Current Cancer Drug Targets - Volume 12, Issue 2, 2012
Volume 12, Issue 2, 2012
-
-
The Cyclin-Dependent Kinase Inhibitor p21CDKN1A as a Target of Anti-Cancer Drugs
Authors: L. A. Stivala, O. Cazzalini and E. Prosperip21CDKN1A (WAF1/CIP1/SDI1), the cyclin-dependent kinase (CDK) inhibitor belonging to the Cip/Kip family, was first described as a potent inhibitor of cell proliferation and DNA replication, both in physiological conditions and after DNA damage. More recently, p21 has been recognized to play additional and fundamental roles in other important pathways, including regulation of transcription, apoptosis and DNA repair. Knock-out mouse studies combined with biochemical and functional analysis of cells in culture have indicated a tumor suppressor activity for p21. However, these lines of evidence have been complicated by other findings indicating that p21 can exhibit oncogenic properties. In fact, the evidence that p21 expression may lead to proliferation arrest, is counterbalanced by the rescue of tumor cells from drug-induced apoptosis, and by promoting a metastatic potential. For these reasons, p21 is considered a protein with a dual behavior, with potential benefits, as well as dangerous effects of its expression in malignant cells. Thus, the effectiveness of targeting p21 expression for antitumor therapy needs to be carefully evaluated accordingly. This review summarizes the functions and regulations of p21, and focuses on its involvement in human diseases (particularly cancer), and on the pharmacological approaches to target p21 expression (either positively or negatively) for anticancer therapy. Based on these approaches, the search for new molecules that are able to promote the tumor-suppressor activity, and/or to interfere with the oncogenic properties of p21, could be promising.
-
-
-
Gamma-Amino Butyric Acid Inhibits the Nicotine-Imposed Stimulatory Challenge in Xenograft Models of Non-Small Cell Lung Carcinoma
Authors: H. A.N. Al-Wadei, M. H. Al-Wadei, M. F. Ullah and H. M. SchullerNon-small cell lung carcinoma (NSCLC) is the leading type of lung cancer; smoking is a documented risk factor. Nicotinic acetylcholine receptor (nAChR)-mediated intracellular signaling in response to nicotine has recently been implicated in the growth regulation of NSCLC. In the current study nude mice carrying xenografts of the human lung NSCLC cell lines NCI-H322 or NCI-H441 were used as animal models. Nicotine administration and gamma aminobutyric acid (GABA) treatment lasted for 30 days. Catecholamines, cortisol, GABA, and cAMP were analyzed in blood and tumor tissues by immunoassays. Expression of nicotinic receptors and effector proteins in the xenografts was assessed by Western blotting. Our data indicate that nicotine stimulated the growth of NSCLC xenografts via modulation of nAChR upregulation and activation of cAMP signaling. The nicotine-treated group showed an enhanced level of stress neurotransmitters and second messenger cAMP in serum, blood cellular fraction, and xenograft tissues. Activation of critical proteins in the oncogenic pathway, including CREB, ERK, Akt, and Src, and upregulation of α-4 and α-7 subunits of nAChR provided mechanistic insight for the observed stimulatory effect of nicotine. Interestingly, GABA, being an antagonist to cAMP signaling, showed a promising intervention by reversing the stimulatory effect of nicotine on cancer growth and all signaling pathways. GABA has potential to lower the risk of NSCLC among smokers and could be used to enhance the clinical outcome of standard cancer intervention strategies.
-
-
-
Adding to the Mix: Fibroblast Growth Factor and Platelet-Derived Growth Factor Receptor Pathways as Targets in Non-small Cell Lung Cancer
Authors: S. A. Kono, L. E. Heasley, R. C. Doebele and D. R. CamidgeThe treatment of advanced non-small cell lung cancer (NSCLC) increasingly involves the use of molecularly targeted therapy with activity against either the tumor directly, or indirectly, through activity against host-derived mechanisms of tumor support such as angiogenesis. The most well studied signaling pathway associated with angiogenesis is the vascular endothelial growth factor (VEGF) pathway, and the only antiangiogenic agent currently approved for the treatment of NSCLC is bevacizumab, an antibody targeted against VEGF. More recently, preclinical data supporting the role of fibroblast growth factor receptor (FGFR) and platelet-derived growth factor receptor (PDGFR) signaling in angiogenesis have been reported. The platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) pathways may also stimulate tumor growth directly through activation of downstream mitogenic signaling cascades. In addition, 1 or both of these pathways have been associated with resistance to agents targeting the epidermal growth factor receptor (EGFR) and VEGF. A number of agents that target FGF and/or PDGF signaling are now in development for the treatment of NSCLC. This review will summarize the potential molecular roles of PDGFR and FGFR in tumor growth and angiogenesis, as well as discuss the current clinical status of PDGFR and FGFR inhibitors in clinical development.
