Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

The cell death field has profited from the increasing attention of the scientific community and has been shown to lie at the very basis of cancer initiation and progression. Cuproptosis is a recently proposed method of cell death in 2022, and it is different from any previously reported method. The principle is that copper ions lead to aggregation and instability of intracellular proteins. An increasing number of researchers are dedicated to enriching the mechanism of cuproptosis and exploring its relationship with cancer. Studies have found that intracellular copper levels have an impact on the occurrence and development of lymphoma. The complexity of lymphoma and the limitations of treatment necessitate in-depth studies of the disease. We will review the mechanism of cuproptosis and its potential in lymphoma therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096296742240614100116
2024-07-11
2025-10-11
Loading full text...

Full text loading...

References

  1. GreenD.R. The coming decade of cell death research: Five riddles.Cell201917751094110710.1016/j.cell.2019.04.02431100266
    [Google Scholar]
  2. TsvetkovP. CoyS. PetrovaB. DreishpoonM. VermaA. AbdusamadM. RossenJ. Joesch-CohenL. HumeidiR. SpanglerR.D. EatonJ.K. FrenkelE. KocakM. CorselloS.M. LutsenkoS. KanarekN. SantagataS. GolubT.R. Copper induces cell death by targeting lipoylated TCA cycle proteins.Science202237565861254126110.1126/science.abf052935298263
    [Google Scholar]
  3. FestaR.A. ThieleD.J. Copper: An essential metal in biology.Curr. Biol.20112121R877R88310.1016/j.cub.2011.09.04022075424
    [Google Scholar]
  4. NoseY. WoodL.K. KimB.E. ProhaskaJ.R. FryR.S. SpearsJ.W. ThieleD.J. Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability.J. Biol. Chem.201028542323853239210.1074/jbc.M110.14382620699218
    [Google Scholar]
  5. HermanS. LipińskiP. StarzyńskiR. BednarzA. GrzmilP. LenartowiczM. Molecular mechanisms of cellular copper homeostasis in mammals.Folia Biol.202270420121210.3409/fb_70‑4.23
    [Google Scholar]
  6. HatoriY. LutsenkoS. The role of copper chaperone atox1 in coupling redox homeostasis to intracellular copper distribution.Antioxidants2016532510.3390/antiox503002527472369
    [Google Scholar]
  7. TapieroH. TownsendD.M. TewK.D. Trace elements in human physiology and pathology. Copper.Biomed. Pharmacother.200357938639810.1016/S0753‑3322(03)00012‑X14652164
    [Google Scholar]
  8. LeeJ.Y. KimY.H. KimT.W. OhS.Y. KimD.S. ShinB.S. New novel mutation of the ATP7B gene in a family with Wilson disease.J. Neurol. Sci.20123131-212913110.1016/j.jns.2011.09.00722075048
    [Google Scholar]
  9. GeE.J. BushA.I. CasiniA. CobineP.A. CrossJ.R. DeNicolaG.M. DouQ.P. FranzK.J. GohilV.M. GuptaS. KalerS.G. LutsenkoS. MittalV. PetrisM.J. PolishchukR. RalleM. SchilskyM.L. TonksN.K. VahdatL.T. Van AelstL. XiD. YuanP. BradyD.C. ChangC.J. Connecting copper and cancer: From transition metal signalling to metalloplasia.Nat. Rev. Cancer202222210211310.1038/s41568‑021‑00417‑234764459
    [Google Scholar]
  10. AckermanC.M. LeeS. ChangC.J. Analytical methods for imaging metals in biology: From transition metal metabolism to transition metal signaling.Anal. Chem.2017891224110.1021/acs.analchem.6b0463127976855
    [Google Scholar]
  11. ShanbhagV. Jasmer-McDonaldK. ZhuS. MartinA.L. GudekarN. KhanA. LadomerskyE. SinghK. WeismanG.A. PetrisM.J. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis.Proc. Natl. Acad. Sci. USA2019116146836684110.1073/pnas.181747311630890638
