Skip to content
2000
image of MND1 Promotes the Proliferation of Prostate Cancer Cell via the CCNB1/p53 Signaling Pathway

Abstract

Introduction

Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men, with a high global incidence. The Meiotic Nuclear Division 1 (MND1) protein is essential for the repair of DNA double-strand breaks during meiosis, but its role in PCa remains poorly understood. This study aims to explore the function of MND1 in PCa progression and the mechanism involved.

Methods

RNA-Seq data from the TCGA and GEO databases were analyzed. Kaplan-Meier (KM) method and χ2 test examined the association between MND1 expression, prognosis, and clinical parameters. PCa cell lines (22RV1 and C4-2) were used for functional assays. CCK-8, EdU, colony formation assay, flow cytometry analysis and xenograft model were used to evaluate the effects of MND1 on PCa cell proliferation and .

Results

MND1 expression was significantly upregulated in PCa tissues, particularly in cases with Gleason scores ≥8, and correlated with poorer disease-free survival (DFS) and adverse clinical features. Functionally, elevated MND1 expression promoted PCa cell proliferation both and . Mechanistically, MND1 facilitated cell cycle progression from G0/G1 to S phase activation of the CCNB1/p53 signaling pathway.

Conclusion

MND1 promotes prostate cancer progression by facilitating the G0/G1 to S phase transition the CCNB1/p53 pathway, making it a promising prognostic marker and potential therapeutic target.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096391591250506064859
2025-05-08
2025-09-14
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Han B. Zheng R. Zeng H. Wang S. Sun K. Chen R. Li L. Wei W. He J. Cancer incidence and mortality in China, 2022. J. National Cancer Center 2024 4 1 47 53 10.1016/j.jncc.2024.01.006 39036382
    [Google Scholar]
  4. Kang H.A. Shin H.C. Kalantzi A.S. Toseland C.P. Kim H.M. Gruber S. Peraro M.D. Oh B.H. Crystal structure of Hop2–Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic Acids Res. 2015 43 7 3841 3856 10.1093/nar/gkv172 25740648
    [Google Scholar]
  5. Farahani-Tafreshi Y. Wei C. Gan P. Daradur J. Riggs C.D. Hasenkampf C.A. The Arabidopsis HOP2 gene has a role in preventing illegitimate connections between nonhomologous chromosome regions. Chromosome Res. 2022 30 1 59 75 10.1007/s10577‑021‑09681‑2 35064347
    [Google Scholar]
  6. Zhao W. Saro D. Hammel M. Kwon Y. Xu Y. Rambo R.P. Williams G.J. Chi P. Lu L. Pezza R.J. Camerini-Otero R.D. Tainer J.A. Wang H.W. Sung P. Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing. Nucleic Acids Res. 2014 42 2 906 917 10.1093/nar/gkt924 24150939
    [Google Scholar]
  7. Domenichini S. Raynaud C. Ni D.A. Henry Y. Bergounioux C. Atmnd1-Δ1 is sensitive to gamma-irradiation and defective in meiotic DNA repair. DNA Repair (Amst.) 2006 5 4 455 464 10.1016/j.dnarep.2005.12.007 16442857
    [Google Scholar]
  8. McGranahan N. Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 2017 168 4 613 628 10.1016/j.cell.2017.01.018 28187284
    [Google Scholar]
  9. McFarlane R.J. Wakeman J.A. Meiosis-like functions in oncogenesis: A new view of cancer. Cancer Res. 2017 77 21 5712 5716 10.1158/0008‑5472.CAN‑17‑1535 29061671
    [Google Scholar]
