Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

It is difficult for CD19 CAR-T cells to enter solid tumors, which is one reason for their poor efficacy in lymphoma treatment. The chemokine CXCL13 secreted by stromal cells of the lymph nodes induces the homing of B and T lymphocytes, which express its receptor CXCR5. Preclinical trials have shown that the expression of CXCR5 on CD19 CAR-T cells can increase their migration to the tumor microenvironment and enhance their antitumor function.

Methods

We engineered the CD19 CAR-T cells to express a second receptor, CXCR5. Then, we conducted a phase I clinical trial to evaluate the safety and efficacy of CXCR5 CD19 CAR-T cells in the treatment of relapsed or refractory (R/R) B-cell lymphoma.

Results

We recruited 10 patients with R/R B-cell lymphoma undergoing CXCR5 CD19 CAR-T cell therapy. The objective response rate was 80%, and the complete response rate was 50%. The median follow-up time was 15.48 months (3.4-22.3 months), and the median Progression-Free Survival (PFS) time was 8.15 months (1.5-22.33 months). One patient received ASCT at 1.5 months (at PR) after infusion of CAR-T cells. The incidence of grade 1 and grade 2 Cytokine Release Syndrome (CRS) was 70% and 20%, respectively. No patient experienced grade 3 or higher levels of CRS, neurotoxicity, or infusion-related dose toxicity.

Conclusion

The results obtained in this study suggest that CXCR5 CD19 CAR-T cells should be investigated in a trial with broader patient populations.

Trial Registration

The trials were registered at www.chictr.org.cn as ChiCTR2100052677 and ChiCTR1900028692.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096304530240816111936
2024-09-27
2025-10-28
Loading full text...

Full text loading...