    [Google Scholar]
  12. CulottaV.C. Superoxide dismutase, oxidative stress, and cell metabolism.Curr. Top. Cell. Regul.20013611713210.1016/S0070‑2137(01)80005‑410842749
    [Google Scholar]
  13. BlockhuysS. CelauroE. HildesjöC. FeiziA. StålO. Fierro-GonzálezJ.C. Wittung-StafshedeP. Defining the human copper proteome and analysis of its expression variation in cancers.Metallomics20179211212310.1039/C6MT00202A27942658
    [Google Scholar]
  14. DenoyerD. MasaldanS. La FontaineS. CaterM.A. Targeting copper in cancer therapy: ‘Copper That Cancer’.Metallomics20157111459147610.1039/C5MT00149H26313539
    [Google Scholar]
  15. KaiafaG.D. SaouliZ. DiamantidisM.D. KontoninasZ. VoulgaridouV. RaptakiM. ArampatziS. ChatzidimitriouM. PerifanisV. Copper levels in patients with hematological malignancies.Eur. J. Intern. Med.201223873874110.1016/j.ejim.2012.07.00922920946
    [Google Scholar]
  16. MajumderS. ChatterjeeS. PalS. BiswasJ. EfferthT. ChoudhuriS.K. The role of copper in drug-resistant murine and human tumors.Biometals200922237738410.1007/s10534‑008‑9174‑318956143
    [Google Scholar]
  17. DegirmenciU. WangM. HuJ. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy.Cells20209119810.3390/cells901019831941155
    [Google Scholar]
  18. TurskiM.L. BradyD.C. KimH.J. KimB.E. NoseY. CounterC.M. WingeD.R. ThieleD.J. A novel role for copper in Ras/mitogen-activated protein kinase signaling.Mol. Cell. Biol.20123271284129510.1128/MCB.05722‑1122290441
    [Google Scholar]
  19. BradyD.C. CroweM.S. TurskiM.L. HobbsG.A. YaoX. ChaikuadA. KnappS. XiaoK. CampbellS.L. ThieleD.J. CounterC.M. Copper is required for oncogenic BRAF signalling and tumorigenesis.Nature2014509750149249610.1038/nature1318024717435
    [Google Scholar]
  20. GuoJ. ChengJ. ZhengN. ZhangX. DaiX. ZhangL. HuC. WuX. JiangQ. WuD. OkadaH. PandolfiP.P. WeiW. Copper promotes tumorigenesis by activating the PDK1‐AKT oncogenic pathway in a copper transporter 1 dependent manner.Adv. Sci.2021818200430310.1002/advs.20200430334278744
    [Google Scholar]
  21. IshidaS. AndreuxP. Poitry-YamateC. AuwerxJ. HanahanD. Bioavailable copper modulates oxidative phosphorylation and growth of tumors.Proc. Natl. Acad. Sci. USA201311048195071951210.1073/pnas.131843111024218578
    [Google Scholar]
  22. TsangT. PosimoJ.M. GudielA.A. CicchiniM. FeldserD.M. BradyD.C. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma.Nat. Cell Biol.202022441242410.1038/s41556‑020‑0481‑432203415
    [Google Scholar]
  23. McAuslanB.R. ReillyW. Selenium-induced cell migration and proliferation: Relevance to angiogenesis and microangiopathy.Microvasc. Res.198632111212010.1016/0026‑2862(86)90047‑62426562
    [Google Scholar]
  24. KaduP. SawantB. KaleP.P. PrabhavalkarK. Copper-lowering agents as an adjuvant in chemotherapy.Indian J. Pharmacol.202153322122534169907
    [Google Scholar]
  25. TsvetkovP. DetappeA. CaiK. KeysH.R. BruneZ. YingW. ThiruP. ReidyM. KugenerG. RossenJ. KocakM. KoryN. TsherniakA. SantagataS. WhitesellL. GhobrialI.M. MarkleyJ.L. LindquistS. GolubT.R. Mitochondrial metabolism promotes adaptation to proteotoxic stress.Nat. Chem. Biol.201915768168910.1038/s41589‑019‑0291‑931133756
    [Google Scholar]
  26. JiangY. HuoZ. QiX. ZuoT. WuZ. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes.Nanomedicine202217530332410.2217/nnm‑2021‑037435060391