  10. Fratta E. Coral S. Covre A. Parisi G. Colizzi F. Danielli R. Marie Nicolay H.J. Sigalotti L. Maio M. The biology of cancer testis antigens: Putative function, regulation and therapeutic potential. Mol. Oncol. 2011 5 2 164 182 10.1016/j.molonc.2011.02.001 21376678
    [Google Scholar]
  11. Whitehurst A.W. Cause and consequence of cancer/testis antigen activation in cancer. Annu. Rev. Pharmacol. Toxicol. 2014 54 1 251 272 10.1146/annurev‑pharmtox‑011112‑140326 24160706
    [Google Scholar]
  12. Simpson A.J.G. Caballero O.L. Jungbluth A. Chen Y.T. Old L.J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 2005 5 8 615 625 10.1038/nrc1669 16034368
    [Google Scholar]
  13. Zhang Q. Shi R. Bai Y. Meng L. Hu J. Zhu H. Liu T. De X. Wang S. Wang J. Xu L. Zhou G. Yin R. Meiotic nuclear divisions 1 (MND1) fuels cell cycle progression by activating a KLF6/E2F1 positive feedback loop in lung adenocarcinoma. Cancer Commun. (Lond.) 2021 41 6 492 510 10.1002/cac2.12155 33734616
    [Google Scholar]
  14. Fang J. Zhen J. Gong Y. Ke Y. Fu B. Jiang Y. Xie J. Liu Y. Ding Y. Huang D. Xiao F. MND1 functions as a potential prognostic biomarker associated with cell cycle and immune infiltration in kidney renal clear cell carcinoma. Aging (Albany NY) 2022 14 18 7416 7442 10.18632/aging.204280 36098680
    [Google Scholar]
  15. Zhang W. Xiao Y. Zhu X. Zhang Y. Xiang Q. Wu S. Song X. Zhao J. Yuan R. Li Q. Xiao B. Li L. Integrative pan-cancer analysis reveals the oncogenic role of MND1 and validation of MND1’s role in breast cancer. J. Inflamm. Res. 2024 17 4721 4746 10.2147/JIR.S458832 39051055
    [Google Scholar]
  16. Bao Z. Cheng J. Zhu J. Ji S. Gu K. Zhao Y. Yu S. Meng Y. Using weighted gene Co-expression network analysis to identify increased MND1 expression as a predictor of poor breast cancer survival. Int. J. Gen. Med. 2022 15 4959 4974 10.2147/IJGM.S354826 35601002
    [Google Scholar]
  17. Zhai Z. Cui Z. Zhang Y. Song P. Wu J. Tan Z. Lin S. Ma X. Guan F. Kang H. Integrated pan-cancer analysis and experimental verification of the roles of meiotic nuclear divisions 1 in breast cancer. Biochem. Biophys. Res. Commun. 2024 739 150600 10.1016/j.bbrc.2024.150600 39191147
    [Google Scholar]
  18. Hu X. Zhou S. Li H. Wu Z. Wang Y. Meng L. Chen Z. Wei Z. Pang Q. Xu A. FOXA1/MND1/TKT axis regulates gastric cancer progression and oxaliplatin sensitivity via PI3K/AKT signaling pathway. Cancer Cell Int. 2023 23 1 234 10.1186/s12935‑023‑03077‑4 37817120
    [Google Scholar]
  19. Tan K. Wang K. Zhao A. Liu Z. Song W. Cheng Q. Li X. Chen Z. Yuan Y. Yang Z. Meiotic nuclear divisions 1 promotes proliferation and metastasis in hepatocellular carcinoma and is a potential diagnostic and therapeutic target gene. Med. Oncol. 2022 40 1 14 10.1007/s12032‑022‑01875‑w 36352167
    [Google Scholar]
  20. Lai W. Zhu W. Li X. Han Y. Wang Y. Leng Q. Li M. Wen X. GTSE1 promotes prostate cancer cell proliferation via the SP1/FOXM1 signaling pathway. Lab. Invest. 2021 101 5 554 563 10.1038/s41374‑020‑00510‑4 33328578
    [Google Scholar]
  21. Lai W. Zhu W. Xiao C. Li X. Wang Y. Han Y. Zheng J. Li Y. Li M. Wen X. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021 12 6 583 10.1038/s41419‑021‑03870‑x 34099634
    [Google Scholar]
  22. Einafshar E. Mobasheri L. Hasanpour M. Rashidi R. Ghorbani A. Pro-apoptotic effect of chloroform fraction of Moraea sisyrinchium bulb against glioblastoma cells. Biomed. Pharmacother. 2024 170 115931 10.1016/j.biopha.2023.115931 38016363
