Current Cancer Drug Targets - Volume 22, Issue 9, 2022
Volume 22, Issue 9, 2022
-
-
Progress in Metabolic Studies of Gastric Cancer and Therapeutic Implications
Background: Worldwide, gastric cancer is ranked the fifth malignancy in incidence and the third malignancy in mortality. Gastric cancer causes an altered metabolism that can be therapeutically exploited. Objective: The objective of this study is to provide an overview of the significant metabolic alterations caused by gastric cancer and propose a blockade. Methods: A comprehensive and up-to-date review of descriptive and experimental publications on the metabolic alterations caused by gastric cancer and their blockade. This is not a systematic review. Results: Gastric cancer causes high rates of glycolysis and glutaminolysis. There are increased rates of de novo fatty acid synthesis and cholesterol synthesis. Moreover, gastric cancer causes high rates of lipid turnover via fatty acid β-oxidation. Preclinical data indicate that the individual blockade of these pathways via enzyme targeting leads to antitumor effects in vitro and in vivo. Nevertheless, there is no data on the simultaneous blockade of these five pathways, which is critical as tumors show metabolic flexibility in response to the availability of nutrients. This means tumors may activate alternate routes when one or more are inhibited. We hypothesize there is a need to simultaneously block them to avoid or decrease the metabolic flexibility that may lead to treatment resistance. Conclusion: There is a need to explore the preclinical efficacy and feasibility of combined metabolic therapy targeting the pathways of glucose, glutamine, fatty acid synthesis, cholesterol synthesis, and fatty acid oxidation. This may have therapeutical implications because we have clinically available drugs that target these pathways in gastric cancer.
-
-
-
The Therapeutic Potential of Urolithin A for Cancer Treatment and Prevention
More LessBackground: Urolithin A is the metabolite of natural polyphenol ellagic acid and ellagitannins generated by gut microbiota. Urolithin A is better absorbed in the gastrointestinal tract than its parent substances. Thus, the variable effects of ellagitannin-reach food (like pomegranate fruit, walnuts, tea, and others) on people's health might be linked with the differences in individual microbiota content. Urolithin A possesses various anti-inflammatory and anti-cancer effects, as shown by in vivo and in vitro studies. Objectives: In the current review, we consider anti-inflammatory and direct anti-cancer urolithin A effects as well as their molecular mechanisms, which might be the basement of clinical trials, estimating urolithin A anti-cancer effects. Conclusion: Urolithin A attenuated the pro-inflammatory factors production (IL-6, IL-1β, NOS2 and others) in vitro studies. Oral urolithin A treatment caused prominent anti-cancer and anti-inflammatory action in various in vivo studies, including colitis rat model, carrageenan-induced paw edema mice model, models of pancreatic cancer, and models of obesity. The main molecular mechanisms of these effects might be the modulation of aryl hydrocarbon receptors, which antagonism may lead to decreasing of chronic inflammation. Other primary targets of urolithin A might be the processes of protein phosphorylation (for instance, it decreases the phosphorylation of protein kinase B) and p53 stabilization. Anti-inflammatory effects of urolithin A can be reached in physiologically relevant concentrations. This might be of vital importance for preventing immune suppression associated with chronic inflammation in cancer. Considering the favorable urolithin A safety profile, it is a promising compound for cancer treatment and prevention.
-
-
-
Biology, Significance and Immune Signaling of Mucin 1 in Hepatocellular Carcinoma
Authors: Ayana R. Kumar, Aswathy R. Devan, Bhagyalakshmi Nair, Reshma R. Nair and Lekshmi R. NathMucin 1 (MUC 1) is a highly glycosylated tumor-associated antigen (TAA) overexpressed in hepatocellular carcinoma (HCC). This protein plays a critical role in various immune-mediated signaling pathways at its transcriptional and post-transcriptional levels, leading to immune evasion and metastasis in HCC. HCC cells maintain an immune-suppressive environment with the help of immunesuppressive tumor-associated antigens, resulting in a metastatic spread of the disease. The development of intense immunotherapeutic strategies to target tumor-associated antigen is critical to overcoming the progression of HCC. MUC 1 remains the most recognized tumor-associated antigen since its discovery over 30 years ago. A few promising immunotherapies targeting MUC 1 are currently under clinical trials, including CAR-T and CAR-pNK-mediated therapies. This review highlights the biosynthesis, significance, and clinical implication of MUC 1 as an immune target in HCC.
-
-
-
Dietary Flavonoids with Catechol Moiety Inhibit Anticancer Action of Bortezomib: What about the other Boronic Acid-based Drugs?
By Katrin SakApproval of the first boronic acid group-containing drug, bortezomib, in 2003 for the treatment of multiple myeloma sparked an increased interest of medicinal chemists in boronic acidbased therapeutics. As a result, another boronic acid moiety-harboring medication, ixazomib, was approved in 2015 as a second-generation proteasome inhibitor for multiple myeloma; and dutogliptin is under clinical investigation in combination therapy against myocardial infarction. Moreover, a large number of novel agents with boronic acid elements in their structure are currently in intensive preclinical studies, allowing us to suppose that at least some of them will enter clinical trials in the near future. On the other hand, only some years after bortezomib approval, direct interactions between its boronic acid group and catechol moiety of green tea catechins as well as some other common dietary flavonoids like quercetin and myricetin were discovered, leading to the formation of stable cyclic boronate esters and abolishing the anticancer activities. Although highly relevant, to date, no reports on possible co-effects of catechol group-containing flavonoids with new-generation boronic acidbased drugs can be found. However, this issue cannot be ignored, especially considering the abundance of catechol moiety-harboring flavonoids in both plant-derived food items as well as over-thecounter dietary supplements and herbal products. Therefore, in parallel with the intensified development of boronic acid-based drugs, their possible interactions with catechol groups of plant-derived flavonoids must also be clarified to provide dietary recommendations to patients for maximizing therapeutic benefits. If concurrently consumed flavonoids can indeed antagonize drug efficacy, it may pose a real risk to clinical outcomes.
