Current Cancer Drug Targets - Volume 22, Issue 2, 2022
Volume 22, Issue 2, 2022
-
-
Experimental Determination of Cancer Drug Targets with Independent Mechanisms of Resistance
Authors: Abigail R. Bland, Nensi Shrestha, Maddie Berry, Christabel Wilson and John C. AshtonMathematical modelling of tumour mutation dynamics has suggested that cancer drug targets that have different resistance mechanisms should be good candidates for combination treatment. This is because the development of mutations that cause resistance to all drugs at once should arise relatively infrequently. However, it is difficult to identify drug targets fulfilling this requirement for particular cancers. Here we present four experimental criteria that we argue are necessary (but not sufficient) conditions that drug combinations should meet in order to be considered for combination drug treatment aimed at delaying or overcoming cancer drug resistance. We present the results of our own experiments - guided by these criteria - using anaplastic lymphoma kinase mutated lung cancer cells. Each set of experiments demonstrate results for different drug combinations. We conclude that the combination of ALK and MEK inhibitors come closest to meeting all our criteria.
-
-
-
Pharmacological Targeting of Ferroptosis in Cancer Treatment
Ferroptosis is a non-apoptotic mode of Regulated Cell Death (RCD) driven by excessive accumulation of toxic lipid peroxides and iron overload. Ferroptosis could be triggered by inhibiting the antioxidant defense system and accumulating iron-dependent Reactive Oxygen Species (ROS) that react with polyunsaturated fatty acids in abundance. Emerging evidence over the past few years has revealed that ferroptosis is of great potential in inhibiting growth and metastasis and overcoming tumor cell resistance. Thus, targeting this form of cell death could be perceived as a potentially burgeoning approach in cancer treatment. This review briefly presents the underlying mechanisms of ferroptosis and further aims to discuss various types of existing drugs and natural compounds that could be potentially repurposed for targeting ferroptosis in tumor cells. This, in turn, will provide critical perspectives on future studies concerning ferroptosis-based cancer therapy.
-
-
-
CEA-regulated Oncolytic Virus Anticancer Therapy: A Promising Strategy for Rare Solid Tumors
Authors: Yuqi Yang, Shuhang Wang, Peiwen Ma, Qiyu Tang, Yandong Li, Yuan Fang, Qi Zhu, Wei Tao, Yan Zha and Ning LiBackground: Rare solid tumors have attracted much more attention due to the great unmet clinical need, limited treatment options, and poor prognosis. As the most thoroughly studied tumor marker, carcinoembryonic antigen (CEA) can not only overexpress in various common solid tumors but also in several rare solid tumors. Oncolytic virus therapy has achieved excellent anticancer effects in the past decades. Due to the specific high expression of CEA in certain tumor tissues but not in normal tissues, CEA has been applied to improve the tumor specificity of gene expression. Methods: The studies of CEA expression in rare solid tumors and CEA-regulated oncolytic virus therapy were reviewed. Results: We showed the types of rare solid tumors with the overexpression of CEA. Elevated serum CEA levels can indicate the diagnosis, response of surgery or system therapy, distal metastasis, recurrence, and survival. Due to high tumor specificity, CEA-regulated OA therapy has demonstrated a surprising antitumor effect for common CEA-positive tumors in preclinical trials. Conclusion: These data suggested that CEA could be a diagnostic and prognostic biomarker for several rare solid tumors. We proposed the hypothesis that CEA-regulated oncolytic virus therapy could be a promising therapeutic strategy for CEA-positive rare solid tumors.
-
-
-
Preparation of Modified Chitosan-based Nanoparticles for Efficient Delivery of Doxorubicin and/or Cisplatin to Breast Cancer Cells
Authors: Sina M. Matalqah, Khalid Aiedeh, Nizar M. Mhaidat, Karem H. Alzoubi and Belal A. AL-HuseinPurpose: The aim is to develop a novel pH-responsive modified chitosan-based nanoparticles system for active loading of doxorubicin (DOX) and triggered intracellular release. Methods: Nanoparticles were formed in an aqueous medium via ionic interaction between negatively charged chitosan derivative and positively charged DOX at neutral pH and then transformed in situ into cisplatin (CIS) cross-linked nanoparticles through cross-linking the formed micelles via chelation interaction between the negatively charged polymeric carrier and cisplatin. Nanoparticles were characterized in terms of particle size and zeta potential using DLS and TEM. Drug loading efficiency and encapsulation efficiency were determined based on the physio-chemical proprieties of the polymer and the amount of the cross-linking agent. In vitro release studies were performed using the dialysis method at different pHs. Finally, the cytotoxic effects of these nanoparticles were performed against the MCF-7 BrCA cell line under different pHs. Results: The average particle size of polymer alone and DOX nanoparticles was 277.401 ± 13.50 nm and 290.20 ± 17.43 nm, respectively. The zeta potential was -14.6 ± 1.02 mV and -13.2 ± 0.55 mV, respectively, with a low polydispersity index. Drug loading and encapsulation deficiencies were determined, dependent on the amount of the cross-linking agent. In vitro release studies showed that the release of DOX from these nanoparticles was pH-dependent. Moreover, results showed that the cytotoxicity magnitude of DOX-loaded nanoparticles against MCF-7 BrCA cells was higher compared with free DOX. Conclusion: These novel pH-sensitive nanoparticles proved to be a promising Nano-drug delivery for tumor-targeted delivery of DOX.
