Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Cholesterol has been shown to be a potential risk factor for the occurrence and progression of breast cancer. This study aimed to investigate the regulation of DHCR7 in cholesterol synthesis and its role in Hedgehog (Hh) signaling pathway activation, as well as its impact on the progression of triple-negative breast cancer (TNBC).

Methods

We analyzed the gene expression data from the GSE76275 data set by bioinformatics analysis to determine the expression of cholesterol-related genes in TNBC. In the TNBC cell lines, including BT-549 and MDA-MB-231, RNA interference gene knockout was used to evaluate the functional impact of DHCR7. In addition, the SMO mutant (SMOV329F) with anti-cholesterol binding inhibition was introduced to determine its interaction with the pathway changes mediated by DHCR7. Cell proliferation, migration, and signaling pathway activation were assessed through Western blotting, CCK-8 assay, transwell migration assay, and qPCR.

Results

DHCR7 expression was significantly elevated in TNBC tissues and cell lines, enhancing the Hh pathway activity through cholesterol modulation. Knocking down DHCR7 and the SMOV329F mutation both reduced the expression of Hedgehog-related proteins and inhibited cell proliferation and migration abilities. However, the SMOV329F mutation reversed the inhibitory effect of knocking down DHCR7 on TNBC cells.

Conclusion

DHCR7 activates the Hedgehog pathway by regulating cholesterol to promote the development of TNBC. These findings provide insights into the regulatory roles of DHCR7 in cholesterol-related pathways and Hh signaling in TNBC cells, offering potential therapeutic targets for TNBC treatment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096363566250119155918
2025-02-14
2025-10-11
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. AdradaB.E. MoseleyT.W. KapoorM.M. ScogginsM.E. PatelM.M. PerezF. NiaE.S. KhazaiL. ArribasE. RauchG.M. GuirguisM.S. Triple-negative breast cancer: Histopathologic features, genomics, and treatment.Radiographics20234310e23003410.1148/rg.230034 37792593
    [Google Scholar]
  3. KarimA.M. Eun KwonJ. AliT. JangJ. UllahI. LeeY.G. ParkD.W. ParkJ. JeangJ.W. KangS.C. Triple-negative breast cancer: Epidemiology, molecular mechanisms, and modern vaccine-based treatment strategies.Biochem. Pharmacol.202321211554510.1016/j.bcp.2023.115545 37044296
    [Google Scholar]
  4. JieL. HongC. Dexmedetomidine affects triple-negative breast cancer by targeting IDO1 and CHRM3.J. Biol. Regul. Homeost. Agents202438324872501
    [Google Scholar]
  5. MengY WangQ LyuZ Cholesterol metabolism and tumor. Zhejiang Da Xue Xue Bao Yi Xue Ban,2021501233110.3724/zdxbyxb‑2021003334117857
    [Google Scholar]
  6. ChenY.Y. GeJ.Y. ZhuS.Y. ShaoZ.M. YuK.D. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis.Nat. Commun.202213179110.1038/s41467‑022‑28452‑z 35145111
    [Google Scholar]
  7. SaadE.E. MichelR. BorahayM.A. Cholesterol and immune microenvironment: Path towards tumorigenesis.Curr. Nutr. Rep.202413355756510.1007/s13668‑024‑00542‑y 38696074
    [Google Scholar]
  8. HuangB. SongB. XuC. Cholesterol metabolism in cancer: Mechanisms and therapeutic opportunities.Nat. Metab.20202213214110.1038/s42255‑020‑0174‑0 32694690
    [Google Scholar]
