Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Introduction

Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men, with a high global incidence. The Meiotic Nuclear Division 1 (MND1) protein is essential for the repair of DNA double-strand breaks during meiosis, but its role in PCa remains poorly understood. This study aims to explore the function of MND1 in PCa progression and the mechanism involved.

Methods

RNA-Seq data from the TCGA and GEO databases were analyzed. Kaplan-Meier (KM) method and χ2 test examined the association between MND1 expression, prognosis, and clinical parameters. PCa cell lines (22RV1 and C4-2) were used for functional assays. CCK-8, EdU, colony formation assay, flow cytometry analysis and xenograft model were used to evaluate the effects of MND1 on PCa cell proliferation and .

Results

MND1 expression was significantly upregulated in PCa tissues, particularly in cases with Gleason scores ≥8, and correlated with poorer disease-free survival (DFS) and adverse clinical features. Functionally, elevated MND1 expression promoted PCa cell proliferation both and . Mechanistically, MND1 facilitated cell cycle progression from G0/G1 to S phase activation of the CCNB1/p53 signaling pathway.

Conclusion

MND1 promotes prostate cancer progression by facilitating the G0/G1 to S phase transition the CCNB1/p53 pathway, making it a promising prognostic marker and potential therapeutic target.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096391591250506064859
2025-05-08
2025-11-01
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.21820 38230766
    [Google Scholar]
  3. HanB. ZhengR. ZengH. WangS. SunK. ChenR. LiL. WeiW. HeJ. Cancer incidence and mortality in China, 2022.J. National Cancer Center202441475310.1016/j.jncc.2024.01.006 39036382
    [Google Scholar]
  4. KangH.A. ShinH.C. KalantziA.S. ToselandC.P. KimH.M. GruberS. PeraroM.D. OhB.H. Crystal structure of Hop2–Mnd1 and mechanistic insights into its role in meiotic recombination.Nucleic Acids Res.20154373841385610.1093/nar/gkv172 25740648
    [Google Scholar]
  5. Farahani-TafreshiY. WeiC. GanP. DaradurJ. RiggsC.D. HasenkampfC.A. The Arabidopsis HOP2 gene has a role in preventing illegitimate connections between nonhomologous chromosome regions.Chromosome Res.2022301597510.1007/s10577‑021‑09681‑2 35064347
    [Google Scholar]
  6. ZhaoW. SaroD. HammelM. KwonY. XuY. RamboR.P. WilliamsG.J. ChiP. LuL. PezzaR.J. Camerini-OteroR.D. TainerJ.A. WangH.W. SungP. Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing.Nucleic Acids Res.201442290691710.1093/nar/gkt924 24150939
    [Google Scholar]
  7. DomenichiniS. RaynaudC. NiD.A. HenryY. BergouniouxC. Atmnd1-Δ1 is sensitive to gamma-irradiation and defective in meiotic DNA repair.DNA Repair (Amst.)20065445546410.1016/j.dnarep.2005.12.007 16442857
    [Google Scholar]
  8. McGranahanN. SwantonC. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future.Cell2017168461362810.1016/j.cell.2017.01.018 28187284
    [Google Scholar]
  9. McFarlaneR.J. WakemanJ.A. Meiosis-like functions in oncogenesis: A new view of cancer.Cancer Res.201777215712571610.1158/0008‑5472.CAN‑17‑1535 29061671
    [Google Scholar]