References

  1. EnnishiD. HsiE.D. SteidlC. ScottD.W. Toward a new molecular taxonomy of diffuse large B-cell lymphoma.Cancer Discov.20201091267128110.1158/2159‑8290.CD‑20‑0174 32616477
    [Google Scholar]
  2. KochenderferJ.N. SomervilleR.P.T. LuT. YangJ.C. SherryR.M. FeldmanS.A. McIntyreL. BotA. RossiJ. LamN. RosenbergS.A. Long-duration complete remissions of diffuse large b cell lymphoma after anti-cd19 chimeric antigen receptor T cell therapy.Mol. Ther.201725102245225310.1016/j.ymthe.2017.07.004 28803861
    [Google Scholar]
  3. ParkJ.H. RivièreI. GonenM. WangX. SénéchalB. CurranK.J. SauterC. WangY. SantomassoB. MeadE. RoshalM. MaslakP. DavilaM. BrentjensR.J. SadelainM. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia.N. Engl. J. Med.2018378544945910.1056/NEJMoa1709919 29385376
    [Google Scholar]
  4. CrumpM. NeelapuS.S. FarooqU. Van Den NesteE. KuruvillaJ. WestinJ. LinkB.K. HayA. CerhanJ.R. ZhuL. BoussettaS. FengL. MaurerM.J. NavaleL. WiezorekJ. GoW.Y. GisselbrechtC. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study.Blood2017130161800180810.1182/blood‑2017‑03‑769620 28774879
    [Google Scholar]
  5. SehnL.H. GascoyneR.D. Diffuse large B-cell lymphoma: Optimizing outcome in the context of clinical and biologic heterogeneity.Blood20151251223210.1182/blood‑2014‑05‑577189 25499448
    [Google Scholar]
  6. ZelenetzA.D. GordonL.I. AbramsonJ.S. AdvaniR.H. AndreadisB. BartlettN.L. BuddeL.E. CaimiP.F. ChangJ.E. ChristianB. DeVosS. DholariaB. FayadL.E. HabermannT.M. HamidM.S. Hernandez-IlizaliturriF. HuB. KaminskiM.S. KarimiY. KelseyC.R. KingR. KrivacicS. LaCasceA.S. LimM. MessmerM. NarkhedeM. RabinovitchR. RamakrishnanP. ReidE. RobertsK.B. SaeedH. SmithS.D. SvobodaJ. SwinnenL.J. TuscanoJ. VoseJ.M. DwyerM.A. SundarH. NCCN guidelines® insights: B-cell lymphomas, version 6.2023.J. Natl. Compr. Canc. Netw.202321111118113110.6004/jnccn.2023.0057 37935098
    [Google Scholar]
  7. Arun KumarS. GaoJ. PatelS.A. The shifting therapeutic paradigm for relapsed/refractory mantle cell lymphoma.Leuk. Res.202313410738510.1016/j.leukres.2023.107385 37672954
    [Google Scholar]
  8. Benevolo SavelliC. ClericoM. BottoB. SecretoC. CavalloF. DellacasaC. BuscaA. BrunoB. FreiloneR. CerranoM. NovoM. Chimeric antigen receptor-T cell therapy for lymphoma: New settings and future directions.Cancers20231614610.3390/cancers16010046 38201473
    [Google Scholar]
  9. García-SanchoA.M. CaberoA. GutiérrezN.C. Treatment of relapsed or refractory diffuse large b-cell lymphoma: New approved options.J. Clin. Med.20231317010.3390/jcm13010070 38202077
    [Google Scholar]
  10. DadaR. Understanding the differences in outcome between CART studies as second-line treatment in aggressive lymphoma.J. Oncol. Pharm. Pract.202329118319010.1177/10781552221110806 35786102
    [Google Scholar]
  11. RoozendaalR. MebiusR.E. Stromal cell-immune cell interactions.Annu. Rev. Immunol.2011291234310.1146/annurev‑immunol‑031210‑101357 21073333
    [Google Scholar]
  12. GunnM.D. NgoV.N. AnselK.M. EklandE.H. CysterJ.G. WilliamsL.T. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1.Nature1998391666979980310.1038/35876 9486651
    [Google Scholar]
  13. CarlsenH.S. BaekkevoldE.S. MortonH.C. HaraldsenG. BrandtzaegP. Monocyte-like and mature macrophages produce CXCL13 (B cell–attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis.Blood2004104103021302710.1182/blood‑2004‑02‑0701 15284119
