Current Cancer Drug Targets - Volume 24, Issue 8, 2024
Volume 24, Issue 8, 2024
-
-
ZIP14 Affects the Proliferation, Apoptosis, and Migration of Cervical Cancer Cells by Regulating the P38 MAPK Pathway
Authors: Lixia Jiang, Ting Xie, Yu Xia, Feng Li, Tianyu Zhong and Mi LaiBackground: Cervical cancer (CC) remains a major public health concern and is a leading cause of female mortality worldwide. Understanding the molecular basis of its pathogenesis is essential for the development of novel therapeutic strategies. In this study, we aimed to dissect the role of a specific molecule, ZIP14, in the initiation and progression of CC. Methods: We used Gene Expression Omnibus for target gene identification, while KEGG was used to delineate CC-related pathways. Proliferation, migration, and apoptosis levels in CC cells were assessed using CCK8, Transwell, and flow cytometry, respectively. The effect of the target genes on the in vivo tumorigenesis of CC cells was evaluated using the subcutaneous tumorigenesis assay. Results: ZIP14 (SLC39A14) was found to be underexpressed in CC samples. Our KEGG pathway analysis revealed the potential involvement of the P38 mitogen-activated protein kinase (MAPK) pathway in CC pathogenesis. Overexpression of ZIP14 in HeLa and Caski cells increased p38 phosphorylation, inhibited cell growth and migration, and enhanced apoptosis. Conversely, ZIP14 knockdown produced the opposite effects. Importantly, the bioeffects induced by ZIP14 overexpression could be counteracted by the p38 MAPK pathway inhibitor SB203580. In vivo experiments further confirmed the influence of ZIP14 on CC cell migration. Conclusion: Our study is the first to elucidate the pivotal role of ZIP14 in the pathogenesis of CC, revealing its inhibitory effects through the activation of the p38 MAPK signaling pathway. The discovery not only provides a deeper understanding of CC's molecular underpinnings, but also highlights ZIP14 as a promising therapeutic target. As ZIP14 holds significant potential for therapeutic interventions, our findings lay a robust foundation for further studies and pave the way for the exploration of novel treatment modalities for cervical cancer.
-
-
-
Combined RNAi of CTTN and FGF2 Modulates Cell Migration, Invasion and G1/S Transition of Hepatocellular Carcinoma through Ras/ERK Signaling Pathway
Authors: Jiaming Zhou, Jiaxuan Liu, Tiejun Li, Qiang Zhong and Hongyu YuBackground: Most patients with hepatocellular carcinoma (HCC) die of rapid progression and distant metastasis. Gene therapy represents a promising choice for HCC treatment, but the effective targeted methods are still limited. Objectives: CTTN/cortactin plays a key role in actin polymerization and regulates cytoskeleton remodeling. However, the interaction network of CTTN in HCC is not well understood. Methods: siRNA was designed for CTTN silencing and Affymetrix GeneChip sequencing was used to obtain the gene profile after CTTN knockdown in the HCC cell line SMMC-7721. Potential interacting genes of CTTN were identified using qRT-PCR. The inhibition on HCC by combined RNA interference (RNAi) of CTTN and fibroblast growth factor 2 (FGF2) was detected. Results: A total of 1,717 significantly altered genes were screened out and 12 potential interacting genes of CTTN were identified. The interaction of CTTN and FGF2 was validated and combined RNAi of CTTN and FGF2 achieved a synergistic effect, leading to better inhibition of HCC cell migration, invasion and G1/S transition than single knockdown of CTTN or FGF2. Mechanistically, combined RNAi of CTTN and FGF2 modulated the Ras/ERK signaling pathway. In addition, the EMT epithelial marker E-cadherin was upregulated while the mesenchymal marker Vimentin and cell cycle protein Cyclin D1 were downregulated after combined RNAi of CTTN and FGF2. Additionally, qRT-PCR and immunohistochemical staining showed that both CTTN and FGF2 were highly expressed in metastatic HCC tissues. Conclusion: Combined RNAi of CTTN and FGF2 may be a novel and promising intervention strategy for HCC invasion and metastasis.