    [Google Scholar]
  23. Lai W. Zhu W. Wu J. Huang J. Li X. Luo Y. Wang Y. Zeng H. Li M. Qiu X. Wen X. HJURP inhibits sensitivity to ferroptosis inducers in prostate cancer cells by enhancing the peroxidase activity of PRDX1. Redox Biol. 2024 77 103392 10.1016/j.redox.2024.103392 39405980
    [Google Scholar]
  24. Li S.Y. Zhu Y. Li R.N. Huang J.H. You K. Yuan Y.F. Zhuang S.M. LncRNA Lnc‐APUE is Repressed by HNF4 α and promotes G1/S phase transition and tumor growth by regulating MiR‐20b/E2F1 Axis. Adv. Sci. (Weinh.) 2021 8 7 2003094 10.1002/advs.202003094 33854885
    [Google Scholar]
  25. Hu H.B. Song Z.Q. Song G.P. Li S. Tu H.Q. Wu M. Zhang Y.C. Yuan J.F. Li T.T. Li P.Y. Xu Y.L. Shen X.L. Han Q.Y. Li A.L. Zhou T. Chun J. Zhang X.M. Li H.Y. LPA signaling acts as a cell-extrinsic mechanism to initiate cilia disassembly and promote neurogenesis. Nat. Commun. 2021 12 1 662 10.1038/s41467‑021‑20986‑y 33510165
    [Google Scholar]
  26. Feng Z. Yu X. Jiang M. Zhu L. Zhang Y. Yang W. Xi W. Li G. Qian J. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics 2019 9 19 5706 5719 10.7150/thno.31332 31534513
    [Google Scholar]
  27. Wang X. Ju Y. Wu T. Kong L. Yuan M. Liu H. Chen X. Chu Z. The clade III subfamily of OsSWEETs directly suppresses rice immunity by interacting with OsHMGB1 and OsHsp20L. Plant Biotechnol. J. 2024 22 8 2186 2200 10.1111/pbi.14338 38587024
    [Google Scholar]
  28. Song Z. Yang Q. Dong B. Li N. Wang M. Du T. Liu N. Niu L. Jin H. Meng D. Fu Y. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. J. Exp. Bot. 2022 73 17 5992 6008 10.1093/jxb/erac276 35727860
    [Google Scholar]
  29. Marei H.E. Althani A. Afifi N. Hasan A. Caceci T. Pozzoli G. Morrione A. Giordano A. Cenciarelli C. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021 21 1 703 10.1186/s12935‑021‑02396‑8 34952583
    [Google Scholar]
  30. Engeland K. Cell cycle regulation: P53-p21-RB signaling. Cell Death Differ. 2022 29 5 946 960 10.1038/s41418‑022‑00988‑z 35361964
    [Google Scholar]
  31. Zhang D. Yang X.J. Luo Q.D. Xue L. Chong T. Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis. Cancer Gene Ther. 2022 29 7 1001 1011 10.1038/s41417‑021‑00405‑6 34799723
    [Google Scholar]
  32. Vousden K.H. Prives C. Blinded by the light: The growing complexity of p53. Cell 2009 137 3 413 431 10.1016/j.cell.2009.04.037 19410540
    [Google Scholar]
  33. Jackson J.G. Pereira-Smith O.M. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res. 2006 66 17 8356 8360 10.1158/0008‑5472.CAN‑06‑1752 16951143
    [Google Scholar]
  34. Wang H. Guo M. Wei H. Chen Y. Targeting p53 pathways: mechanisms, structures and advances in therapy. Signal Transduct. Target. Ther. 2023 8 1 92 10.1038/s41392‑023‑01347‑1 36859359
    [Google Scholar]
  35. Nelson T.J. Xu Y. Sting and p53 DNA repair pathways are compromised in Alzheimer’s disease. Sci. Rep. 2023 13 1 8304 10.1038/s41598‑023‑35533‑6 37221295
    [Google Scholar]
  36. Heltberg M.S. Lucchetti A. Hsieh F.S. Minh Nguyen D.P. Chen S. Jensen M.H. Enhanced DNA repair through droplet formation and p53 oscillations. Cell 2022 185 23 4394 4408.e10 10.1016/j.cell.2022.10.004 36368307
    [Google Scholar]
  37. Song Y. Identifying p53-independent apoptosis. Nat. Chem. Biol. 2024 20 7 796 10.1038/s41589‑024‑01676‑4 38914684
    [Google Scholar]