    [Google Scholar]
  27. OsawaS. KitanishiK. KiuchiM. ShimonakaM. OtsukaH. Accelerated redox reaction of hydrogen peroxide by employing locally concentrated state of copper catalysts on polymer chain.Macromol. Rapid Commun.20214216210027410.1002/marc.20210027434292631
    [Google Scholar]
  28. AnandhanA. Rodriguez-RochaH. BohovychI. GriggsA.M. Zavala-FloresL. Reyes-ReyesE.M. SeravalliJ. StanciuL.A. LeeJ. RochetJ.C. KhalimonchukO. FrancoR. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways.Neurobiol. Dis.201581769210.1016/j.nbd.2014.11.01825497688
    [Google Scholar]
  29. RaniV. DeepG. SinghR.K. PalleK. YadavU.C.S. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.Life Sci.201614818319310.1016/j.lfs.2016.02.00226851532
    [Google Scholar]
  30. GupteA. MumperR.J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment.Cancer Treat. Rev.2009351324610.1016/j.ctrv.2008.07.00418774652
    [Google Scholar]
  31. Martínez-ReyesI. ChandelN.S. Cancer metabolism: Looking forward.Nat. Rev. Cancer2021211066968010.1038/s41568‑021‑00378‑634272515
    [Google Scholar]
  32. ShimadaK. ReznikE. StokesM.E. KrishnamoorthyL. BosP.H. SongY. QuartararoC.E. PaganoN.C. CarpizoD.R. deCarvalhoA.C. LoD.C. StockwellB.R. Copper-binding small molecule induces oxidative stress and cell-cycle arrest in glioblastoma-patient-derived cells.Cell Chem. Biol.2018255585594.e710.1016/j.chembiol.2018.02.01029576531
    [Google Scholar]
  33. YipN.C. FombonI.S. LiuP. BrownS. KannappanV. ArmesillaA.L. XuB. CassidyJ. DarlingJ.L. WangW. Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties.Br. J. Cancer2011104101564157410.1038/bjc.2011.12621487404
    [Google Scholar]
  34. CenD. BraytonD. ShahandehB. MeyskensF.L.Jr FarmerP.J. Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells.J. Med. Chem.200447276914692010.1021/jm049568z15615540
    [Google Scholar]
  35. NarayananS. CaiC.Y. AssarafY.G. GuoH.Q. CuiQ. WeiL. HuangJ.J. AshbyC.R.Jr ChenZ.S. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance.Drug Resist. Updat.20204810066310.1016/j.drup.2019.10066331785545
    [Google Scholar]
  36. Cengiz SevalG. BeksacM. The safety of bortezomib for the treatment of multiple myeloma.Expert Opin. Drug Saf.201817995396210.1080/14740338.2018.151348730118610
    [Google Scholar]
  37. ChenD. CuiQ.C. YangH. DouQ.P. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity.Cancer Res.20066621104251043310.1158/0008‑5472.CAN‑06‑212617079463
    [Google Scholar]
  38. SkrottZ. MistrikM. AndersenK.K. FriisS. MajeraD. GurskyJ. OzdianT. BartkovaJ. TuriZ. MoudryP. KrausM. MichalovaM. VaclavkovaJ. DzubakP. VrobelI. PouckovaP. SedlacekJ. MiklovicovaA. KuttA. LiJ. MattovaJ. DriessenC. DouQ.P. OlsenJ. HajduchM. CvekB. DeshaiesR.J. BartekJ. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4.Nature2017552768419419910.1038/nature2501629211715
    [Google Scholar]
  39. RowlandE.A. SnowdenC.K. CristeaI.M. Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease.Curr. Opin. Chem. Biol.201842768510.1016/j.cbpa.2017.11.00329169048
    [Google Scholar]
  40. TangQ. GuoY. MengL. ChenX. Chemical tagging of protein lipoylation.Angew. Chem. Int. Ed.20216084028403310.1002/anie.20201098133174356
    [Google Scholar]
  41. ZhangZ. MaY. GuoX. DuY. ZhuQ. WangX. DuanC. FDX1 can impact the prognosis and mediate the metabolism of lung adenocarcinoma.Front. Pharmacol.20211274913410.3389/fphar.2021.74913434690780
    [Google Scholar]