    [Google Scholar]
  14. AyalaV.I. DeleageC. TrivettM.T. JainS. CorenL.V. BreedM.W. KramerJ.A. ThomasJ.A. EstesJ.D. LifsonJ.D. OttD.E. CXCR5-dependent entry of CD8 T cells into rhesus macaque B-cell follicles achieved through t-cell engineering.J. Virol.20179111e02507e0251610.1128/JVI.02507‑16 28298605
    [Google Scholar]
  15. HussonH. FreedmanA.S. CardosoA.A. SchultzeJ. MunozO. StrolaG. KutokJ. CarideoE.G. De BeaumontR. Caligaris-CappioF. GhiaP. CXCL13 (BCA-1) is produced by follicular lymphoma cells: role in the accumulation of malignant B cells.Br. J. Haematol.2002119249249510.1046/j.1365‑2141.2002.03832.x 12406091
    [Google Scholar]
  16. Sáez de GuinoaJ. BarrioL. MelladoM. CarrascoY.R. CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics.Blood201111861560156910.1182/blood‑2011‑01‑332106 21659539
    [Google Scholar]
  17. CharbonneauB. WangA.H. MaurerM.J. AsmannY.W. ZentC.S. LinkB.K. AnsellS.M. WeinerG.J. OzsanN. FeldmanA.L. WitzigT.E. CunninghamJ.M. DoganA. HabermannT.M. SlagerS.L. NovakA.J. CerhanJ.R. CXCR5 polymorphisms in non-Hodgkin lymphoma risk and prognosis.Cancer Immunol. Immunother.20136291475148410.1007/s00262‑013‑1452‑4 23812490
    [Google Scholar]
  18. KrenácsL. KrenácsD. BorbényiZ. TóthE. NagyA. PiukovicsK. BagdiE. Comparison of follicular helper t-cell markers with the expression of the follicular homing marker CXCR5 in peripheral T-cell lymphomas—a reappraisal of follicular helper T-cell lymphomas.Int. J. Mol. Sci.202325142810.3390/ijms25010428 38203606
    [Google Scholar]
  19. YuD. YeL. A portrait of CXCR5+ follicular cytotoxic CD8+ T cells.Trends Immunol.2018391296597910.1016/j.it.2018.10.002 30377045
    [Google Scholar]
  20. YeL. LiY. TangH. LiuW. ChenY. DaiT. LiangR. ShiM. YiS. ChenG. YangY. CD8+CXCR5+T cells infiltrating hepatocellular carcinomas are activated and predictive of a better prognosis.Aging201911208879889110.18632/aging.102308 31663864
    [Google Scholar]
  21. YoshitomiH. CXCL13-producing PD-1 hi CXCR5 − helper T cells in chronic inflammation.Immunol. Med.202043415616010.1080/25785826.2020.1781998 32584200
    [Google Scholar]
  22. PampuschM.S. AbdelaalH.M. CartwrightE.K. MoldenJ.S. DaveyB.C. SauveJ.D. SevcikE.N. RendahlA.K. RakaszE.G. ConnickE. BergerE.A. SkinnerP.J. CAR/CXCR5-T cell immunotherapy is safe and potentially efficacious in promoting sustained remission of SIV infection.PLoS Pathog.2022182e100983110.1371/journal.ppat.1009831 35130312
    [Google Scholar]
  23. ValentineK.M. HoyerK.K. CXCR5+ CD8 T cells: Protective or pathogenic?Front. Immunol.201910132210.3389/fimmu.2019.01322 31275308
    [Google Scholar]
  24. PanjidehH. MüllerG. KochM. WildeF. ScheuS. MoldenhauerG. LippM. Immunotherapy of B‐cell non‐Hodgkin lymphoma by targeting the chemokine receptor CXCR5 in a preclinical mouse model.Int. J. Cancer2014135112623263210.1002/ijc.28893 24729415
    [Google Scholar]
  25. PampuschM.S. HajduczkiA. MwakalundwaG. ConnickE. BergerE.A. SkinnerP.J. Production and characterization of SIV-specific CAR/CXCR5 T cells.Methods Mol. Biol.2022242117118510.1007/978‑1‑0716‑1944‑5_12 34870819
    [Google Scholar]
  26. LiG. GuoJ. ZhengY. DingW. HanZ. QinL. MoW. LuoM. CXCR5 guides migration and tumor eradication of anti-EGFR chimeric antigen receptor T cells.Mol. Ther. Oncolytics20212250751710.1016/j.omto.2021.07.003 34553036
    [Google Scholar]