  10. FrattaE. CoralS. CovreA. ParisiG. ColizziF. DanielliR. Marie NicolayH.J. SigalottiL. MaioM. The biology of cancer testis antigens: Putative function, regulation and therapeutic potential.Mol. Oncol.20115216418210.1016/j.molonc.2011.02.001 21376678
    [Google Scholar]
  11. WhitehurstA.W. Cause and consequence of cancer/testis antigen activation in cancer.Annu. Rev. Pharmacol. Toxicol.201454125127210.1146/annurev‑pharmtox‑011112‑140326 24160706
    [Google Scholar]
  12. SimpsonA.J.G. CaballeroO.L. JungbluthA. ChenY.T. OldL. J. Cancer/testis antigens, gametogenesis and cancer.Nat. Rev. Cancer20055861562510.1038/nrc1669 16034368
    [Google Scholar]
  13. ZhangQ. ShiR. BaiY. MengL. HuJ. ZhuH. LiuT. DeX. WangS. WangJ. XuL. ZhouG. YinR. Meiotic nuclear divisions 1 (MND1) fuels cell cycle progression by activating a KLF6/E2F1 positive feedback loop in lung adenocarcinoma.Cancer Commun. (Lond.)202141649251010.1002/cac2.12155 33734616
    [Google Scholar]
  14. FangJ. ZhenJ. GongY. KeY. FuB. JiangY. XieJ. LiuY. DingY. HuangD. XiaoF. MND1 functions as a potential prognostic biomarker associated with cell cycle and immune infiltration in kidney renal clear cell carcinoma.Aging (Albany NY)202214187416744210.18632/aging.204280 36098680
    [Google Scholar]
  15. ZhangW. XiaoY. ZhuX. ZhangY. XiangQ. WuS. SongX. ZhaoJ. YuanR. LiQ. XiaoB. LiL. Integrative pan-cancer analysis reveals the oncogenic role of MND1 and validation of MND1’s role in breast cancer.J. Inflamm. Res.2024174721474610.2147/JIR.S458832 39051055
    [Google Scholar]
  16. BaoZ. ChengJ. ZhuJ. JiS. GuK. ZhaoY. YuS. MengY. Using weighted gene Co-expression network analysis to identify increased MND1 expression as a predictor of poor breast cancer survival.Int. J. Gen. Med.2022154959497410.2147/IJGM.S354826 35601002
    [Google Scholar]
  17. ZhaiZ. CuiZ. ZhangY. SongP. WuJ. TanZ. LinS. MaX. GuanF. KangH. Integrated pan-cancer analysis and experimental verification of the roles of meiotic nuclear divisions 1 in breast cancer.Biochem. Biophys. Res. Commun.202473915060010.1016/j.bbrc.2024.150600 39191147
    [Google Scholar]
  18. HuX. ZhouS. LiH. WuZ. WangY. MengL. ChenZ. WeiZ. PangQ. XuA. FOXA1/MND1/TKT axis regulates gastric cancer progression and oxaliplatin sensitivity via PI3K/AKT signaling pathway.Cancer Cell Int.202323123410.1186/s12935‑023‑03077‑4 37817120
    [Google Scholar]
  19. TanK. WangK. ZhaoA. LiuZ. SongW. ChengQ. LiX. ChenZ. YuanY. YangZ. Meiotic nuclear divisions 1 promotes proliferation and metastasis in hepatocellular carcinoma and is a potential diagnostic and therapeutic target gene.Med. Oncol.20224011410.1007/s12032‑022‑01875‑w 36352167
    [Google Scholar]
  20. LaiW. ZhuW. LiX. HanY. WangY. LengQ. LiM. WenX. GTSE1 promotes prostate cancer cell proliferation via the SP1/FOXM1 signaling pathway.Lab. Invest.2021101555456310.1038/s41374‑020‑00510‑4 33328578
    [Google Scholar]
  21. LaiW. ZhuW. XiaoC. LiX. WangY. HanY. ZhengJ. LiY. LiM. WenX. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway.Cell Death Dis.202112658310.1038/s41419‑021‑03870‑x 34099634
    [Google Scholar]
  22. EinafsharE. MobasheriL. HasanpourM. RashidiR. GhorbaniA. Pro-apoptotic effect of chloroform fraction of Moraea sisyrinchium bulb against glioblastoma cells.Biomed. Pharmacother.202417011593110.1016/j.biopha.2023.115931 38016363