  42. ZhangC. ZengY. GuoX. ShenH. ZhangJ. WangK. JiM. HuangS. Pan-cancer analyses confirmed the cuproptosis-related gene FDX1 as an immunotherapy predictor and prognostic biomarker.Front. Genet.20221392373710.3389/fgene.2022.92373735991547
    [Google Scholar]
  43. HabarouF. HamelY. HaackT.B. FeichtingerR.G. LebigotE. MarquardtI. BusiahK. LarocheC. MadrangeM. GriselC. PontoizeauC. EisermannM. BoutronA. ChrétienD. Chadefaux-VekemansB. BaroukiR. Bole-FeysotC. NitschkeP. GoudinN. BoddaertN. NemazanyyI. DelahoddeA. KölkerS. RodenburgR.J. KorenkeG.C. MeitingerT. StromT.M. ProkischH. RotigA. OttolenghiC. MayrJ.A. de LonlayP. Biallelic mutations in LIPT2 cause a mitochondrial lipoylation defect associated with severe neonatal encephalopathy.Am. J. Hum. Genet.2017101228329010.1016/j.ajhg.2017.07.00128757203
    [Google Scholar]
  44. MayrJ.A. FeichtingerR.G. TortF. RibesA. SperlW. Lipoic acid biosynthesis defects.J. Inherit. Metab. Dis.201437455356310.1007/s10545‑014‑9705‑824777537
    [Google Scholar]
  45. DuarteI.F. CaioJ. MoedasM.F. RodriguesL.A. LeandroA.P. RiveraI.A. SilvaM.F.B. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis.Cell. Mol. Life Sci.202178237451746810.1007/s00018‑021‑03996‑334718827
    [Google Scholar]
  46. PatelM.S. NemeriaN.S. FureyW. JordanF. The pyruvate dehydrogenase complexes: Structure-based function and regulation.J. Biol. Chem.201428924166151662310.1074/jbc.R114.56314824798336
    [Google Scholar]
  47. SolmonsonA. DeBerardinisR.J. Lipoic acid metabolism and mitochondrial redox regulation.J. Biol. Chem.2018293207522753010.1074/jbc.TM117.00025929191830
    [Google Scholar]
  48. LuS. SongY. LuoR. LiS. LiG. WangK. LiaoZ. WangB. KeW. XiangQ. ChenC. WuX. ZhangY. LingL. YangC. Ferroportin-dependent iron homeostasis protects against oxidative stress-induced nucleus pulposus cell ferroptosis and ameliorates intervertebral disc degeneration in vivo. Oxid. Med. Cell. Longev.2021202111810.1155/2021/667049733628376
    [Google Scholar]
  49. SongM. KimS.H. ImC.Y. HwangH.J. Recent development of small molecule glutaminase inhibitors.Curr. Top. Med. Chem.201818643244310.2174/156802661866618052510083029793408
    [Google Scholar]
  50. LukanovićD. HerzogM. KobalB. ČerneK. The contribution of copper efflux transporters ATP7A and ATP7B to chemoresistance and personalized medicine in ovarian cancer.Biomed. Pharmacother.202012911040110.1016/j.biopha.2020.11040132570116
    [Google Scholar]
  51. YuZ. ZhouR. ZhaoY. PanY. LiangH. ZhangJ.S. TaiS. JinL. TengC.B. Blockage of SLC31A1‐dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death.Cell Prolif.2019522e1256810.1111/cpr.1256830706544
    [Google Scholar]
  52. FengY. ZengJ.W. MaQ. ZhangS. TangJ. FengJ.F. Serum copper and zinc levels in breast cancer: A meta-analysis.J. Trace Elem. Med. Biol.20206212662910.1016/j.jtemb.2020.12662932745979
    [Google Scholar]
  53. ZhangM. ShiM. ZhaoY. Association between serum copper levels and cervical cancer risk: A meta-analysis.Biosci. Rep.2018384BSR2018016110.1042/BSR2018016129519960
    [Google Scholar]
  54. WangJ. LuoC. ShanC. YouQ. LuJ. ElfS. ZhouY. WenY. VinkenborgJ.L. FanJ. KangH. LinR. HanD. XieY. KarpusJ. ChenS. OuyangS. LuanC. ZhangN. DingH. MerkxM. LiuH. ChenJ. JiangH. HeC. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation.Nat. Chem.201571296897910.1038/nchem.238126587712
    [Google Scholar]
  55. FengW. YeF. XueW. ZhouZ. KangY.J. Copper regulation of hypoxia-inducible factor-1 activity.Mol. Pharmacol.200975117418210.1124/mol.108.05151618842833