  27. SinghR. GuptaP. KloeckerG.H. SinghS. LillardJ.W. Jr Expression and clinical significance of CXCR5/CXCL13 in human non-small cell lung carcinoma.Int. J. Oncol.20144562232224010.3892/ijo.2014.2688 25271023
    [Google Scholar]
  28. TraianosE.Y. LockeJ. LendremD. BowmanS. HargreavesB. MacraeV. TarnJ.R. NgW.F. Serum CXCL13 levels are associated with lymphoma risk and lymphoma occurrence in primary Sjögren’s syndrome.Rheumatol. Int.202040454154810.1007/s00296‑020‑04524‑5 32047959
    [Google Scholar]
  29. AokiT. ChongL.C. TakataK. MilneK. MarshallA. ChavezE.A. Miyata-TakataT. Ben-NeriahS. UnrauD. TeleniusA. BoyleM. WengA.P. SavageK.J. ScottD.W. FarinhaP. ShahS.P. NelsonB.H. SteidlC. Single-cell profiling reveals the importance of CXCL13/CXCR5 axis biology in lymphocyte-rich classic Hodgkin lymphoma.Proc. Natl. Acad. Sci. USA202111841e210582211810.1073/pnas.2105822118 34615710
    [Google Scholar]
  30. AokiT. JiangA. XuA. YinY. GamboaA. MilneK. TakataK. Miyata-TakataT. ChungS. RaiS. WuS. WarrenM. StrongC. GoodyearT. MorrisK. ChongL.C. HavM. ColomboA.R. TeleniusA. BoyleM. Ben-NeriahS. PowerM. GerrieA.S. Wenga.P. KarsanA. RothA. FarinhaP. ScottD.W. SavageK.J. NelsonB.H. MerchantA. SteidlC. Spatially resolved tumor microenvironment predicts treatment outcomes in relapsed/refractory hodgkin lymphoma.J. Clin. Oncol.20244291077108710.1200/JCO.23.01115 38113419
    [Google Scholar]
  31. AhearneM.J. AllchinR.L. FoxC.P. WagnerS.D. Follicular helper T‐cells: Expanding roles in T‐cell lymphoma and targets for treatment.Br. J. Haematol.2014166332633510.1111/bjh.12941 24815671
    [Google Scholar]
  32. KrauseG. HassenrückF. HallekM. Relevant cytokines in the B cell lymphoma micro-environment.Cancers2020129252510.3390/cancers12092525 32899476
    [Google Scholar]
  33. SantomassoB.D. NastoupilL.J. AdkinsS. LacchettiC. SchneiderB.J. AnadkatM. AtkinsM.B. BrassilK.J. CaterinoJ.M. ChauI. DaviesM.J. ErnstoffM.S. FecherL. FunchainP. JaiyesimiI. MammenJ.S. NaidooJ. NaingA. PhillipsT. PorterL.D. ReichnerC.A. SeigelC. SongJ.M. SpiraA. Suarez-AlmazorM. SwamiU. ThompsonJ.A. VikasP. WangY. WeberJ.S. BollinK. GhoshM. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline.J. Clin. Oncol.202139353978399210.1200/JCO.21.01992 34724386
    [Google Scholar]
  34. PasquiniM.C. HuZ.H. CurranK. LaetschT. LockeF. RouceR. PulsipherM.A. PhillipsC.L. KeatingA. FrigaultM.J. SalzbergD. JaglowskiS. SasineJ.P. RosenthalJ. GhoshM. LandsburgD. MargossianS. MartinP.L. KamdarM.K. HemattiP. NikiforowS. TurtleC. PeralesM.A. SteinertP. HorowitzM.M. MoskopA. PacaudL. YiL. ChawlaR. BleickardtE. GruppS. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma.Blood Adv.20204215414542410.1182/bloodadvances.2020003092 33147337
    [Google Scholar]
  35. ItzhakiO. JacobyE. NissaniA. LeviM. NaglerA. KubiA. BrezingerK. BrayerH. ZeltzerL. RozenbaumM. VernitskyH. MarkelG. TorenA. AvigdorA. SchachterJ. BesserM.J. Head-to-head comparison of in-house produced CD19 CAR-T cell in ALL and NHL patients.J. Immunother. Cancer202081e00014810.1136/jitc‑2019‑000148 32152221
    [Google Scholar]
  36. MaalejK.M. MerhiM. InchakalodyV.P. MestiriS. AlamM. MaccalliC. CherifH. UddinS. SteinhoffM. MarincolaF.M. DermimeS. CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances.Mol. Cancer20232212010.1186/s12943‑023‑01723‑z 36717905
    [Google Scholar]