  9. GotoW. KashiwagiS. TakadaK. AsanoY. OgisawaK. MorisakiT. ShibutaniM. TanakaH. MaedaK. Clinical verification of the relationship between serum lipid metabolism and immune activity in breast cancer patients treated with neoadjuvant chemotherapy.Eur. J. Med. Res.2023281210.1186/s40001‑022‑00964‑w 36593486
    [Google Scholar]
  10. LiX. RobertiR. BlobelG. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum.Nature2015517753210410710.1038/nature13797 25307054
    [Google Scholar]
  11. ZouJ. LiuS. LongJ. YanB. High DHCR7 expression predicts poor prognosis for cervical cancer.Comput. Math. Methods Med.2022202212310.1155/2022/8383885 36164611
    [Google Scholar]
  12. WangY. FanJ. LiuY. DuJ. LiangB. WangH. SongZ. Identification and validation of DHCR7 as a diagnostic biomarker involved in the proliferation and mitochondrial function of breast cancer.Aging (Albany NY)20241675967598610.18632/aging.205683 38526324
    [Google Scholar]
  13. LiY. ZhouY. HuangM. WangZ. LiuD. LiuJ. FuX. YangS. ShanS. YangL. GuoY. RenP. ChenP. ZengG. GuoY. WangX. DiSantoM.E. ZhangX. DHCR7 promotes tumorigenesis via activating PI3K/AKT/mTOR signalling pathway in bladder cancer.Cell. Signal.202310211055310.1016/j.cellsig.2022.110553 36473621
    [Google Scholar]
  14. HuiM. CazetA. NairR. WatkinsD.N. O’TooleS.A. SwarbrickA. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy.Breast Cancer Res.201315220310.1186/bcr3401 23547970
    [Google Scholar]
  15. ArnoldK. PohligR. Sims-MourtadaJ. Co activation of Hedgehog and Wnt signaling pathways is associated with poor outcomes in triple negative breast cancer.Oncol. Lett.20171455285529210.3892/ol.2017.6874 29142600
    [Google Scholar]
  16. HabibJ.G. O’ShaughnessyJ.A. The hedgehog pathway in triple‐negative breast cancer.Cancer Med.20165102989300610.1002/cam4.833 27539549
    [Google Scholar]
  17. Ruiz-BorregoM. JimenezB. AntolínS. García-SaenzJ.A. CorralJ. JerezY. TrigoJ. UrruticoecheaA. ColomH. GonzaloN. MuñozC. BenitoS. CaballeroR. BezaresS. CarrascoE. RojoF. MartínM. A phase Ib study of sonidegib (LDE225), an oral small molecule inhibitor of smoothened or Hedgehog pathway, in combination with docetaxel in triple negative advanced breast cancer patients: GEICAM/2012–12 (EDALINE) study.Invest. New Drugs20193719810810.1007/s10637‑018‑0614‑9 29948356
    [Google Scholar]
  18. JiangJ. Hedgehog signaling mechanism and role in cancer.Semin. Cancer Biol.20228510712210.1016/j.semcancer.2021.04.003 33836254
    [Google Scholar]
  19. RadhakrishnanA. RohatgiR. SieboldC. Cholesterol access in cellular membranes controls Hedgehog signaling.Nat. Chem. Biol.202016121303131310.1038/s41589‑020‑00678‑2 33199907
    [Google Scholar]
  20. FindaklyS. DaggubatiV. GarciaG.III LaStellaS.A. ChoudhuryA. TranC. LiA. TongP. GarciaJ.Q. PuriN. ReiterJ.F. XuL. RaleighD.R. Sterol and oxysterol synthases near the ciliary base activate the Hedgehog pathway.J. Cell Biol.20212201e20200202610.1083/jcb.202002026 33284321
    [Google Scholar]
  21. KinnebrewM. WoolleyR.E. AnsellT.B. ByrneE.F.X. FriguiS. LuchettiG. SircarR. NachtergaeleS. Mydock-McGraneL. KrishnanK. NewsteadS. SansomM.S.P. CoveyD.F. SieboldC. RohatgiR. Patched 1 regulates Smoothened by controlling sterol binding to its extracellular cysteine-rich domain.Sci. Adv.2022822eabm556310.1126/sciadv.abm5563 35658032
    [Google Scholar]
