Current Cancer Drug Targets - Volume 16, Issue 9, 2016
Volume 16, Issue 9, 2016
-
-
MicroRNA as Regulators of Cancer Stem Cells and Chemoresistance in Colorectal Cancer
Authors: Xiaoming Liu, Qi Fu, Yong Du, Yinxue Yang and William C. ChoColorectal cancer (CRC) is one of the most common cancers worldwide. The development of resistance to anti-cancer treatment is one of the major challenges in the treatment of CRC, which limits the efficacy of both conventional and targeted therapies in clinical settings. Understanding the mechanisms underpinning resistances is therefore critical in developing novel agents to reverse drug resistance and for more specific targeted treatments. Accumulating studies have reported that microRNAs (miRNAs) are key players in the regulation of cancer cells with intrinsic/acquired drug resistance through varied mechanisms that endow cells with a drug-resistant phenotype. miRNAs have been evolved in the regulation of chemoresistance to various CRC treatments and the stemness of CRC stem cells (CRSCs), sequentially modulating the sensitivity of CRC cells to anti-cancer treatments. Targeting miRNAs may be a novel strategy for eradicating CRSCs, re-sensitizing drug-resistant cells to anti-cancer agents, improving drug efficiency and developing novel biological agents for CRC treatment. This paper highlights the role of miRNAs in the regulation of chemoresistance and CRSCs in CRC, with focus on the mechanisms underlying how miRNAs alter CRSCs fate, and the process of epithelial-to-mesenchymal transition, cell cycle and apoptosis in CRC cells.
-
-
-
Indoleamine 2,3-dioxygenase (IDO): Biology and Target in Cancer Immunotherapies
Authors: Senthamil R. Selvan, John P. Dowling, William K. Kelly and Jianqing LinIndoleamine 2,3-dioxygenase (IDO) is a heme-containing oxidoreductase that catalyzes the initial and rate-limiting step in the breakdown of non-dietary tryptophan. The biology and immunomodulatory role for IDO is discussed in this review with a focus on its interaction with immune cells and its potential therapeutic target in the clinic. IDO has been revealed to be a central regulator of immune responses in a broad variety of physiological and pathological settings, mostly serving as a multifaceted negative feedback mechanism, to self-regulate immune responses. IDO is considered a therapeutic target in cancer and the use of IDO inhibitors as single agent or in combination with other treatment modalities are under active investigation.
-
-
-
E2F1 and NF-ΚB: Key Mediators of Inflammation-associated Cancers and Potential Therapeutic Targets
Authors: Yulin Huang, Rui Chen and Jianwei ZhouInflammation is the fundamental protective response; however disordered immuno-response can cause chronic human disease, including cancer. Inflammatory cells and mediators are essential to the tumor microenvironment and dissection of this complex molecular and cellular milieu may elucidate a connection between cancer and inflammation and help to identify potential novel therapeutic targets. Thus, focusing on transcription factor NF-ΚB and E2F1 in inflammation-associated cancer is urgent. NF-ΚB activation is prevalent in carcinomas, mainly driven by inflammatory cytokines in the tumor microenvironment. E2F1 is also involved in regulating immune responses. Understanding the crosstalk between the two pathways may contribute to the development of novel anti-cancer drugs.
-
-
-
Epi-Drugs and Epi-miRs: Moving Beyond Current Cancer Therapies
Epigenetic modifications determine phenotypic characteristics in a reversible, stable and genotype-independent manner. Epigenetic modifications mainly encompass CpG island methylation and histone modifications, both being important in the pathogenesis of malignancies. The reversibility of epigenetic phenomenon provides a suitable therapeutic option that is reactivation of epigenetically silenced tumor-suppressor genes. Inhibition of DNA methyltransferase, histone deacetylase and Aurora B kinase, individually or collectively, could feasibly prevent or reverse the impact of epigenetic silencing. MicroRNAs [miRNAs] are an important layer of epigenetic controlling of gene expression, and serve as diagnostic and prognostic biomarkers as well as treatment targets for several types of cancer. miRNAs are involved inepigenetically silencing or activation of genes, tumor suppressor genes and oncogenes, and their modulation opens new horizons for designing novel cancer therapeutic agents.
-
-
-
Epigenetic Targeting of Platinum Resistant Testicular Cancer
Authors: Daniel Sonnenburg, Michael J. Spinella and Costantine AlbanyThe involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, little is known of the epigenetic alterations in testicular cancer and particularly in platinum refractory germ cell tumors. Germ cell derived testicular cancers, as compared to somatic tumors, appear to have a unique epigenetic profile that features more extensive DNA hypomethylation. Emerging data from clinical specimens suggest that epigenetic aberrations, especially DNA hypermethylation, can contribute to chemotherapy resistance and poor clinical outcomes in testicular germ cell tumors. Recent data indicate that testicular cancer cells, even those resistant to platinum, are highly sensitive to low doses of demethylating agents. Based on these promising preclinical studies, we suggest that DNA methylation inhibitors in combination with chemotherapeutic agents may offer a path to overcome acquired drug resistance in testicular cancer, laying the foundation and rationale for testing this class of epigenetic drugs in the clinical setting. In this mini-review we provide a brief overview of the promise of DNA methylation therapy to treat patients with refractory cancer of the testes.