    [Google Scholar]
  23. LaiW. ZhuW. WuJ. HuangJ. LiX. LuoY. WangY. ZengH. LiM. QiuX. WenX. HJURP inhibits sensitivity to ferroptosis inducers in prostate cancer cells by enhancing the peroxidase activity of PRDX1.Redox Biol.20247710339210.1016/j.redox.2024.103392 39405980
    [Google Scholar]
  24. LiS.Y. ZhuY. LiR.N. HuangJ.H. YouK. YuanY.F. ZhuangS.M. LncRNA Lnc‐APUE is Repressed by HNF4 α and promotes G1/S phase transition and tumor growth by regulating MiR‐20b/E2F1 Axis.Adv. Sci. (Weinh.)202187200309410.1002/advs.202003094 33854885
    [Google Scholar]
  25. HuH.B. SongZ.Q. SongG.P. LiS. TuH.Q. WuM. ZhangY.C. YuanJ.F. LiT.T. LiP.Y. XuY.L. ShenX.L. HanQ.Y. LiA.L. ZhouT. ChunJ. ZhangX.M. LiH.Y. LPA signaling acts as a cell-extrinsic mechanism to initiate cilia disassembly and promote neurogenesis.Nat. Commun.202112166210.1038/s41467‑021‑20986‑y 33510165
    [Google Scholar]
  26. FengZ. YuX. JiangM. ZhuL. ZhangY. YangW. XiW. LiG. QianJ. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor.Theranostics20199195706571910.7150/thno.31332 31534513
    [Google Scholar]
  27. WangX. JuY. WuT. KongL. YuanM. LiuH. ChenX. ChuZ. The clade III subfamily of OsSWEETs directly suppresses rice immunity by interacting with OsHMGB1 and OsHsp20L.Plant Biotechnol. J.20242282186220010.1111/pbi.14338 38587024
    [Google Scholar]
  28. SongZ. YangQ. DongB. LiN. WangM. DuT. LiuN. NiuL. JinH. MengD. FuY. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress.J. Exp. Bot.202273175992600810.1093/jxb/erac276 35727860
    [Google Scholar]
  29. MareiH.E. AlthaniA. AfifiN. HasanA. CaceciT. PozzoliG. MorrioneA. GiordanoA. CenciarelliC. p53 signaling in cancer progression and therapy.Cancer Cell Int.202121170310.1186/s12935‑021‑02396‑8 34952583
    [Google Scholar]
  30. EngelandK. Cell cycle regulation: P53-p21-RB signaling.Cell Death Differ.202229594696010.1038/s41418‑022‑00988‑z 35361964
    [Google Scholar]
  31. ZhangD. YangX.J. LuoQ.D. XueL. ChongT. Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis.Cancer Gene Ther.20222971001101110.1038/s41417‑021‑00405‑6 34799723
    [Google Scholar]
  32. VousdenK.H. PrivesC. Blinded by the light: The growing complexity of p53.Cell2009137341343110.1016/j.cell.2009.04.037 19410540
    [Google Scholar]
  33. JacksonJ.G. Pereira-SmithO.M. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts.Cancer Res.200666178356836010.1158/0008‑5472.CAN‑06‑1752 16951143
    [Google Scholar]
  34. WangH. GuoM. WeiH. ChenY. Targeting p53 pathways: mechanisms, structures and advances in therapy.Signal Transduct. Target. Ther.2023819210.1038/s41392‑023‑01347‑1 36859359
    [Google Scholar]
  35. NelsonT.J. XuY. Sting and p53 DNA repair pathways are compromised in Alzheimer’s disease.Sci. Rep.2023131830410.1038/s41598‑023‑35533‑6 37221295
    [Google Scholar]
  36. HeltbergM.S. LucchettiA. HsiehF.S. Minh NguyenD.P. ChenS. JensenM.H. Enhanced DNA repair through droplet formation and p53 oscillations.Cell20221852343944408.e1010.1016/j.cell.2022.10.004 36368307
    [Google Scholar]
  37. SongY. Identifying p53-independent apoptosis.Nat. Chem. Biol.202420779610.1038/s41589‑024‑01676‑4 38914684
    [Google Scholar]
