Current Cancer Drug Targets - Volume 23, Issue 8, 2023
Volume 23, Issue 8, 2023
-
-
Pathological Implications of Mucin Signaling in Metastasis
Authors: Suresh S. Dhanisha and Chandrasekharan GuruvayoorappanThe dynamic mucosal layer provides a selective protective barrier for the epithelial cells lining the body cavities. Diverse human malignancies exploit their intrinsic role to protect and repair epithelia for promoting growth and survival. Aberrant expression of mucin has been known to be associated with poor prognosis of many cancers. However, the emergence of new paradigms in the study of metastasis recognizes the involvement of MUC1, MUC4, MUC5AC, MUC5B, and MUC16 during metastasis initiation and progression. Hence mucins can be used as an attractive target in future diagnostic and therapeutic strategies. In this review, we discuss in detail about mucin family and its domains and the role of different mucins in regulating cancer progression and metastasis. In addition, we briefly discuss insights into mucins as a therapeutic agent.
-
-
-
An Overview of CDK Enzyme Inhibitors in Cancer Therapy
More LessThe ability to address the cell cycle in cancer therapy brings up new medication development possibilities. Cyclin-dependent kinases are a group of proteins that control the progression of the cell cycle. The CDK/cyclin complexes are activated when specific CDK sites are phosphorylated. Because of their non-selectivity and severe toxicity, most first-generation CDK inhibitors (also known as pan-CDK inhibitors) have not been authorized for clinical usage. Despite this, significant progress has been made in allowing pan-CDK inhibitors to be employed in clinical settings. Pan-CDK inhibitors' toxicity and side effects have been lowered in recent years because of the introduction of combination therapy techniques. As a result of this, pan-CDK inhibitors have regained a lot of clinical potential as a combination therapy approach. The CDK family members have been introduced in this overview, and their important roles in cell cycle control have been discussed. Then, we have described the current state of CDK inhibitor research, with a focus on inhibitors other than CDK4/6. We have mentioned first-generation pan-CDKIs, flavopiridol and roscovitine, as well as second-generation CDKIs, dinaciclib, P276-00, AT7519, TG02, roniciclib, and RGB-286638, based on their research phases, clinical trials, and cancer targeting. CDKIs are CDK4/6, CDK7, CDK9, and CDK12 inhibitors. Finally, we have looked into the efficacy of CDK inhibitors and PD1/PDL1 antibodies when used together, which could lead to the development of a viable cancer treatment strategy.
-
-
-
Nanodiamond Mediated Molecular Targeting in Pancreatic Ductal Adenocarcinoma: Disrupting the Tumor-stromal Cross-talk, Next Hope on the Horizon?
Authors: Mohini Singh, Paulami Pal, Rajat S. Dutta, Daphisha Marbaniang, Subhabrata Ray and Bhaskar MazumderPancreatic ductal adenocarcinoma (PDAC) is one of the foremost causes of cancer-related morbidities worldwide. Novel nanotechnology-backed drug delivery stratagems, including molecular targeting of the chemotherapeutic payload, have been considered. However, no quantum leap in the gross survival rate of patients with PDAC has been realized. One of the predominant causes behind this is tumor desmoplasia, a dense and heterogenous stromal extracellular matrix of the tumor, aptly termed tumor microenvironment (TME). It plays a pivotal role in the tumor pathogenesis of PDAC as it occupies most of the tumor mass, making PDAC one of the most stromal-rich cancers. The complex crosstalk between the tumor and dynamic components of the TME impacts tumor progression and poses a potential barrier to drug delivery. Understanding and deciphering the complex cascade of tumorstromal interactions are the need of the hour so that we can develop neoteric nano-carriers to disrupt the stroma and target the tumor. Nanodiamonds (NDs), due to their unique surface characteristics, have emerged as a promising nano delivery system in various pre-clinical cancer models and have the potential to deliver the chemotherapeutic payload by moving beyond the dynamic tumor-stromal barrier. It can be the next revolution in nanoparticle-mediated pancreatic cancer targeting.
-
-
-
Lycopene as a Potential Bioactive Compound: Chemistry, Extraction, and Anticancer Prospective
Authors: Reema A. Khalaf and Maha AwadLycopene, a potential bioactive agent, is a non-pro-vitamin A carotenoid recognized as a potent antioxidant. It is extracted from plants like tomatoes, watermelons, red carrots and papayas and has remarkable health benefits. A significant amount of research has been assisted to date to establish the anticancer activity of lycopene. Our review enhances information about the promising anticancer potential of this compound. The biological activity of lycopene has been described in several studies in regard to pancreatic, breast, prostate, liver, gastric, ovarian, kidney, skin, intestine, brain and spinal cord cancers. Lycopene resists cancer by inhibition of apoptosis, induction of cell proliferation, cell invasion, cell cycle development, metastasis and angiogenesis. The mechanisms of anticancer action of lycopene are attributed to the management of certain signal transduction pathways, such as modulation of insulin-like growth factors system, PI3K/Akt pathway, modification of important gene expression, inhibit the activity of sex steroid hormones, and the conversation of mitochondrial behavior. Hence, this review focuses on current knowledge of sources, extraction techniques, and chemistry of lycopene, as well as the prospective mechanisms of action related with its anticancer activity. Also, it summarizes the background information about lycopene and the most current research with consideration to its aspect in treating several types of cancer together with future directions.