-
-
-
Identification of AHSA1 as a Potential Therapeutic Target for Breast Cancer: Bioinformatics Analysis and in vitro Studies
Authors: Wei Shi, Lu Qi, Xiong-Bin You, Yu-Chi Chen, Yu-Lian Xu, Wei-Bang Yu, Mu-Yang Huang, Hong Zhao and Jin-Jian LuBackground: Shenling Baizhu Powder (SBP), a famous Traditional Chinese Medicine (TCM) formulation, has been widely used in the adjuvant treatment of cancers, including breast cancer. This study aims to identify potential new targets for breast cancer treatment based on the network pharmacology of SBP. Methods: By analyzing the relationship between herbs and target proteins, potential targets of multiple herbs in SBP were identified by network pharmacology analysis. Besides, by comparing the data of breast cancer tissue with normal tissue, upregulated genes in two breast cancer expression profiles were found. Thereafter, the expression level and prognosis of activator of heat shock protein 90 (HSP90) ATPase activity 1 (AHSA1) were further analyzed in breast cancer by bioinformatics analysis, and the network module of AHSA1 binding protein was constructed. Furthermore, the effect of knocking down AHSA1 on the proliferation, migration, and invasion of breast cancer cells was verified by MTT, clone formation assay, and transwell assay. Results: Vascular endothelial growth factor A (VEGFA), intercellular adhesion molecule 1 (ICAM1), chemokine (C-X-C motif) ligand 8 (CXCL8), AHSA1, and serpin family E member 1 (SERPINE1) were associated with multiple herbs in SBP. AHSA1 was remarkably upregulated in breast cancer tissues and positively correlated with poor overall survival and disease metastasis- free survival. Furthermore, knockdown of AHSA1 significantly inhibited the migration and invasion in MCF-7 and MDA-MB-231 breast cancer cells but had no obvious effect on proliferation. In addition, among the proteins that bind to AHSAl, the network composed of proteasome, chaperonin, and heat shock proteins is closely connected, and these proteins are associated with poor prognosis in a variety of cancers. Conclusion: AHSA1 is positively correlated with breast cancer progression and might act as a novel therapeutic target for breast cancer.
-
-
-
Promotion of Cervical Cancer Cell Proliferation by miR-130b Expression Level Changes and Inhibition of its Apoptosis by Targeting CDKN1A Gene
Authors: Yanli Wang, Lei Yang, Caihong Fan, Hong Mu, Munan Han, Tao Liu, Lili Xie and Qiang GaoBackground: Dysregulation of miR-130b expression is associated with the development of different cancers. However, the description of the biological roles of miR-130b in the growth and survival of cervical cancer cells is limited. Methods: The miR-130b levels in cervical cancer cells during different stages of growth were determined using reverse transcription-quantitative PCR. The methylation level of DNA sequences upstream of the miR-130b gene was measured using an SYBR Green-based quantitative methylation- specific PCR. Reverse transcription-quantitative PCR, Western blotting, and fluorescence report assays were used to identify the miR-130b-targeted gene. Cell counting kit-8 and comet assays were used to determine cell viability and DNA damage levels in cells, respectively. EdU Apopllo488 in vitro Flow Cytometry kit, propidium iodide staining, anti-γ-H2AX antibody staining, and Annexin-V apoptosis kit were subsequently used to determine DNA synthesis rates, cell cycle distribution, count of DNA double-strand breaks, and levels of apoptotic cells. Results: miR-130b levels increased at exponential phases of the growth of cervical cancer cells but reduced at stationary phases. The methylation of a prominent CpG island near the transcript start site suppressed the miR-130b gene expression. MiR-130b increased cell viability, promoted both DNA synthesis and G1 to S phase transition of the cells at exponential phases, but reduced cell viability accompanied by accumulations of DNA breaks and augmentations in apoptosis rates of the cells in stationary phases by targeting cyclin-dependent kinase inhibitor 1A mRNA. Conclusion: miR-130b promoted the growth of cervical cancer cells during the exponential phase, whereas it impaired the survival of cells during stationary phases.
-
-
-
The Expression of Glutaminases and their Association with Clinicopathological Parameters in the Head and Neck Cancers
Authors: Haneen A. Basheer, Lina Elsalem, Anwar Salem, Artysha Tailor, Keith Hunter and Kamyar AfarinkiaBackground: The increased glutamine metabolism is a characteristic feature of cancer cells. The interconversion between glutamine and glutamate is catalyzed by two glutaminase isoforms, GLS1 and GLS2, which appear to have different roles in different types of cancer. We investigated for the first time the protein expression of GLS1 and GLS2, and their correlation with advanced clinicopathological parameters in head and neck cancers. Methods: Consecutive slides from a tissue microarray comprised of 80 samples ranging from normal to metastatic were stained immunohistochemically for GLS1, GLS2, HIF-1α or CD147. Following analysis by two expert pathologists, we carried out a statistical analysis of the scores. Results: GLS1 and GLS2 were found to be upregulated at the protein level in head and neck tumours compared to normal tissues, and this increased expression correlated positively (GLS1) and negatively (GLS2) with tumor grade, indicating a shift of expression between GLS enzyme isoforms based on tumor differentiation. Increased expression of GLS1 was associated with high CD147 expression, and elevated GLS2 expression was associated with both high CD147 and high HIF-1α expressions. The correlation of the GLS1 and GLS2 with HIF-1α or CD147 was strongly associated with more advanced clinicopathological parameters. Conclusion: The increased expression of GLS1 and GLS2 may be explored as a new treatment for head and neck cancers.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