    [Google Scholar]
  56. ZimnaA. KurpiszM. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: Applications and therapies.Biomed Res Int.20152015549412
    [Google Scholar]
  57. MacDonaldG. NalvarteI. SmirnovaT. VecchiM. AcetoN. DoelemeyerA. FreiA. LienhardS. WyckoffJ. HessD. SeebacherJ. KeuschJ.J. GutH. SalaunD. MazzarolG. DisalvatoreD. Bentires-AljM. Di FioreP.P. BadacheA. HynesN.E. Memo is a copper-dependent redox protein with an essential role in migration and metastasis.Sci. Signal.20147329ra56ra5610.1126/scisignal.200487024917593
    [Google Scholar]
  58. SafiR. NelsonE.R. ChitneniS.K. FranzK.J. GeorgeD.J. ZalutskyM.R. McDonnellD.P. Copper signaling axis as a target for prostate cancer therapeutics.Cancer Res.201474205819583110.1158/0008‑5472.CAN‑13‑352725320179
    [Google Scholar]
  59. WangL. ChaiX. WanR. ZhangH. ZhouC. XiangL. PaulM.E. LiY. Disulfiram chelated with copper inhibits the growth of gastric cancer cells by modulating stress response and Wnt/β-catenin signaling.Front. Oncol.20201059571810.3389/fonc.2020.59571833409152
    [Google Scholar]
  60. ZhangJ. DuanD. XuJ. FangJ. Redox-dependent copper carrier promotes cellular copper uptake and oxidative stress-mediated apoptosis of cancer cells.ACS Appl. Mater. Interfaces20181039330103302110.1021/acsami.8b1106130209950
    [Google Scholar]
  61. BaoX.Z. DaiF. LiX.R. ZhouB. Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: Hitting three birds with one stone.Free Radic. Biol. Med.201812434235210.1016/j.freeradbiomed.2018.06.02129935260
    [Google Scholar]
  62. ZhaiS. YangL. CuiQ.C. SunY. DouQ.P. YanB. Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells.J. Biol. Inorg. Chem.201015225926910.1007/s00775‑009‑0594‑519809836
    [Google Scholar]
  63. KannappanV. AliM. SmallB. RajendranG. ElzhenniS. TajH. WangW. DouQ.P. Recent advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents.Front. Mol. Biosci.2021874131610.3389/fmolb.2021.74131634604310
    [Google Scholar]
  64. GaoW. HuangZ. DuanJ. NiceE.C. LinJ. HuangC. Elesclomol induces copper‐dependent ferroptosis in colorectal cancer cells via degradation of ATP7A.Mol. Oncol.202115123527354410.1002/1878‑0261.1307934390123
    [Google Scholar]
  65. ChenX. ZhangX. ChenJ. YangQ. YangL. XuD. ZhangP. WangX. LiuJ. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells.Eur. J. Pharmacol.201781514715510.1016/j.ejphar.2017.09.00328887042
    [Google Scholar]
  66. LiuN. LiuC. LiX. LiaoS. SongW. YangC. ZhaoC. HuangH. GuanL. ZhangP. LiuS. HuaX. ChenX. ZhouP. LanX. YiS. WangS. WangX. DouQ.P. LiuJ. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases.Sci. Rep.201441524010.1038/srep0524024912524
    [Google Scholar]
  67. ChenJ. DuC. KangJ. WangJ. Cu2+ is required for pyrrolidine dithiocarbamate to inhibit histone acetylation and induce human leukemia cell apoptosis.Chem. Biol. Interact.20081711263610.1016/j.cbi.2007.09.00417961528
    [Google Scholar]
  68. JiY. DaiF. ZhouB. Designing salicylaldehyde isonicotinoyl hydrazones as Cu(II) ionophores with tunable chelation and release of copper for hitting redox Achilles heel of cancer cells.Free Radic. Biol. Med.201812921522610.1016/j.freeradbiomed.2018.09.01730240704
    [Google Scholar]
  69. ScrivnerO. DaoL. Newell-RogersM.K. ShahandehB. MeyskensF.L. KozawaS.K. Liu-SmithF. Plascencia-VillaG. José-YacamánM. JiaS. ChangC.J. FarmerP.J. The ionophore thiomaltol induces rapid lysosomal accumulation of copper and apoptosis in melanoma.Metallomics2022141mfab07410.1093/mtomcs/mfab07434958363