-
-
-
Discovery of a Novel Anti-Cancer Agent Targeting Both Topoisomerase I & II as Well as Telomerase Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo: Cinnamomum verum Component Cuminaldehyde
Cinnamomum verum is used to make the spice cinnamon and has been used for more than 5000 years by both of the two most ancient forms of medicine in the words: Ayurveda and traditional Chinese herbal medicines for various applications such as adenopathy, rheumatism, dermatosis, dyspepsia, stroke, tumors, elephantiasis, trichomonas, yeast, and virus infections. We evaluated the anticancer effect of cuminaldehyde (CuA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human lung adenocarcinoma A549 cells. The results show that cuminaldehyde suppressed proliferation and induced apoptosis as indicated by mitochondrial membrane potential loss, activation of caspase 3 and 9, increase in annexin V+PI+ cells, and morphological characteristics of apoptosis, including blebbing of plasma membrane, nuclear condensation, fragmentation, apoptotic body formation, and comet with elevated tail intensity and moment. In addition, cuminaldehyde also induced lysosomal vacuolation with increased volume of acidic compartments (VAC), suppressions of both topoisomerase I & II as well as telomerase activities in a dose-dependent manner. Further study reveals the growth-inhibitory effect of cuminaldehyde was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of cuminaldehyde against A549 cells is accompanied by downregulations of proliferative control involving apoptosis, both topoisomerase I & II as well as telomerase activities, together with an upregulation of lysosomal vacuolation and VAC. Similar effects (including all of the above-mentioned effects) were found in other cell lines, including human lung squamous cell carcinoma NCI-H520 and colorectal adenocarcinoma COLO 205 (results not shown). Our data suggest that cuminaldehyde could be a potential agent for anticancer therapy.
-
-
-
miR-137 Suppresses the Phosphorylation of AKT and Improves the Dexamethasone Sensitivity in Multiple Myeloma Cells Via Targeting MITF
Authors: Benping Zhang, Ling Ma, Jia Wei, Jingyu Hu, Zichu Zhao, Youping Wang, Yan Chen and Fei ZhaoBackground: Multiple myeloma (MM), a clonal B cell malignancy characterized by the proliferation of plasma cells within the bone marrow, is still an incurable disease, and therefore, finding new therapeutic targets is urgently required. Although microRNA-137 (miR-137), which is involved in a variety of cellular processes, has been reported to be under-expressed in many types of solid tumors, its role in MM is less known. Methods: In this study, the target gene and the potential effect of miR-137 in MM were investigated. Results: The results showed significantly down regulated expression of miR-137 in MM cell lines and in the CD138+ bone marrow mononuclear cells of MM patients. A dual luciferase reporter gene analysis revealed that MITF is a direct target of miR-137. The overexpression of miR-137 or transfection of MITF-shRNA had no significant effect on the expression of serine/ threonine protein kinase (AKT), but the expression of MITF, c-MET, p-AKT, and its phosphorylated substrate protein decreased significantly, which was accompanied by an increase in p53 expression. In addition, the overexpression of miR-137 or MITF-shRNA significantly improved the 36-hour inhibition rate and apoptosis rate in multiple myeloma cells treated with dexamethasone. The overexpression of MITF could counteract the biological effect of miR-137 in multiple myeloma cells. Conclusion: We conclude that MITF is a direct target of miR-137. The miR-137 can improve the dexamethasone sensitivity in multiple myeloma cells by reducing the c-MET expression and further decreasing the AKT phosphorylation via targeting MITF.
-
-
-
Pyrimethamine as a Potent and Selective Inhibitor of Acute Myeloid Leukemia Identified by High-throughput Drug Screening
Hematopoietic stem and progenitor cell differentiation are blocked in acute myeloid leukemia (AML) resulting in cytopenias and a high risk of death. Most patients with AML become resistant to treatment due to lack of effective cytotoxic and differentiation promoting compounds. High MN1 expression confers poor prognosis to AML patients and induces resistance to cytarabine and alltrans-retinoic acid (ATRA) induced differentiation. Using a high-throughput drug screening, we identified the dihydrofolate reductase (DHFR) antagonist pyrimethamine to be a potent inducer of apoptosis and differentiation in several murine and human leukemia cell lines. Oral pyrimethamine treatment was effective in two xenograft mouse models and specifically targeted leukemic cells in human AML cell lines and primary patient cells, while CD34+ cells from healthy donors were unaffected. The antileukemic effects of PMT could be partially rescued by excess folic acid, suggesting an oncogenic function of folate metabolism in AML. Thus, our study identifies pyrimethamine as a candidate drug that should be further evaluated in AML treatment.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