  38. TianQ. LiuC. LiaoJ. WangG. HanW. XiongX. ChenZ. GuL. LiM. ATF2/BAP1 axis mediates neuronal apoptosis after subarachnoid hemorrhage via P53 pathway.Stroke20245582113212510.1161/STROKEAHA.123.045781 38965653
    [Google Scholar]
  39. ZhaiP. OuyangX. YangM. LinL. LiJ. LiY. ChengX. ZhuR. HuD. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway.J. Integr. Med.202422665266410.1016/j.joim.2024.09.001 39343710
    [Google Scholar]
  40. LiuY. GuW. p53 in ferroptosis regulation: The new weapon for the old guardian.Cell Death Differ.202229589591010.1038/s41418‑022‑00943‑y 35087226
    [Google Scholar]
  41. HaroutunianV. MantinR. KanofP.D. Frontal cortex as the site of action of physostigmine in nbM-lesioned rats.Physiol. Behav.199047120320610.1016/0031‑9384(90)90061‑8 2326337
    [Google Scholar]
  42. PetitjeanA. MatheE. KatoS. IshiokaC. TavtigianS.V. HainautP. OlivierM. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database.Hum. Mutat.200728662262910.1002/humu.20495 17311302
    [Google Scholar]
  43. BroshR. RotterV. When mutants gain new powers: News from the mutant p53 field.Nat. Rev. Cancer200991070171310.1038/nrc2693 19693097
    [Google Scholar]
  44. OrenM. RotterV. Mutant p53 gain-of-function in cancer.Cold Spring Harb. Perspect. Biol.201022a00110710.1101/cshperspect.a001107 20182618
    [Google Scholar]
  45. AgupitanA.D. NeesonP. WilliamsS. HowittJ. HauptS. HauptY. P53: A guardian of immunity becomes its saboteur through mutation.Int. J. Mol. Sci.20202110345210.3390/ijms21103452 32414156
    [Google Scholar]
  46. ZhangC. LiuJ. XuD. ZhangT. HuW. FengZ. Gain-of-function mutant p53 in cancer progression and therapy.J. Mol. Cell Biol.202012967468710.1093/jmcb/mjaa040 32722796
    [Google Scholar]
  47. HuJ. CaoJ. TopatanaW. JuengpanichS. LiS. ZhangB. ShenJ. CaiL. CaiX. ChenM. Targeting mutant p53 for cancer therapy: Direct and indirect strategies.J. Hematol. Oncol.202114115710.1186/s13045‑021‑01169‑0 34583722
    [Google Scholar]
  48. McCannJ.J. VasilevskayaI.A. McNairC. GallagherP. NeupaneN.P. de LeeuwR. ShafiA.A. DylgjeriE. MandigoA.C. SchiewerM.J. KnudsenK.E. Mutant p53 elicits context-dependent pro-tumorigenic phenotypes.Oncogene202241344445810.1038/s41388‑021‑01903‑5 34773073
    [Google Scholar]
  49. SunX. XinS. ZhangY. JinL. LiuX. ZhangJ. MeiW. ZhangB. MaW. YeL. Long non coding RNA CASC11 interacts with YBX1 to promote prostate cancer progression by suppressing the p53 pathway.Int. J. Oncol.202261311010.3892/ijo.2022.5400 35904175
    [Google Scholar]
  50. LiD. ZhanY. WangN. TangF. LeeC.J. BayshtokG. MooreA.R. WongE.W.P. PachaiM.R. XieY. SherJ. ZhaoJ.L. KhudoynazarovaM. GopalanA. ChanJ. KhuranaE. ShepherdP. NavoneN.M. ChiP. ChenY. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer.Sci. Adv.2023914eadc944610.1126/sciadv.adc9446 37018402
    [Google Scholar]
  51. WangZ. ChaoZ. WangQ. ZouF. SongT. XuL. NingJ. ChengF. EXO1/P53/SREBP1 axis-regulated lipid metabolism promotes prostate cancer progression.J. Transl. Med.202422110410.1186/s12967‑023‑04822‑z 38279172
    [Google Scholar]
  52. DingD. BleeA.M. ZhangJ. PanY. BeckerN.A. MaherL.J. JimenezR. WangL. HuangH. Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis.Nat. Commun.2023141467110.1038/s41467‑023‑40352‑4 37537199
    [Google Scholar]