-
-
-
Analysis of the Concordance in the EGFR Pathway Status Between Primary Tumors and Related Metastases of Colorectal Cancer Patients:Implications for Cancer Therapy
Patients with metastatic Colorectal Cancer (mCRC), in which primary tumors are KRAS mutated, have no response to anti-EGFR therapy. However, less than half of mCRC patients with KRAS wild-type primary tumors respond to anti-EGFR therapy. Other downstream effectors of the EGFR pathway are being analyzed to fine-tune KRAS predictive value. However, as the primary tumor is the tissue of analysis that determines the use of anti-EGFR therapy in advanced disease, a high concordance in the status of these effectors between primary tumors and related metastases is required. We analyzed the concordances of downstream EGFR effectors in tumoral pairs of primaries and related metastases in a series of KRAS wild-type patients. One hundred seventeen tumoral pairs from patients with CRC were tested for KRAS mutational status. The level of concordance in the presence of KRAS mutations was 91% between the primary tumor and related metastases. The 70 pairs with KRAS wild-type primary tumors were further analyzed for BRAF and PIK3CA mutational status and for EGFR, PTEN and pAKT expression, and the number of concordant pairs was 70 (100%), 66 (94%), 43 (61%), 46 (66%) and 36 (54%), respectively. Our findings suggest that the mutational status of KRAS, BRAF and PIK3CA in the primary tumor is an adequate surrogate marker of the status in the metastatic disease. On the other hand, the immunohistochemical analysis of EGFR, PTEN and pAKT showed a much higher degree of discordance between primaries and related metastases.
-
-
-
Characterization of the Prostaglandin E2 Pathway in a Rat Model of Esophageal Adenocarcinoma
Authors: E. Piazuelo, S. Santander, C. Cebrian, P. Jimenez, C. Pastor, M. A. Garcia-Gonzalez, F. Esteva, P. Esquivias, J. Ortego and A. LanasAccumulating evidence indicates that the cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway plays a key role in esophageal carcinogenesis. A better understanding of the pathway downstream of COX-2 may reveal novel targets for the prevention of esophageal adenocarcinoma (EAC). The objective of this study was to characterize the profile of genes involved in PGE2 metabolism and signaling in an experimental model of EAC. Esophagojejunostomy with gastric preservation was performed in wistar rats to induce gastroduodenal reflux. Rats were sacrificed 2 or 4 months after surgery. Nine non-operated rats were used to obtain normal (control) esophageal tissues. RESULTS: All rats that underwent esophagojejunostomy developed inflammation. In addition, 90% of the animals showed intestinal metaplasia; of those, 40% progressed to AC. This process was accompanied by a significant increase in esophageal PGE2 levels and the induction of both mRNA and protein levels of COX-2, COX-1, prostaglandin E synthase, 15-hydroxyprostaglandin dehydrogenase, and PGE2 receptors EP3, EP4 and especially EP2, which rose to particularly high levels in experimental rats. In addition, exposure to a selective COX-2 inhibitor (SC58125) or an EP1/EP2 antagonist (AH6809), but not an EP4 antagonist (AH23848B), significantly reduced cell proliferation of esophageal explants in 24 hour-organ culture experiments. Our data suggest that, in addition to COX-2, other components of the PGE2 pathway, including COX-1, may play important roles in the development of EAC induced by gastroduodenal reflux in the rat. Although it must be confirmed in vivo, the EP2 receptor may represent a promising selective target in the prevention of Barrett's associated AC.