  22. BursteinM.D. TsimelzonA. PoageG.M. CovingtonK.R. ContrerasA. FuquaS.A.W. SavageM.I. OsborneC.K. HilsenbeckS.G. ChangJ.C. MillsG.B. LauC.C. BrownP.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer.Clin. Cancer Res.20152171688169810.1158/1078‑0432.CCR‑14‑0432 25208879
    [Google Scholar]
  23. WilliamsC.H. HempelJ.E. HaoJ. FristA.Y. WilliamsM.M. FlemingJ.T. SulikowskiG.A. CooperM.K. ChiangC. HongC.C. An in vivo chemical genetic screen identifies phosphodiesterase 4 as a pharmacological target for hedgehog signaling inhibition.Cell Rep.2015111435010.1016/j.celrep.2015.03.001 25818300
    [Google Scholar]
  24. KasperM. ReglG. FrischaufA.M. AbergerF. GLI transcription factors: Mediators of oncogenic Hedgehog signalling.Eur. J. Cancer200642443744510.1016/j.ejca.2005.08.039 16406505
    [Google Scholar]
  25. DingX. ZhangW. LiS. YangH. The role of cholesterol metabolism in cancer.Am. J. Cancer Res.201992219227 30906624
    [Google Scholar]
  26. XuH. ZhouS. TangQ. XiaH. BiF. Cholesterol metabolism: New functions and therapeutic approaches in cancer.Biochim. Biophys. Acta Rev. Cancer20201874118839410.1016/j.bbcan.2020.188394 32698040
    [Google Scholar]
  27. EhmsenS. PedersenM.H. WangG. TerpM.G. ArslanagicA. HoodB.L. ConradsT.P. Leth-LarsenR. DitzelH.J. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome.Cell Rep.2019271339273938.e610.1016/j.celrep.2019.05.104 31242424
    [Google Scholar]
  28. KinnebrewM. IversonE.J. PatelB.B. PusapatiG.V. KongJ.H. JohnsonK.A. LuchettiG. EckertK.M. McDonaldJ.G. CoveyD.F. SieboldC. RadhakrishnanA. RohatgiR. Cholesterol accessibility at the ciliary membrane controls hedgehog signaling.eLife20198e5005110.7554/eLife.50051 31657721
    [Google Scholar]
  29. ChenY. YanW. YangK. QianY. ChenY. WangR. ZhuJ. HeY. WuH. ZhangG. ShiT. ChenW. Integrated multi-dimensional analysis highlights DHCR7 mutations involving in cholesterol biosynthesis and contributing therapy of gastric cancer.J. Exp. Clin. Cancer Res.20234213610.1186/s13046‑023‑02611‑6 36710342
    [Google Scholar]
  30. MeiX. XiongJ. LiuJ. HuangA. ZhuD. HuangY. WangH. DHCR7 promotes lymph node metastasis in cervical cancer through cholesterol reprogramming-mediated activation of the KANK4/PI3K/AKT axis and VEGF-C secretion.Cancer Lett.202458421660910.1016/j.canlet.2024.216609 38211648
    [Google Scholar]
  31. DasS. SamantR.S. ShevdeL.A. Nonclassical activation of Hedgehog signaling enhances multidrug resistance and makes cancer cells refractory to Smoothened-targeting Hedgehog inhibition.J. Biol. Chem.201328817118241183310.1074/jbc.M112.432302 23508962
    [Google Scholar]
  32. LiY. MaitahM.Y. AhmadA. KongD. BaoB. SarkarF.H. Targeting the Hedgehog signaling pathway for cancer therapy.Expert Opin. Ther. Targets2012161496610.1517/14728222.2011.617367 22243133
    [Google Scholar]
  33. GalletA. RuelL. Staccini-LavenantL. ThérondP.P. Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia.Development2006133340741810.1242/dev.02212 16396912
    [Google Scholar]
  34. MedinaM.A. OzaG. SharmaA. ArriagaL.G. Hernández HernándezJ.M. RotelloV.M. RamirezJ.T. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies.Int. J. Environ. Res. Public Health2020176207810.3390/ijerph17062078 32245065
    [Google Scholar]