  53. XieB. WangS. JiangN. LiJ.J. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance.Cancer Lett.2019443566610.1016/j.canlet.2018.11.019 30481564
    [Google Scholar]
  54. LiJ. ShangL. ZhouF. WangS. LiuN. ZhouM. LinQ. ZhangM. CaiY. ChenG. YangS. Herba Patriniae and its component Isovitexin show anti-colorectal cancer effects by inducing apoptosis and cell-cycle arrest via p53 activation.Biomed. Pharmacother.202316811569010.1016/j.biopha.2023.115690 37939611
    [Google Scholar]
  55. XiaoX. RuiB. RuiH. JuM. HongtaoL. MEOX1 suppresses the progression of lung cancer cells by inhibiting the cell‐cycle checkpoint gene CCNB1.Environ. Toxicol.202237350451310.1002/tox.23416 34837450
    [Google Scholar]
  56. YangM. HuC. CaoY. LiangW. YangX. XiaoT. Ursolic acid regulates cell cycle and proliferation in colon adenocarcinoma by suppressing Cyclin B1.Front. Pharmacol.20211162221210.3389/fphar.2020.622212 33628185
    [Google Scholar]
  57. ChuC. GengY. ZhouY. SicinskiP. Cyclin E in normal physiology and disease states.Trends Cell Biol.202131973274610.1016/j.tcb.2021.05.001 34052101
    [Google Scholar]
  58. MaJ. XueK. JiangY. WangX. HeD. GuoP. Down-regulation of SLC14A1 in prostate cancer activates CDK1/CCNB1 and mTOR pathways and promotes tumor progression.Sci. Rep.20241411491410.1038/s41598‑024‑66020‑1 38942821
    [Google Scholar]
  59. ChenX. MaJ. WangX. ZiT. QianD. LiC. XuC. CCNB1 and AURKA are critical genes for prostate cancer progression and castration-resistant prostate cancer resistant to vinblastine.Front. Endocrinol. (Lausanne)202213110617510.3389/fendo.2022.1106175 36601001
    [Google Scholar]
  60. YoshidaT. TanakaS. MogiA. ShitaraY. KuwanoH. The clinical significance of Cyclin B1 and Wee1 expression innon-small-cell lung cancer.Ann. Oncol.200415225225610.1093/annonc/mdh073 14760118
    [Google Scholar]
  61. LiuJ. WenY. LiuZ. LiuS. XuP. XuY. DengS. HuS. LuoR. JiangJ. YuG. VPS33B modulates c-Myc/p53/miR-192-3p to target CCNB1 suppressing the growth of non-small cell lung cancer.Mol. Ther. Nucleic Acids20212332433510.1016/j.omtn.2020.11.010 33425490
    [Google Scholar]
  62. AroraS. SinghP. RahmaniA.H. AlmatroodiS.A. DohareR. SyedM.A. Unravelling the role of miR-20b-5p, CCNB1, HMGA2 and E2F7 in development and progression of non-small cell lung cancer (NSCLC).Biology20209820110.3390/biology9080201 32752229
    [Google Scholar]
  63. Niméus-MalmströmE. KoliadiA. AhlinC. HolmqvistM. HolmbergL. AminiR.M. JirströmK. WärnbergF. BlomqvistC. FernöM. FjällskogM.L. Cyclin B1 is a prognostic proliferation marker with a high reproducibility in a population‐based lymph node negative breast cancer cohort.Int. J. Cancer2010127496196710.1002/ijc.25091 19957331
    [Google Scholar]
  64. QiuP. GuoQ. YaoQ. ChenJ. LinJ. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer.PLoS One20211611e025428310.1371/journal.pone.0254283 34797837
    [Google Scholar]
  65. FangL. LiuQ. CuiH. ZhengY. WuC. Bioinformatics analysis highlight differentially expressed CCNB1 and PLK1 genes as potential anti-breast cancer drug targets and prognostic markers.Genes202213465410.3390/genes13040654 35456460
    [Google Scholar]
  66. TuluhongD. GaoH. LiX. WangL. ZhuY. XuC. WangJ. LiH. LiQ. WangS. Squalene epoxidase promotes breast cancer progression by regulating CCNB1 protein stability.Exp. Cell Res.2023433111380510.1016/j.yexcr.2023.113805 37839786