    [Google Scholar]
  70. MohindruA. FisherJ.M. RabinovitzM. 2,9-Dimethyl-1,10-phenanthroline (neocuproine): A potent, copper-dependent cytotoxin with anti-tumor activity.Biochem. Pharmacol.198332233627363210.1016/0006‑2952(83)90314‑36651879
    [Google Scholar]
  71. ParkK.C. FouaniL. JanssonP.J. WooiD. SahniS. LaneD.J.R. PalanimuthuD. LokH.C. KovačevićZ. HuangM.L.H. KalinowskiD.S. RichardsonD.R. Copper and conquer: Copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.Metallomics20168987488610.1039/C6MT00105J27334916
    [Google Scholar]
  72. LovejoyD.B. JanssonP.J. BrunkU.T. WongJ. PonkaP. RichardsonD.R. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes.Cancer Res.201171175871588010.1158/0008‑5472.CAN‑11‑121821750178
    [Google Scholar]
  73. SciegienkaS.J. SolstS.R. FallsK.C. SchoenfeldJ.D. KlingerA.R. RossN.L. RodmanS.N. SpitzD.R. FathM.A. D-penicillamine combined with inhibitors of hydroperoxide metabolism enhances lung and breast cancer cell responses to radiation and carboplatin via H 2 O 2 -mediated oxidative stress.Free Radic. Biol. Med.201710835436110.1016/j.freeradbiomed.2017.04.00128389407
    [Google Scholar]
  74. FatfatM. MerhiR.A. RahalO. StoyanovskyD.A. ZakiA. HaidarH. KaganV.E. Gali-MuhtasibH. MachacaK. Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species.BMC Cancer201414152710.1186/1471‑2407‑14‑52725047035
    [Google Scholar]
  75. YoshiiJ. YoshijiH. KuriyamaS. IkenakaY. NoguchiR. OkudaH. TsujinoueH. NakataniT. KishidaH. NakaeD. GomezD.E. De LorenzoM.S. TejeraA.M. FukuiH. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells.Int. J. Cancer200194676877310.1002/ijc.153711745476
    [Google Scholar]
  76. LiuY.L. BagerC.L. WillumsenN. RamchandaniD. KornhauserN. LingL. CobhamM. AndreopoulouE. CiglerT. MooreA. LaPollaD. FitzpatrickV. WardM. WarrenJ.D. FischbachC. MittalV. VahdatL.T. Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer.NPJ Breast Cancer20217110810.1038/s41523‑021‑00313‑w34426581
    [Google Scholar]
  77. YangM. WuX. HuJ. WangY. WangY. ZhangL. HuangW. WangX. LiN. LiaoL. ChenM. XiaoN. DaiY. LiangH. HuangW. YuanL. PanH. LiL. ChenL. LiuL. LiangL. GuanJ. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma.J. Hepatol.20227651138115010.1016/j.jhep.2022.01.00935101526
    [Google Scholar]
  78. MaJ. GongB. ZhaoQ. Pan-cancer analysis of cuproptosis-promoting gene signature from multiple perspectives.Clin. Exp. Med.20232384997501410.1007/s10238‑023‑01108‑y37318649
    [Google Scholar]
  79. LiuH. Pan-cancer profiles of the cuproptosis gene set.Am. J. Cancer Res.20221284074408136119826
    [Google Scholar]
  80. BakhshiT.J. GeorgelP.T. Genetic and epigenetic determinants of diffuse large B-cell lymphoma.Blood Cancer J.2020101212310.1038/s41408‑020‑00389‑w33277464
    [Google Scholar]
  81. Shah-ReddyI. KhilananiP. BishopC.R. Serum copper levels in non-Hodgkin’s lymphoma.Cancer19804582156215910.1002/1097‑0142(19800415)45:8<2156::AID‑CNCR2820450824>3.0.CO;2‑C6989485
    [Google Scholar]
  82. ZhangB. ZhangT. ZhengZ. LinZ. WangQ. ZhengD. ChenZ. MaY. Development and validation of a cuproptosis-associated prognostic model for diffuse large B-cell lymphoma.Front. Oncol.202312102056610.3389/fonc.2022.102056636713586
    [Google Scholar]