  38. Tian Q. Liu C. Liao J. Wang G. Han W. Xiong X. Chen Z. Gu L. Li M. ATF2/BAP1 axis mediates neuronal apoptosis after subarachnoid hemorrhage via P53 pathway. Stroke 2024 55 8 2113 2125 10.1161/STROKEAHA.123.045781 38965653
    [Google Scholar]
  39. Zhai P. Ouyang X. Yang M. Lin L. Li J. Li Y. Cheng X. Zhu R. Hu D. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. J. Integr. Med. 2024 22 6 652 664 10.1016/j.joim.2024.09.001 39343710
    [Google Scholar]
  40. Liu Y. Gu W. p53 in ferroptosis regulation: The new weapon for the old guardian. Cell Death Differ. 2022 29 5 895 910 10.1038/s41418‑022‑00943‑y 35087226
    [Google Scholar]
  41. Haroutunian V. Mantin R. Kanof P.D. Frontal cortex as the site of action of physostigmine in nbM-lesioned rats. Physiol. Behav. 1990 47 1 203 206 10.1016/0031‑9384(90)90061‑8 2326337
    [Google Scholar]
  42. Petitjean A. Mathe E. Kato S. Ishioka C. Tavtigian S.V. Hainaut P. Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 2007 28 6 622 629 10.1002/humu.20495 17311302
    [Google Scholar]
  43. Brosh R. Rotter V. When mutants gain new powers: News from the mutant p53 field. Nat. Rev. Cancer 2009 9 10 701 713 10.1038/nrc2693 19693097
    [Google Scholar]
  44. Oren M. Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harb. Perspect. Biol. 2010 2 2 a001107 10.1101/cshperspect.a001107 20182618
    [Google Scholar]
  45. Agupitan A.D. Neeson P. Williams S. Howitt J. Haupt S. Haupt Y. P53: A guardian of immunity becomes its saboteur through mutation. Int. J. Mol. Sci. 2020 21 10 3452 10.3390/ijms21103452 32414156
    [Google Scholar]
  46. Zhang C. Liu J. Xu D. Zhang T. Hu W. Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J. Mol. Cell Biol. 2020 12 9 674 687 10.1093/jmcb/mjaa040 32722796
    [Google Scholar]
  47. Hu J. Cao J. Topatana W. Juengpanich S. Li S. Zhang B. Shen J. Cai L. Cai X. Chen M. Targeting mutant p53 for cancer therapy: Direct and indirect strategies. J. Hematol. Oncol. 2021 14 1 157 10.1186/s13045‑021‑01169‑0 34583722
    [Google Scholar]
  48. McCann J.J. Vasilevskaya I.A. McNair C. Gallagher P. Neupane N.P. de Leeuw R. Shafi A.A. Dylgjeri E. Mandigo A.C. Schiewer M.J. Knudsen K.E. Mutant p53 elicits context-dependent pro-tumorigenic phenotypes. Oncogene 2022 41 3 444 458 10.1038/s41388‑021‑01903‑5 34773073
    [Google Scholar]
  49. Sun X. Xin S. Zhang Y. Jin L. Liu X. Zhang J. Mei W. Zhang B. Ma W. Ye L. Long non‑coding RNA CASC11 interacts with YBX1 to promote prostate cancer progression by suppressing the p53 pathway. Int. J. Oncol. 2022 61 3 110 10.3892/ijo.2022.5400 35904175
    [Google Scholar]
  50. Li D. Zhan Y. Wang N. Tang F. Lee C.J. Bayshtok G. Moore A.R. Wong E.W.P. Pachai M.R. Xie Y. Sher J. Zhao J.L. Khudoynazarova M. Gopalan A. Chan J. Khurana E. Shepherd P. Navone N.M. Chi P. Chen Y. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer. Sci. Adv. 2023 9 14 eadc9446 10.1126/sciadv.adc9446 37018402
    [Google Scholar]
  51. Wang Z. Chao Z. Wang Q. Zou F. Song T. Xu L. Ning J. Cheng F. EXO1/P53/SREBP1 axis-regulated lipid metabolism promotes prostate cancer progression. J. Transl. Med. 2024 22 1 104 10.1186/s12967‑023‑04822‑z 38279172
    [Google Scholar]
  52. Ding D. Blee A.M. Zhang J. Pan Y. Becker N.A. Maher L.J. III Jimenez R. Wang L. Huang H. Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis. Nat. Commun. 2023 14 1 4671 10.1038/s41467‑023‑40352‑4 37537199
    [Google Scholar]
