PC3 prostate cancer cells and induction of G1 phase arrest in the cell cycle in HT29 colon cancer cells. Moreover, they induced apoptosis in four human glioblastoma multiform cell lines (i.e., U-118MG, U-87MG, T98G, and U- 373MG) and one human TE671 medulloblastoma cells. In addition to this, a chenodeoxycholic acid derivative, called HS-1200, significantly decreased the growth of TE671 medulloblastoma tumor size and increased life span in non-obese diabetic and severe combined immunodeficient (NOD/SCID) mice. Therefore, these new synthetic bile acids, which are novel apoptosis mediators, might be applicable to the treatment of various human cancer cells.
-
-
-
EGFR-Targeting Monoclonal Antibodies in Head and Neck Cancer
Authors: Igor Astsaturov, Roger B. Cohen and Paul M. HarariThe epidermal growth factor (EGF) and its receptor were discovered nearly 40 years ago. Over the past decade interruption of this pathway has been exploited in the treatment of various solid tumors. Antibodies that interfere with ligand binding to and dimerization of the EGFR (and small molecules that inhibit the EGFR tyrosine kinase) are anti-proliferative, radiosensitizing, and synergistic with DNA-damaging cytotoxic agents. Proposed mechanisms of radio- and chemosensitization include enhanced apoptosis, interference with DNA repair and angiogenesis, receptor depletion from the cell surface and antibodydependent cell-mediated cytotoxicity. This article provides the reader with a comprehensive review of EGFR-targeting antibodies under development for the treatment of head and neck squamous cell cancer (HNSCC) and also summarizes relevant clinical data in this disease with small molecule EGFR inhibitors. One of the monoclonal antibodies, cetuximab, recently received full FDA approval for the treatment of patients with locoregionally advanced (with radiation) or metastatic HNSCC (as a single agent). Regulatory approval followed reporting of a large international study in which the addition of cetuximab to definitive radiation therapy in HNSCC resulted in statistically significant improvements in locoregional control and overall survival. Results of the pivotal trial, other clinical data supporting the regulatory approval, and a preview of the next generation of clinical trials are presented. Considerable work remains to be done, particularly to enhance our understanding of factors that may predict for favorable response to EGFR inhibitor therapy and to evaluate the impact of integrating anti-EGFR therapies into complex chemoradiation programs delivered with curative intent.
-
-
-
Chemopreventive Agents Alters Global Gene Expression Pattern: Predicting their Mode of Action and Targets
More LessChemoprevention has the potential to be a major component of colon, breast, prostate and lung cancer control. Epidemiological, experimental, and clinical studies provide evidence that antioxidants, antiinflammatory agents, n-3 polyunsaturated fatty acids and several other phytochemicals possess unique modes of action against cancer growth. However, the mode of action of several of these agents at the gene transcription level is not completely understood. Completion of the human genome sequence and the advent of DNA microarrays using cDNAs enhanced the detection and identification of hundreds of differentially expressed genes in response to anticancer drugs or chemopreventive agents. In this review, we are presenting an extensive analysis of the key findings from studies using potential chemopreventive agents on global gene expression patterns, which lead to the identification of cancer drug targets. The summary of the study reports discussed in this review explains the extent of gene alterations mediated by more than 20 compounds including antioxidants, fatty acids, NSAIDs, phytochemicals, retinoids, selenium, vitamins, aromatase inhibitor, lovastatin, oltipraz, salvicine, and zinc. The findings from these studies further reveal the utility of DNA microarray in characterizing and quantifying the differentially expressed genes that are possibly reprogrammed by the above agents against colon, breast, prostate, lung, liver, pancreatic and other cancer types. Phenolic antioxidant resveratrol found in berries and grapes inhibits the formation of prostate tumors by acting on the regulatory genes such as p53 while activating a cascade of genes involved in cell cycle and apoptosis including p300, Apaf-1, cdk inhibitor p21, p57 (KIP2), p53 induced Pig 7, Pig 8, Pig 10, cyclin D, DNA fragmentation factor 45. The group of genes significantly altered by selenium includes cyclin D1, cdk5, cdk4, cdk2, cdc25A and GADD 153. Vitamine D shows impact on p21(Waf1/Cip1) p27 cyclin B and cyclin A1. Genomic expression profile with vitamin D indicated differential expression of gene targets such as c-JUN, JUNB, JUND, FREAC-1/FoxF1, ZNF-44/KOX7, plectin, filamin, and keratin-13, involved in antiproliferative, differentiation pathways. The agent UBEIL has a remarkable effect on cyclin D1. Curcumin mediated NrF2 pathway significantly altered p21(Waf1/Cip1) levels. Aromatase inhibitors affected the expression of cyclin D1. Interestingly, few dietary compounds listed in this review also have effect on APC, cdk inhibitors p21(Waf1/Cip1) and p27. Tea polyphenol EGCG has a significant effect on TGF-β expression, while several other earlier studies have shown its effect on cell cycle regulatory proteins. This review article reveals potential chemoprevention drug targets, which are mainly centered on cell cycle regulatory pathway genes in cancer.
-
-
-
Anti-Invasive and Anti-Metastasis Strategies: New Roads, New Tools and New Hopes
Authors: Laurent Dolle, Herman T. Depypere and Marc E. BrackeUnfortunately, the anticancer drugs that are used nowadays in the clinic have only limited success. To provide a significant clinical advancement, new concepts have to be introduced to aid the design of new tools for therapy. Cancer is not only restricted to neoplastic cells, but rather it involves an ensemble of protagonists. In addition, the evolution of cancer is extremely complex, since multiple cellular activities are involved. Some key steps in the evolution to a metastatic tumor have been shown to be no useful targets. Targeting the stroma cells, however, could bring a new efficiency in anticancer treatment. Targeting the disorganized tissue architecture at the primary site and the restoration of the cell death program in cancer cells appears to create new possibilities in drug design. Also the cytoskeleton, which represents a dynamic set due to its plasticity and multiplicity, seems to be a promising target in anticancer therapy. Moreover, the evolving knowledge of the role of metastasis suppressor genes in regulating cancer cell growth at the secondary site suggests that they could serve as new targets for therapeutic intervention. This review intends to highlight the unraveling of new therapeutic pathways, and to unveil new powerful research tools for combating metastasis.
-
-
-
ERRATUM
Due to an oversight on the part of the authors, D.N. Waterhouse, K.A. Gelmon, R. Klasa, K. Chi, D. Huntsman, E. Ramsay, E. Wasan, L. Edwards, C. Tucker, J. Zastre, Y.Z. Zhang, D. Yapp, W. Dragowska, S. Dunn, S. Dedhar and M.B. Bally, incorrect name of one of the co-author was published in the review entitled "Development and Assessment of Conventional and Targeted Drug Combinations for Use in the Treatment of Aggressive Breast Cancers", Current Cancer Drug Targets, September 2006, Vol. 6, No. 6, pp. 455-489. The correct name of the author is Y.Z. Wang instead of Y.Z. Zhang.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