-
-
-
Development of Chromatin Regulator-related Molecular Subtypes and a Signature to Predict Prognosis and Immunotherapeutic Response in Head and Neck Squamous Cell Carcinoma
Authors: Juntao Huang, Ziqian Xu, Zhenzhen Wang, Chongchang Zhou and Yi ShenBackground: Chromatin regulators (CRs) serve as indispensable factors in tumor biological processes by influencing tumorigenesis and the immune microenvironment and have been identified in head and neck squamous cell carcinoma (HNSCC). Hence, CR-related genes (CRRGs) are considered potential biomarkers for predicting prognosis and immune infiltration in HNSCC. In this study, we established a novel signature for predicting the prognosis and immunotherapeutic response of HSNCC. Methods: A total of 870 CRRGs were obtained according to previous studies. Subsequently, patients in the TCGA-HNSC cohort were divided into different clusters based on the expression of prognostic CRRGs. Kaplan128;’Meier (K128;’M) survival analysis was conducted to compare the prognosis in clusters, and the CIBERSORT and ssGSEA methods assessed the immune infiltration status. In addition, the differences in immunotherapeutic responses were determined based on the TICA database. Furthermore, the differentially expressed CRRGs between clusters were identified, and the predictive signature was established according to the results of univariate Cox, least absolute shrinkage and selection operator regression analysis, and multivariate Cox. The predictive effects of the risk model were evaluated according to the area under the receiver operating characteristic (ROC) curve (AUC) in both the training and external test cohorts. A nomogram was established, and survival comparisons, functional enrichment analyses, and immune infiltration status and clinical treatment assessments were performed. In addition, the hub gene network and related analysis were conducted with the Cytohubba application. Results: Based on the expression of prognostic CRRGs, patients were divided into two clusters, in which Cluster 1 exhibited a better prognosis, more enriched immune infiltration, and a better immunotherapeutic response but exhibited chemotherapy sensitivity. The AUC values of the 1-, 3- and 5- year ROC curves for the risk model were 0.673, 0.732, and 0.692, respectively, as well as 0.645, 0.608, and 0.623 for the test set. In addition, patients in the low-risk group exhibited more immune cell enrichment and immune function activation, as well as a better immunotherapy response. The hub gene network indicated ACTN2 as the core gene differentially expressed between the two risk groups. Conclusion: We identified molecular subtypes and established a novel predictive signature based on CRRGs. This effective CRRS system can possibly provide a novel research direction for exploring the correlation between CRs and HNSCC and requires further experimental validation.
-
-
-
SULF1 Activates the VEGFR2/PI3K/AKT Pathway to Promote the Development of Cervical Cancer
Authors: Juan Li, Xihao Wang, Zhilong Li, Minzhen Li, Xuelian Zheng, Danxi Zheng, Yanyun Wang and Mingrong XiBackground and Purpose: Sulfatase 1 (SULF1) can regulate the binding of numerous signaling molecules by removing 6-O-sulfate from heparan sulfate proteoglycans (HSPGs) to affect numerous physiological and pathological processes. Our research aimed to investigate the effect of the SULF1-mediated VEGFR2/PI3K/AKT signaling pathway on tumorigenesis and development of cervical cancer (CC). Methods: The expression and prognostic values of SULF1 in patients with CC were analyzed through bioinformatics analysis, qRT-PCR, immunohistochemistry, and western blot. The function and regulatory mechanism of SULF1 in proliferation, migration, and invasion of cervical cancer cells were examined through lentivirus transduction, CCK8, flow cytometry analysis, plate colony formation assay, scratch assay, transwell assay, western blot, VEGFR2 inhibitor (Ki8751), and mouse models. Results: SULF1 expression was significantly upregulated in CC tissues, which was significantly associated with poor prognosis of patients with CC. In vitro, the upregulation of SULF1 expression in HeLa cells promoted cell proliferation, colony formation, migration, and invasion while inhibiting apoptosis. Conversely, the downregulation of SULF1 expression had the opposite effect. In vivo, the upregulation of SULF1 expression resulted in a significant increase in both tumor growth and angiogenesis, while its downregulation had the opposite effect. Furthermore, western blot detection and cell function rescue assay confirmed that the upregulation of SULF1 in HeLa cells promoted the tumorigenic behaviors of cancer cells by activating the VEGFR2/PI3K/AKT signaling pathway. Conclusion: SULF1 plays an oncogenic role in the tumorigenesis and development of CC, indicating its potential as a novel molecular target for gene-targeted therapy in patients with CC.