  37. RuellaM. KorellF. PorazziP. MausM.V. Mechanisms of resistance to chimeric antigen receptor-T cells in haematological malignancies.Nat. Rev. Drug Discov.2023221297699510.1038/s41573‑023‑00807‑1 37907724
    [Google Scholar]
  38. WestinJ.R. KerstenM.J. SallesG. AbramsonJ.S. SchusterS.J. LockeF.L. AndreadisC. Efficacy and safety of CD19 ‐directed CAR‐T cell therapies in patients with relapsed/refractory aggressive B‐cell lymphomas: Observations from the JULIET, ZUMA ‐1, and TRANSCEND trials.Am. J. Hematol.202196101295131210.1002/ajh.26301 34310745
    [Google Scholar]
  39. MiaoL. ZhangZ. RenZ. LiY. Reactions related to CAR-T cell therapy.Front. Immunol.20211266320110.3389/fimmu.2021.663201 33995389
    [Google Scholar]
  40. JinY. DongY. ZhangJ. SunJ. LiuY. ChenY. The toxicity of cell therapy: Mechanism, manifestations, and challenges.J. Appl. Toxicol.202141565966710.1002/jat.4100 33241595
    [Google Scholar]
  41. Di StasiA. De AngelisB. RooneyC.M. ZhangL. MahendravadaA. FosterA.E. HeslopH.E. BrennerM.K. DottiG. SavoldoB. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model.Blood2009113256392640210.1182/blood‑2009‑03‑209650 19377047
    [Google Scholar]
  42. CraddockJ.A. LuA. BearA. PuleM. BrennerM.K. RooneyC.M. FosterA.E. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b.J. Immunother.201033878078810.1097/CJI.0b013e3181ee6675 20842059
    [Google Scholar]
  43. MoonE.K. CarpenitoC. SunJ. WangL.C.S. KapoorV. PredinaJ. PowellD.J.Jr RileyJ.L. JuneC.H. AlbeldaS.M. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor.Clin. Cancer Res.201117144719473010.1158/1078‑0432.CCR‑11‑0351 21610146
    [Google Scholar]
  44. JinL. CaoL. ZhuY. CaoJ. LiX. ZhouJ. LiuB. ZhaoT. Enhance anti-lung tumor efficacy of chimeric antigen receptor-T cells by ectopic expression of C–C motif chemokine receptor 6.Sci. Bull.202166880381210.1016/j.scib.2020.12.027 36654137
    [Google Scholar]
  45. HoflandT. MartensA.W.J. van BruggenJ.A.C. de BoerR. SchettersS. RemmerswaalE.B.M. BemelmanF.J. LevinM.D. BinsA.D. ElderingE. KaterA.P. ToninoS.H. Human CXCR5 + PD‐1 + CD8 T cells in healthy individuals and patients with hematologic malignancies.Eur. J. Immunol.202151370371310.1002/eji.202048761 33098668
    [Google Scholar]
  46. CaoY. LuW. SunR. JinX. ChengL. HeX. WangL. YuanT. LyuC. ZhaoM. Anti-CD19 chimeric antigen receptor T cells in combination with nivolumab are safe and effective against relapsed/refractory B-cell non-hodgkin lymphoma.Front. Oncol.2019976710.3389/fonc.2019.00767 31482064
    [Google Scholar]
  47. HsiehC.H. Potential role of CXCL13/CXCR5 signaling in immune checkpoint inhibitor treatment in cancer.Cancers2022142294
    [Google Scholar]
  48. HoellwerthM. KoelblingerP. LangR. HarrerA. Revisiting the role of the CXCL13/CXCR5-associated immune axis in melanoma: Potential implications for anti-pd-1-related biomarker research.Life202313255310.3390/life13020553 36836910
    [Google Scholar]
  49. YangM. LuJ. ZhangG. WangY. HeM. XuQ. XuC. LiuH. CXCL13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer.J. Immunother. Cancer202191e00113610.1136/jitc‑2020‑001136 33452206
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096304530240816111936
Loading
/content/journals/ccdt/10.2174/0115680096304530240816111936
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CD19 CAR-T; chemokines; CXCL13-CXCR5; cytokine; immunity therapy; Lymphoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test