-
-
-
Targeting Aurora Kinases: A Novel Approach to Curb the Growth & Chemoresistance of Androgen Refractory Prostate Cancer
Authors: V. Jeet, P. J. Russell, N. D. Verma and A. KhatriAurora Kinase (AK) based therapy targeting AK-A & B is effective against some cancers. We have explored its potential against previously unreported incurable, metastatic androgen depletion independent Prostate Cancer (ADIPC). We used androgen sensitive (AS) and ADI lines derived from Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice. The relevance of this model was unequivocally established through focussed array, quantitative PCR and western blotting studies; significantly greater alteration of genes (fold change and number) representing major cancer pathways was shown in ADI cells compared to AS lines. A marked enhancement of in vivo growth of the ADI subline showing the greatest degree of gene modulations [TRAMP C1 (TC1)-T5: TC1-T5] reflected this. In contrast to the parental AS TC1 line, TC1-T5 cells grew with 100% incidence in the prostate, as lung pseudometastases and migrated to the bone and other soft tissues. The potential involvement of AKs in this transition was indicated by the significant upregulation of AK-A/B and their downstream regulators, survivin and phosphorylated-histone H3 in TC1-T5 cells compared to TC1 cells. This led to enhanced sensitivity of TC1-T5 cells to the pan-AK inhibitor, VX680 and to significant reduction in in vivo tumour growth rates when AK-A and/or B were downregulated in TC1-T5 cells. This cell growth inhibition was markedly enhanced when both AKs were downregulated and also led to substantially greater sensitivity of these cells to docetaxel, the only chemotherapeutic with activity against ADI PC. Finally, use of VX680 with docetaxel led to impressive synergies suggesting promise for treating clinical ADI metastatic PC.
-
-
-
Transplacental Antioxidants Inhibit Lung Tumors in Mice Exposed to Cigarette Smoke After Birth: A Novel Preventative Strategy?
Authors: R. Balansky, G. Ganchev, M. Iltcheva, V. E. Steele and S. De FloraBirth is characterized by an intense oxidative stress resulting in nucleotide alterations and gene overexpression in mouse lung. We showed that cigarette smoke (CS) is carcinogenic when exposure starts soon after birth and applied this bioassay to evaluate the efficacy of chemopreventive agents. The present study evaluated whether administration of the antioxidants N-acetyl-L-cysteine (NAC) and vitamin C or ascorbic acid (AsA) during pregnancy can protect strain H Swiss mice exposed to CS after birth. Exposure to CS, for 4 months, of newborns from untreated mice resulted in significant alterations at 8 months of life, including alveolar epithelial hyperplasia, emphysema, blood vessel proliferation, microadenomas, adenomas, and malignant tumors in lung, liver parenchymal degeneration and urinary bladder epithelium hyperplasia. Treatment throughout pregnancy with either NAC, a scavenger of reactive oxygen species, or AsA, an electron donor, did not affect fertility, parity, and body weight of newborns. Prenatal antioxidants significantly inhibited most lesions in adult mice exposed to CS since birth. For instance, the incidence of emphysema was reduced from 27.5% in CS-exposed mice that were untreated during pregnancy to 7.1% and 14.0% in those treated prenatally with NAC and AsA, respectively. Lung adenomas were reduced from 34.8% to 16.7% and 9.3%, respectively. Malignant lung tumors were reduced from 13.0% to 4.7% by prenatal AsA. Liver parenchymal degeneration was reduced from 58.0% to 14.3% by prenatal NAC. These data mechanistically support a “transplacental chemoprevention” strategy, aimed at protecting the newborn from oxidative stress and the adult from CS-related diseases appearing later in life.
-
-
-
Anticancer Drugs Aimed at E6 and E7 Activity in HPV-Positive Cervical Cancer
Authors: S. Tan, E. G.E. de Vries, A. G.J. van der Zee and S. de JongStandard treatment of locally advanced cervical cancer currently consists of concurrent chemoradiation, leading to a 5-year disease-free survival of 66-79%, indicating that there is still ample room for improvement. Characteristic of cervical cancer is the presence of high risk (HR) human papillomavirus (HPV) DNA in more than 99% of these tumors. When the HR HPV genome integrates into the host genome, oncogenic E6 and E7 proteins become constitutively expressed. These oncogenes are also active earlier in the infection cycle and hence are available as therapeutic targets at the preneoplastic stages as well. E7 plays an important role in the early stage of carcinogenesis by stimulating proliferation. HR HPV E6-induced proteasomal degradation of p53 hampers p53 functionality in cell cycle arrest and apoptosis. As p53 plays a key role in the intrinsic apoptotic pathway, current chemoradiation cannot optimally activate this pathway. In this review, we focus on targeted anticancer drugs to eliminate the consequences of HR HPV E6 and E7 activity. Strategies for direct and indirect targeting of HR HPV E6 and E7, including RNA interference, small molecules, proteasome inhibitors, and histone deacetylase inhibitors, are described. In addition, the extrinsic apoptotic pathway as possible alternative therapeutic target for apoptosis induction is reviewed. The rational for implementing recombinant human TRAIL and death receptor agonists and the latest developments on combining these drugs with standard treatment in preclinical settings as well as clinical trials are discussed.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