  53. Xie B. Wang S. Jiang N. Li J.J. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance. Cancer Lett. 2019 443 56 66 10.1016/j.canlet.2018.11.019 30481564
    [Google Scholar]
  54. Li J. Shang L. Zhou F. Wang S. Liu N. Zhou M. Lin Q. Zhang M. Cai Y. Chen G. Yang S. Herba Patriniae and its component Isovitexin show anti-colorectal cancer effects by inducing apoptosis and cell-cycle arrest via p53 activation. Biomed. Pharmacother. 2023 168 115690 10.1016/j.biopha.2023.115690 37939611
    [Google Scholar]
  55. Xiao X. Rui B. Rui H. Ju M. Hongtao L. MEOX1 suppresses the progression of lung cancer cells by inhibiting the cell‐cycle checkpoint geneCCNB1. Environ. Toxicol. 2022 37 3 504 513 10.1002/tox.23416 34837450
    [Google Scholar]
  56. Yang M. Hu C. Cao Y. Liang W. Yang X. Xiao T. Ursolic acid regulates cell cycle and proliferation in colon adenocarcinoma by suppressing Cyclin B1. Front. Pharmacol. 2021 11 622212 10.3389/fphar.2020.622212 33628185
    [Google Scholar]
  57. Chu C. Geng Y. Zhou Y. Sicinski P. Cyclin E in normal physiology and disease states. Trends Cell Biol. 2021 31 9 732 746 10.1016/j.tcb.2021.05.001 34052101
    [Google Scholar]
  58. Ma J. Xue K. Jiang Y. Wang X. He D. Guo P. Down-regulation of SLC14A1 in prostate cancer activates CDK1/CCNB1 and mTOR pathways and promotes tumor progression. Sci. Rep. 2024 14 1 14914 10.1038/s41598‑024‑66020‑1 38942821
    [Google Scholar]
  59. Chen X. Ma J. Wang X. Zi T. Qian D. Li C. Xu C. CCNB1 and AURKA are critical genes for prostate cancer progression and castration-resistant prostate cancer resistant to vinblastine. Front. Endocrinol. (Lausanne) 2022 13 1106175 10.3389/fendo.2022.1106175 36601001
    [Google Scholar]
  60. Yoshida T. Tanaka S. Mogi A. Shitara Y. Kuwano H. The clinical significance of Cyclin B1 and Wee1 expression innon-small-cell lung cancer. Ann. Oncol. 2004 15 2 252 256 10.1093/annonc/mdh073 14760118
    [Google Scholar]
  61. Liu J. Wen Y. Liu Z. Liu S. Xu P. Xu Y. Deng S. Hu S. Luo R. Jiang J. Yu G. VPS33B modulates c-Myc/p53/miR-192-3p to target CCNB1 suppressing the growth of non-small cell lung cancer. Mol. Ther. Nucleic Acids 2021 23 324 335 10.1016/j.omtn.2020.11.010 33425490
    [Google Scholar]
  62. Arora S. Singh P. Rahmani A.H. Almatroodi S.A. Dohare R. Syed M.A. Unravelling the role of miR-20b-5p, CCNB1, HMGA2 and E2F7 in development and progression of non-small cell lung cancer (NSCLC). Biology 2020 9 8 201 10.3390/biology9080201 32752229
    [Google Scholar]
  63. Niméus-Malmström E. Koliadi A. Ahlin C. Holmqvist M. Holmberg L. Amini R.M. Jirström K. Wärnberg F. Blomqvist C. Fernö M. Fjällskog M.L. Cyclin B1 is a prognostic proliferation marker with a high reproducibility in a population‐based lymph node negative breast cancer cohort. Int. J. Cancer 2010 127 4 961 967 10.1002/ijc.25091 19957331
    [Google Scholar]
  64. Qiu P. Guo Q. Yao Q. Chen J. Lin J. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer. PLoS One 2021 16 11 e0254283 10.1371/journal.pone.0254283 34797837
    [Google Scholar]
  65. Fang L. Liu Q. Cui H. Zheng Y. Wu C. Bioinformatics analysis highlight differentially expressed CCNB1 and PLK1 genes as potential anti-breast cancer drug targets and prognostic markers. Genes 2022 13 4 654 10.3390/genes13040654 35456460
    [Google Scholar]