  83. ModiD. PotugariB. UbertiJ. Immunotherapy for diffuse large B-cell lymphoma: Current landscape and future directions.Cancers20211322582710.3390/cancers1322582734830980
    [Google Scholar]
  84. OliveriV. Selective targeting of cancer cells by copper ionophores: An overview.Front. Mol. Biosci.2022984181410.3389/fmolb.2022.84181435309510
    [Google Scholar]
  85. KryskoD.V. GargA.D. KaczmarekA. KryskoO. AgostinisP. VandenabeeleP. Immunogenic cell death and DAMPs in cancer therapy.Nat. Rev. Cancer2012121286087510.1038/nrc338023151605
    [Google Scholar]
  86. KaurP. JohnsonA. Northcote-SmithJ. LuC. SuntharalingamK. Immunogenic cell death of breast cancer stem cells induced by an endoplasmic reticulum‐targeting copper(II) complex.ChemBioChem202021243618362410.1002/cbic.20200055332776422
    [Google Scholar]
  87. WangY. DingY. YaoD. DongH. JiC. WuJ. HuY. YuanA. Copper‐based nanoscale coordination polymers augmented tumor radioimmunotherapy for immunogenic cell death induction and T‐cell infiltration.Small2021178200623110.1002/smll.20200623133522120
    [Google Scholar]
  88. SchmitzS.U. GroteP. HerrmannB.G. Mechanisms of long noncoding RNA function in development and disease.Cell. Mol. Life Sci.201673132491250910.1007/s00018‑016‑2174‑527007508
    [Google Scholar]
  89. ShaoW. DingQ. GuoY. XingJ. HuoZ. WangZ. XuQ. GuoY. A pan-cancer landscape of HOX-related lncRNAs and their association with prognosis and tumor microenvironment.Front. Mol. Biosci.2021876785610.3389/fmolb.2021.76785634805277
    [Google Scholar]
  90. ChenY. WangN. CaoL. ZhangD. PengH. XueP. Long non-coding RNA HOXB-AS1 is a prognostic marker and promotes hepatocellular carcinoma cells’ proliferation and invasion.Open Life Sci.202217194495110.1515/biol‑2022‑004036045719
    [Google Scholar]
  91. ZhangQ. ShenJ. WuY. RuanW. ZhuF. DuanS. LINC00520: A potential diagnostic and prognostic biomarker in cancer.Front. Immunol.20221384541810.3389/fimmu.2022.84541835309319
    [Google Scholar]
  92. MajchrzakA. WitkowskaM. SmolewskiP. Inhibition of the PI3K/Akt/mTOR signaling pathway in diffuse large B-cell lymphoma: Current knowledge and clinical significance.Molecules2014199143041431510.3390/molecules19091430425215588
    [Google Scholar]
  93. CuiW. CaiY. WangW. LiuZ. WeiP. BiR. ChenW. SunM. ZhouX. Frequent copy number variations of PI3K/AKT pathway and aberrant protein expressions of PI3K subunits are associated with inferior survival in diffuse large B cell lymphoma.J. Transl. Med.20141211010.1186/1479‑5876‑12‑1024418330
    [Google Scholar]
  94. LeeK. HartM.R. BriehlM.M. MazarA.P. TomeM. The copper chelator ATN-224 induces caspase-independent cell death in diffuse large B cell lymphoma.Int. J. Oncol.201445143944710.3892/ijo.2014.239624788952
    [Google Scholar]
  95. ZhuY. LeiC. JiangQ. YuQ. QiuL. DSF/Cu induces antitumor effect against diffuse large B-cell lymphoma through suppressing NF-κB/BCL6 pathways.Cancer Cell Int.202222123610.1186/s12935‑022‑02661‑435883106
    [Google Scholar]
  96. ZhangP. ZhouC. RenX. JingQ. GaoY. YangC. ShenY. ZhouY. HuW. JinF. XuH. YuL. LiuY. TongX. LiY. WangY. DuJ. Inhibiting the compensatory elevation of xCT collaborates with disulfiram/copper-induced GSH consumption for cascade ferroptosis and cuproptosis.Redox Biol.20246910300710.1016/j.redox.2023.10300738150993
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096296742240614100116
Loading
/content/journals/ccdt/10.2174/0115680096296742240614100116
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test