  35. LuchettiG. SircarR. KongJ.H. NachtergaeleS. SagnerA. ByrneE.F.X. CoveyD.F. SieboldC. RohatgiR. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling.eLife20165e2030410.7554/eLife.20304 27705744
    [Google Scholar]
  36. SuzukiA. OgataK. YoshiokaH. ShimJ. WassifC.A. PorterF.D. IwataJ. Disruption of Dhcr7 and Insig1/2 in cholesterol metabolism causes defects in bone formation and homeostasis through primary cilium formation.Bone Res.202081110.1038/s41413‑019‑0078‑3 31934493
    [Google Scholar]
  37. GiammonaA. CrivaroE. SteccaB. Emerging roles of hedgehog signaling in cancer immunity.Int. J. Mol. Sci.2023242132110.3390/ijms24021321 36674836
    [Google Scholar]
  38. VermaR.K. YuW. ShrivastavaA. ShankarS. SrivastavaR.K. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice.Sci. Rep.2016613274310.1038/srep32743 27624879
    [Google Scholar]
  39. LiuP. LuY. YangY. ChenX. XiongW. SunJ. Expression of tumour transcription factor GLI1 in canine mammary tumours tissue.Vet. Med. Sci.2022841451145710.1002/vms3.830 35667035
    [Google Scholar]
  40. WangX. LuH. UrvalekA.M. LiT. YuL. LamarJ. DiPersioC.M. FeustelP.J. ZhaoJ. KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9.Oncogene201130161901191110.1038/onc.2010.563 21151179
    [Google Scholar]
  41. WitusS.R. BurrellA.L. FarrellD.P. KangJ. WangM. HansenJ.M. PravatA. TuttleL.M. StewartM.D. BrzovicP.S. ChatterjeeC. ZhaoW. DiMaioF. KollmanJ.M. KlevitR.E. BRCA1/BARD1 site-specific ubiquitylation of nucleosomal H2A is directed by BARD1.Nat. Struct. Mol. Biol.202128326827710.1038/s41594‑020‑00556‑4 33589814
    [Google Scholar]
  42. DeshpandeI. LiangJ. HedeenD. RobertsK.J. ZhangY. HaB. LatorracaN.R. FaustB. DrorR.O. BeachyP.A. MyersB.R. ManglikA. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity.Nature2019571776428428810.1038/s41586‑019‑1355‑4 31263273
    [Google Scholar]
  43. WangY. WangJ. LiX. XiongX. WangJ. ZhouZ. ZhuX. GuY. DominissiniD. HeL. TianY. YiC. FanZ. N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism.Nat. Commun.2021121631410.1038/s41467‑021‑26718‑6 34728628
    [Google Scholar]
  44. QiuT. CaoJ. ChenW. WangJ. WangY. ZhaoL. LiuM. HeL. WuG. LiH. GuH. 24‐Dehydrocholesterol reductase promotes the growth of breast cancer stem‐like cells through the Hedgehog pathway.Cancer Sci.2020111103653366410.1111/cas.14587 32713162
    [Google Scholar]
  45. ChengL. SchneiderB.P. LiL. A bioinformatics approach for precision medicine off-label drug drug selection among triple negative breast cancer patients.J. Am. Med. Inform. Assoc.201623474174910.1093/jamia/ocw004 27107440
    [Google Scholar]
  46. SutherlandR.L. MurphyL.C. FooM.S. GreenM.D. WhybourneA.M. KrozowskiZ.S. High-affinity anti-oestrogen binding site distinct from the oestrogen receptor.Nature1980288578827327510.1038/288273a0 7432524
    [Google Scholar]
  47. GerrickK.Y. GerrickE.R. GuptaA. WheelanS.J. YegnasubramanianS. JaffeeE.M. Transcriptional profiling identifies novel regulators of macrophage polarization.PLoS One20181312e020860210.1371/journal.pone.0208602 30532146
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096363566250119155918
Loading
/content/journals/ccdt/10.2174/0115680096363566250119155918
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): cholesterol; DHCR7; Hedgehog signaling pathway; SMO; Triple-negative breast cancer; V329F
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test