  66. Tuluhong D. Gao H. Li X. Wang L. Zhu Y. Xu C. Wang J. Li H. Li Q. Wang S. Squalene epoxidase promotes breast cancer progression by regulating CCNB1 protein stability. Exp. Cell Res. 2023 433 1 113805 10.1016/j.yexcr.2023.113805 37839786
    [Google Scholar]
  67. Liu A. Zeng S. Lu X. Xiong Q. Xue Y. Tong L. Xu W. Sun Y. Zhang Z. Xu C. Overexpression of G2 and S phase-expressed-1 contributes to cell proliferation, migration, and invasion via regulating p53/FoxM1/CCNB1 pathway and predicts poor prognosis in bladder cancer. Int. J. Biol. Macromol. 2019 123 322 334 10.1016/j.ijbiomac.2018.11.032 30414902
    [Google Scholar]
  68. Sevim Nalkiran H. Biri I. Nalkiran I. Uzun H. Durur S. Bedir R. CDC20 and CCNB1 overexpression as prognostic markers in bladder cancer. Diagnostics 2024 15 1 59 10.3390/diagnostics15010059 39795587
    [Google Scholar]
  69. Wang X.X. Wu H.Y. Yang Y. Ma M.M. Zhang Y.W. Huang H.Z. Li S.H. Pan S.L. Tang J. Peng J.H. CCNB1 is involved in bladder cancer pathogenesis and silencing CCNB1 decelerates tumor growth and improves prognosis of bladder cancer. Exp. Ther. Med. 2023 26 2 382 10.3892/etm.2023.12081 37456156
    [Google Scholar]
  70. Kim S.K. Roh Y.G. Park K. Kang T.H. Kim W.J. Lee J.S. Leem S.H. Chu I.S. Expression signature defined by FOXM1-CCNB1 activation predicts disease recurrence in non-muscle-invasive bladder cancer. Clin. Cancer Res. 2014 20 12 3233 3243 10.1158/1078‑0432.CCR‑13‑2761 24714775
    [Google Scholar]
  71. Kreis N.N. Sanhaji M. Krämer A. Sommer K. Rödel F. Strebhardt K. Yuan J. Restoration of the tumor suppressor p53 by downregulating cyclin B1 in human papillomavirus 16/18-infected cancer cells. Oncogene 2010 29 41 5591 5603 10.1038/onc.2010.290 20661218
    [Google Scholar]
  72. Nguyen T.B. Do D.N. Nguyen-Thi M.L. Hoang-The H. Tran T.T. Nguyen-Thanh T. Identification of potential crucial genes and key pathways shared in inflammatory bowel disease and cervical cancer by machine learning and integrated bioinformatics. Comput. Biol. Med. 2022 149 105996 10.1016/j.compbiomed.2022.105996 36049413
    [Google Scholar]
  73. Bai X. Wang W. Zhao P. Wen J. Guo X. Shen T. Shen J. Yang X. LncRNA CRNDE acts as an oncogene in cervical cancer through sponging miR-183 to regulate CCNB1 expression. Carcinogenesis 2020 41 1 111 121 10.1093/carcin/bgz166 31605132
    [Google Scholar]
  74. Wu X. Peng L. Zhang Y. Chen S. Lei Q. Li G. Zhang C. Identification of key genes and pathways in cervical cancer by bioinformatics analysis. Int. J. Med. Sci. 2019 16 6 800 812 10.7150/ijms.34172 31337953
    [Google Scholar]
  75. Jin P. Hardy S. Morgan D.O. Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J. Cell Biol. 1998 141 4 875 885 10.1083/jcb.141.4.875 9585407
    [Google Scholar]
  76. Xia P. Zhang H. Xu K. Jiang X. Gao M. Wang G. Liu Y. Yao Y. Chen X. Ma W. Zhang Z. Yuan Y. MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma. Cell Death Dis. 2021 12 7 691 10.1038/s41419‑021‑03973‑5 34244479
    [Google Scholar]
  77. Zhang H. Zhang X. Li X. Meng W.B. Bai Z.T. Rui S.Z. Wang Z.F. Zhou W.C. Jin X.D. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J. Cell. Physiol. 2019 234 1 619 631 10.1002/jcp.26816 30069972
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096391591250506064859
Loading
/content/journals/ccdt/10.2174/0115680096391591250506064859
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: CCNB1 ; Prostate cancer ; p53 ; MND1 ; proliferation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test