-
-
-
LINC00461 Knockdown Enhances the Effect of Ixazomib in Multiple Myeloma Cells
Authors: Mingyang Deng, Huan Yuan, Hongling Peng, Sufang Liu, Xiang Xiao, Zhihua Wang, Guangsen Zhang and Han XiaoBackground: LINC00461 has been implicated to be involved in several types of cancer while its roles in multiple myeloma remain unclear. Our study aims to investigate the roles of LINC00461 in multiple myeloma and explore its effects on ixazomib therapy. Methods: LINC00461 and small nuclear ribonucleoprotein polypeptide (SNRP) B2 knockdown stable cell lines were constructed. Cell viability assays including MTT, cell number counting, and colony formation were performed. RNA-pull down and immunoblotting assays were conducted to determine the intramolecular interactions. qRT-PCR and western blotting were conducted to determine the levels of target genes. Kaplan-Meier analysis was used to evaluate overall survival rates. Results: Knockdown of LINC00461 or SNRPB2 enhanced ixazomib's cytotoxicity, as well as affected its regulatory effects on cell apoptosis and cell cycle distribution. Further results showed that LINC00461 knockdown reduced the expression levels of SNRPB2 by their interactions. Additionally, a positive correlation between LINC00461 and SNRPB2 was found in patients with multiple myeloma. Low expression of SNRPB2 was associated with a high survival rate in patients with multiple myeloma. Conclusion: Knockdown of LINC00461 enhanced the therapeutic effects of ixazomib against multiple myeloma in part by the regulation of SNRPB2.
-
-
-
Efficacy and Safety of Concurrent Chemoradiotherapy Combined with Nimotuzumab in Elderly Patients with Esophageal Squamous Cell Carcinoma: A Prospective Real-world Pragmatic Study
Authors: Nuo Yu, Guowei Cheng, Jiao Li, Jun Liang, Tao Zhang, Lei Deng, Wenyang Liu, Jianyang Wang, Yirui Zhai, Wenqing Wang, Zefen Xiao, Zongmei Zhou, Dongfu Chen, Qinfu Feng, Nan Bi and Xin WangBackground: Concurrent or definitive chemoradiotherapy is the standard treatment of locally advanced esophageal squamous cell carcinoma (ESCC). Elderly patients could not tolerate the standard concurrent chemotherapy and were treated with radiotherapy because of weak physical status and multiple comorbidities. Objective: The efficacy and safety profile of concurrent (chemo) radiotherapy combined with nimotuzumab in elderly patients with ESCC were investigated. Methods: Eligible elderly (≥70 years) patients with locally advanced ESCC were enrolled in this prospective, real-world pragmatic study and received concurrent chemoradiotherapy or radiotherapy combined with nimotuzumab. The primary endpoint was overall survival (OS). Secondary endpoints were objective response rate, disease control rate, progression-free survival (PFS), and adverse drug reactions. Results: Fifty-three elderly patients were enrolled. Thirty-two (60.4%) were treated with radiotherapy combined with nimotuzumab (RT+N), and 21 (39.6%) with concurrent chemoradiotherapy combined with nimotuzumab (CRT+N). The median age was 75.8 years. Fourteen (56.0%) patients achieved a partial response, and 11 (44.0%) patients achieved stable disease at 3 months. The median follow-up duration was 24.4 (95%CI, 21.6-26.7) months. Median OS (mOS) was 27.0 (95%CI, 14.8-48.4) months. Median PFS (mPFS) was 22.6 (95%CI, 12.4-not reached) months. Higher mPFS (not reached vs. 12.0 months; p=0.022) and mOS (48.4 vs. 15.3 months; p=0.009) were observed in the CRT+N group compared with the RT+N group. Most adverse reactions were grade 1-2 (46, 86.8%). Conclusions: Concurrent chemoradiotherapy or radiotherapy combined with nimotuzumab was safe and well-tolerated in elderly patients with locally advanced ESCC. ESCC patients treated with CRT+N could live longer.
-
-
-
Micro-fragmented Fat Inhibits the Progression of Human Mesothelioma Xenografts in Mice
Background: Malignant pleural mesothelioma is a pathology with no effective therapy and a poor prognosis. Our previous study demonstrated an in vitro inhibitory effect on mesothelioma cell lines of both the lysate and secretome of adipose tissue-derived Mesenchymal Stromal Cells. The inhibitory activity on tumor growth has been demonstrated also in vivo: five million Mesenchymal Stromal Cells, injected “in situ”, produced a significant therapeutic efficacy against MSTO-211H xenograft equivalent to that observed after the systemic administration of paclitaxel. Objective: The objective of this study is to evaluate the efficacy of low amount (half a million) Mesenchymal Stromal Cells and micro-fragmented adipose tissues (the biological tissue from which the Mesenchymal Stromal Cells were isolated) on mesothelioma cells growth. Methods: Tumor cells growth inhibition was evaluated in vitro and in a xenograft model of mesothelioma. Results: The inhibitory effect of micro-fragmented fat from adipose-tissue has been firstly confirmed in vitro on MSTO-211H cell growth. Then the efficacy against the growth of mesothelioma xenografts in mice of both micro-fragmented fat and low amount of Mesenchymal Stromal Cells has been evaluated. Our results confirmed that both Mesenchymal Stromal Cells and micro-fragmented fat, injected “in situ”, did not stimulate mesothelioma cell growth. By contrast, micro-fragmented fat produced a significant inhibition of tumor growth and progression, comparable to that observed by the treatment with paclitaxel. Low amount of Mesenchymal Stromal Cells exerted only a little anticancer activity. Conclusion: Micro-fragmented fat inhibited mesothelioma cell proliferation in vitro and exerted a significant control of the mesothelioma xenograft growth in vivo.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