-
-
-
Autophagy in Cancer Cell Transformation: A Potential Novel Therapeutic Strategy
More LessBasal autophagy plays a crucial role in maintaining intracellular homeostasis and prevents the cell from escaping the cell cycle regulation mechanisms and being cancerous. Mitophagy and nucleophagy are essential for cell health. Autophagy plays a pivotal role in cancer cell transformation, where upregulated precancerous autophagy induces apoptosis. Impaired autophagy has been shown to upregulate cancer cell transformation. However, tumor cells upregulate autophagy to escape elimination and survive the unfavorable conditions and resistance to chemotherapy. Cancer cells promote autophagy through modulation of autophagy regulation mechanisms and increase expression of the autophagyrelated genes. Whereas, autophagy regulation mechanisms involved microRNAs, transcription factors, and the internalized signaling pathways such as AMPK, mTOR, III PI3K, and ULK-1. Disrupted regulatory mechanisms are various as the cancer cell polymorphism. Targeting a higher level of autophagy regulation is more effective, such as gene expression, transcription factors, or epigenetic modification that are responsible for the up-regulation of autophagy in cancer cells. Currently, the CRISPR-CAS9 technique is available and can be applied to demonstrate the potential effects of autophagy in cancerous cells.
-
-
-
PBX1 Participates in Estrogen-mediated Bladder Cancer Progression and Chemo-resistance Affecting Estrogen Receptors
Authors: Yang Zhao, Jizhong Che, Aimin Tian, Gang Zhang, Yankai Xu, Shuhang Li, Songlin Liu and Yinxu WanBackground: Bladder cancer (BCa) is a common cancer associated with high morbidity and mortality worldwide. Pre-B-cell leukemia transcription factor 1 (PBX1) has been reported to be involved in tumor progression. Objective: The aim of the study was to explore the specific role of PBX1 in BCa and its underlying mechanisms. Methods: The relative expressions of PBX1 in muscle-invasive BCa tissues and cell lines were analyzed through RT-qPCR and western blotting. Kaplan–Meier analysis was used to analyze the relationship between PBX1 levels and survival status. Co-immunoprecipitation (CO-IP) and chromatin immunoprecipitation (ChIP)-qPCR assays were adopted to verify the interaction between PBX1 and Estrogen receptors (ERs) and explore the estrogen receptors (ERs)-dependent genes transcription. Results: PBX1 was upregulated in invasive BCa patients and BCa cells, positively associated with tumor size, lymph node metastasis, distant metastasis and poorer survival status. The overexpression of PBX1 promoted cell growth, invasion, epithelial-mesenchymal transition (EMT) process and cisplatin resistance in BCa cells, while the silence of PBX1 showed opposite effects. Furthermore, PBX1 interacted with ERs and was required for ER function. PBX1 overexpression aggravated the tumorpromoting effect of estrogen on BCa cells, while it partially suppressed the inhibitory effects of ER antagonist AZD9496 on BCa cells. Conclusion: This study revealed that PBX1 participated in estrogen mediated BCa progression and chemo-resistance through binding and activating estrogen receptors. Hence, PBX1 may serve as a potential prognostic and therapeutic target for BCa treatment.
-
-
-
Inhibitor of Growth 4 (ING4) Plays a Tumor-repressing Role in Oral Squamous Cell Carcinoma via Nuclear Factor Kappa-B (NF-kB)/DNA Methyltransferase 1 (DNMT1) Axis-mediated Regulation of Aldehyde Dehydrogenase 1A2 (ALDH1A2)
Authors: Zhi Cui, Shiqun Sun, Jia Li, Jianing Li, Tong Sha, Jie He and Linjing ZuoBackground: Inhibitor of growth 4 (ING4) level was reported to be decreased in head and neck squamous cell carcinoma (HNSC) tissue, however, it is unknown whether and how ING4 participates in regulating the development of oral squamous cell carcinoma (OSCC). Objective: This study aimed to investigate the role and mechanism of ING4 in OSCC. Methods: ING4 was forced to up- or down-regulated in two OSCC cell lines, and its effects on the malignant behavior of OSCC cells were investigated in vitro. The ubiquitination level of NF-kB p65 in ING4 upregulated cells was measured by co-immunoprecipitation. Moreover, the effects of ING4 on the methylation level of ALDH1A2 were evaluated by methylation-specific polymerase chain reaction (MSP) assay. The role of ING4 in OSCC growth in vivo was observed in nude mice. Results: Our results showed that the expression of ING4 in OSCC cell lines was lower than that in normal oral keratinocyte cells. In vitro, ING4 overexpression inhibited the proliferation, migration, and invasion of OSCC cell lines and ING4 silencing exhibited opposite results. We also demonstrated that ING4 overexpression promoted the ubiquitination and degradation of P65 and reduced DNA methyltransferase 1 (DNMT1) expression and Aldehyde dehydrogenase 1A2 (ALDH1A2) methylation. Moreover, overexpression of p65 rescued the suppression of malignant behavior, induced by ING4 overexpression. In addition, ING4 negatively regulated the growth of OSCC xenograft tumors in vivo. Conclusion: Our data evidenced that ING4 played a tumor-repressing role in OSCC in vivo and in vitro via NF-ΚB/DNMT1/ALDH1A2 axis.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