-
-
-
Crocin Combined with Cisplatin Regulates Proliferation, Apoptosis, and EMT of Gastric Cancer Cells via the FGFR3/MAPK/ERK Pathway In vitro and In vivo
Authors: Yan Li, Qi-Jing Guo, Rong Chen, LingLin Zhao, Xianshu Cui, Yingfang Deng and Yu-Shuang LuoIntroduction: Cisplatin (DDP)-based chemotherapy remains the main therapeutic strategy for human gastric cancer (GC). Combination therapy with Chinese medicine monomers and DDP has been investigated as a means to enhance the anti-tumor effect of DDP while reducing toxicity. Material and Methods: Previous studies have shown that crocin combined with DDP can inhibit the apoptosis of BG-823 GC cells. However, the mechanism of this combination therapy in inhibiting GC is not fully unclear. In this study, we measured the IC50 values of crocin combined with DDP in AGS cells and assessed its effect on cell proliferation using an MTT assay. Furthermore, we assessed apoptosis, cell migration, and EMT-related protein levels by using flow cytometry, scratch assay, and Western blotting, respectively. Our results showed that crocin combined with DDP inhibited the proliferation, induced apoptosis, and inhibited invasion and EMT. Next, we performed RNA sequence and KEGG enrichment analysis on GC cells treated with Crocin+DDP. Results: The results showed that the most significant factor down-regulated by this combination therapy was Fibroblast growth factor receptor 3 (FGFR3) expression and that a differential gene was enriched in the MAPK/ERK pathway. We further constructed an FGFR3 OE transfection plasmid to overexpress FGFR3 and evaluate its effects on proliferation, apoptosis, migration, EMT, and MAPK/ERK pathway proteins in GC cells. We also conducted subcutaneous tumorigenesis experiments in nude mice to evaluate the effects of crocin and DDP on the progression of GC xenografts in vivo. Finally, we performed a rescue experiment using the MAPK/ERK pathway inhibitor PD184352. Conclusion: Our results showed that up-regulation of FGFR3 reversed the inhibitory effect of crocin+DDP on the MAPK/ERK signaling pathway. Still, this effect could be counteracted by PD184352, which simultaneously regulated the proliferation, apoptosis, and EMT of AGS cells. In conclusion, crocin, combined with DDP, inhibits proliferation, apoptosis, and EMT of GC through the FRFR3/MAPK/ERK pathway.
-
-
-
A Novel Oncogenic Role of Disulfidptosis-related Gene SLC7A11 in Anti-tumor Immunotherapy Response to Human Cancers
Authors: Borui Xu, Jiahua Liang, Liangmin Fu, Jinhuan Wei and Juan LinBackground: The protein Solute Carrier Family 7 Member 11 (SLC7A11) plays a pivotal role in cellular redox homeostasis by suppressing disulfidptosis, which restricts tumor growth. Yet, its relevance in prognosis, immunity, and cancer treatment efficacy is not well understood. Methods: We conducted a comprehensive analysis of the expression of SLC7A11 across 33 cancer types, employing datasets from public databases. Methods, such as Cox regression and survival analyses assessed its prognostic significance, while functional enrichment explored the biological processes tied to SLC7A11. The association between SLC7A11 expression, immune cell infiltration, and immune-related gene expression was also scrutinized. Results: Notably, SLC7A11 expression was more pronounced in cancerous compared to normal samples and correlated with higher tumor grades. Increased SLC7A11 expression was linked to poor outcomes, particularly in liver hepatocellular carcinoma (LIHC). This protein's expression also showcased significant relationships with diverse molecular and immune subtypes. Additionally, a prognostic nomogram was devised, integrating SLC7A11 expression and clinical variables. High SLC7A11 levels corresponded with cell growth and senescence pathways in various cancers and with lipid and cholesterol metabolism in LIHC. Furthermore, potential therapeutic compounds for LIHC with high SLC7A11 were identified. Real-time PCR (qPCR) and Western blot were conducted to explore the expression of SLC7A11 in tumor tissues and cancer cell lines. Conclusion: In summation, this study emphasizes the prognostic and immunological importance of SLC7A11, spotlighting its potential as a therapeutic target in LIHC.
-
-
-
Cuproptosis Related GeneDLD Associated with Poor Prognosis and Malignant Biological Characteristics in Lung Adenocarcinoma
Authors: Xinyang Li, Junshuai Rui, Zihan Yang, Feng Shang-Guan, Haolin Shi, Dengkui Wang and Jiachun SunPurpose: Cuproptosis plays a crucial role in the biological function of cells. The subject of this work was to analyze the effects of cuproptosis-related genes (CRGs) on the prognosis and biological function in lung adenocarcinoma (LUAD). Methods: In this study, RNA sequencing and clinical data of LUAD samples were screened from public databases and our institution. A CRG signature was identified by least absolute shrinkage and selection operator and Cox regression. In addition, this study analyzed the correlation between prognostic CRGs and clinicopathological features. Finally, this study studied the effect of inhibiting dihydrolipoamide dehydrogenase (DLD) expression on cell biological function. Results: There were 10 CRGs that showed differential expression between LUAD and normal tissues (p<0.05). A prognostic signature (DLD and lipoyltransferase 1 [LIPT1]) was constructed. Survival analysis suggested that patients with LUAD in the high-risk group had shorter overall survival (OS) (p<0.05). High expression of DLD and low expression of LIPT1 were significantly associated with shorter OS (p<0.05). Immunohistochemical analysis revealed that, in LUAD tissues, DLD was highly expressed, whereas LIPT1 was not detected. Finally, inhibition of DLD expression could significantly restrain cell proliferation, invasion and migration. Conclusion: Overall, this prognostic CRG signature may play a pivotal role in LUAD outcome, while oncogene DLD may be a future therapeutic candidate for LUAD.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