    [Google Scholar]
  67. LiuA. ZengS. LuX. XiongQ. XueY. TongL. XuW. SunY. ZhangZ. XuC. Overexpression of G2 and S phase-expressed-1 contributes to cell proliferation, migration, and invasion via regulating p53/FoxM1/CCNB1 pathway and predicts poor prognosis in bladder cancer.Int. J. Biol. Macromol.201912332233410.1016/j.ijbiomac.2018.11.032 30414902
    [Google Scholar]
  68. Sevim NalkiranH. BiriI. NalkiranI. UzunH. DururS. BedirR. CDC20 and CCNB1 overexpression as prognostic markers in bladder cancer.Diagnostics20241515910.3390/diagnostics15010059 39795587
    [Google Scholar]
  69. WangX.X. WuH.Y. YangY. MaM.M. ZhangY.W. HuangH.Z. LiS.H. PanS.L. TangJ. PengJ.H. CCNB1 is involved in bladder cancer pathogenesis and silencing CCNB1 decelerates tumor growth and improves prognosis of bladder cancer.Exp. Ther. Med.202326238210.3892/etm.2023.12081 37456156
    [Google Scholar]
  70. KimS.K. RohY.G. ParkK. KangT.H. KimW.J. LeeJ.S. LeemS.H. ChuI.S. Expression signature defined by FOXM1-CCNB1 activation predicts disease recurrence in non-muscle-invsive bladder cancer.Clin. Cancer Res.201420123233324310.1158/1078‑0432.CCR‑13‑2761 24714775
    [Google Scholar]
  71. KreisN.N. SanhajiM. KrämerA. SommerK. RödelF. StrebhardtK. YuanJ. Restoration of the tumor suppressor p53 by downregulating cyclin B1 in human papillomavirus 16/18-infected cancer cells.Oncogene201029415591560310.1038/onc.2010.290 20661218
    [Google Scholar]
  72. NguyenT.B. DoD.N. Nguyen-ThiM.L. Hoang-TheH. TranT.T. Nguyen-ThanhT. Identification of potential crucial genes and key pathways shared in inflammatory bowel disease and cervical cancer by machine learning and integrated bioinformatics.Comput. Biol. Med.202214910599610.1016/j.compbiomed.2022.105996 36049413
    [Google Scholar]
  73. BaiX. WangW. ZhaoP. WenJ. GuoX. ShenT. ShenJ. YangX. LncRNA CRNDE acts as an oncogene in cervical cancer through sponging miR-183 to regulate CCNB1 expression.Carcinogenesis202041111112110.1093/carcin/bgz166 31605132
    [Google Scholar]
  74. WuX. PengL. ZhangY. ChenS. LeiQ. LiG. ZhangC. Identification of key genes and pathways in cervical cancer by bioinformatics analysis.Int. J. Med. Sci.201916680081210.7150/ijms.34172 31337953
    [Google Scholar]
  75. JinP. HardyS. MorganD.O. Nuclear localization of cyclin B1 controls mitotic entry after DNA damage.J. Cell Biol.1998141487588510.1083/jcb.141.4.875 9585407
    [Google Scholar]
  76. XiaP. ZhangH. XuK. JiangX. GaoM. WangG. LiuY. YaoY. ChenX. MaW. ZhangZ. YuanY. MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma.Cell Death Dis.202112769110.1038/s41419‑021‑03973‑5 34244479
    [Google Scholar]
  77. ZhangH. ZhangX. LiX. MengW.B. BaiZ.T. RuiS.Z. WangZ.F. ZhouW.C. JinX.D. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer.J. Cell. Physiol.2019234161963110.1002/jcp.26816 30069972
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096391591250506064859
Loading
/content/journals/ccdt/10.2174/0115680096391591250506064859
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CCNB1; disease-free survival (DFS); MND1; p53; proliferation; Prostate cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test