Skip to content
2000
image of Precision Medicine in Colorectal Cancer: Targeted Therapies and Biomarker Insights

Abstract

The current review delves into the transformative role of precision medicine in addressing Colorectal Cancer [CRC], a pressing global health challenge. It examines closely signalling pathways, genetic and epigenetic modifications, and microsatellite instability. The primary focus is on elucidating biomarkers revolutionizing CRC diagnosis and treatment. Genetic biomarkers encompass non-coding RNA, epigenetic markers, TP53 mutations, and KRAS, NRAS, and BRAF gene alterations. Targeted therapies, including anti-EGFR, anti-VEGF, immune checkpoint inhibitors, and HER2-targeted treatments, are explored along with their mechanisms and clinical applications. Additionally, we highlight the importance of utilizing personalized treatment strategies by employing molecular profiling and genetic testing. These approaches facilitate the identification of appropriate patients for targeted therapies. Clinical trials supporting these treatments are presented, emphasizing response rates and survival outcomes. Detailed exploration of resistance mechanisms to targeted therapies and strategies to overcome resistance is also provided, paving the way for more effective regimens. Directions for future research in precision medicine, such as biomarkers, combinations, and liquid biopsy in the oncology field, are described. However, the precise application of precision medicine in CRC comes with questions such as costs, considerations of ethical factors, and the need to sensitize patients. Nonetheless, based on a meticulous analysis of several aspects, precision medicine finds itself equipped with the ability to enhance the patients’ prognosis, thereby, lessening the global oncologic burden of CRC and provide important information to the clinician-scientist and policymaker that might benefit from the ongoing development of precision medicine.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096338273241224061021
2025-01-28
2025-10-04
Loading full text...

Full text loading...

References

  1. Xi Y. Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021 14 10 101174 10.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  2. Gude S.S. Veeravalli R.S. Vejandla B. Gude S.S. Venigalla T. Chintagumpala V. Colorectal cancer diagnostic methods: The present and future. Cureus 2023 15 4 e37622 10.7759/cureus.37622 37197135
    [Google Scholar]
  3. Ullah I. Yang L. Yin F.T. Sun Y. Li X.H. Li J. Wang X.J. Multi-omics approaches in colorectal cancer screening and diagnosis, recent updates and future perspectives. Cancers 2022 14 22 5545 10.3390/cancers14225545 36428637
    [Google Scholar]
  4. Franke A.J. Skelton W.P. IV Starr J.S. Parekh H. Lee J.J. Overman M.J. Allegra C. George T.J. Immunotherapy for colorectal cancer: A review of current and novel therapeutic approaches. J. Natl. Cancer Inst. 2019 111 11 1131 1141 10.1093/jnci/djz093 31322663
    [Google Scholar]
  5. Ma K. Jin Q. Wang M. Li X. Zhang Y. Research progress and clinical application of predictive biomarker for immune checkpoint inhibitors. Expert Rev. Mol. Diagn. 2019 19 6 517 529 10.1080/14737159.2019.1617702 31079502
    [Google Scholar]
  6. Reitsam N.G. Enke J.S. Vu Trung K. Märkl B. Kather J.N. Artificial intelligence in colorectal cancer: From patient screening over tailoring treatment decisions to identification of novel biomarkers. Digestion 2024 105 5 331 344 10.1159/000539678 38865982
    [Google Scholar]
  7. Stefani C. Miricescu D. Stanescu-Spinu I.I. Nica R.I. Greabu M. Totan A.R. Jinga M. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int. J. Mol. Sci. 2021 22 19 10260 10.3390/ijms221910260 34638601
    [Google Scholar]
  8. Chruścik A. Gopalan V. Lam A.K. The clinical and biological roles of transforming growth factor beta in colon cancer stem cells: A systematic review. Eur. J. Cell Biol. 2018 97 1 15 22 10.1016/j.ejcb.2017.11.001 29128131
    [Google Scholar]
  9. Evrard C. Tachon G. Randrian V. Karayan-Tapon L. Tougeron D. Microsatellite instability: Diagnosis, heterogeneity, discordance, and clinical impact in colorectal cancer. Cancers 2019 11 10 1567 10.3390/cancers11101567 31618962
    [Google Scholar]
  10. Puccini A. Lenz H.J. Marshall J.L. Arguello D. Raghavan D. Korn W.M. Weinberg B.A. Poorman K. Heeke A.L. Philip P.A. Shields A.F. Goldberg R.M. Salem M.E. Impact of patient age on molecular alterations of left-sided colorectal tumors. Oncologist 2019 24 3 319 326 10.1634/theoncologist.2018‑0117 30018131
    [Google Scholar]
  11. Nebot-Bral L. Coutzac C. Kannouche P.L. Chaput N. Why is immunotherapy effective (or not) in patients with MSI/MMRD tumors? Bull. Cancer 2019 106 2 105 113 10.1016/j.bulcan.2018.08.007 30342749
    [Google Scholar]
  12. Curtin K. Slattery M.L. Samowitz W.S. CpG island methylation in colorectal cancer: Past, present and future. Pathol. Res. Int. 2011 2011 1 8 10.4061/2011/902674 21559209
    [Google Scholar]
  13. Advani S.M. Advani P. DeSantis S.M. Brown D. VonVille H.M. Lam M. Loree J.M. Mehrvarz Sarshekeh A. Bressler J. Lopez D.S. Daniel C.R. Swartz M.D. Kopetz S. Clinical, pathological, and molecular characteristics of cpg island methylator phenotype in colorectal cancer: A systematic review and meta-analysis. Transl. Oncol. 2018 11 5 1188 1201 10.1016/j.tranon.2018.07.008 30071442
    [Google Scholar]
  14. Advani S.M. Swartz M.D. Loree J. Davis J.S. Sarsashek A.M. Lam M. Lee M.S. Bressler J. Lopez D.S. Daniel C.R. Morris V. Shureqi I. Kee B. Dasari A. Vilar E. Overman M. Hamilton S. Maru D. Braithwaite D. Kopetz S. Epidemiology and molecular-pathologic characteristics of CpG island methylator phenotype (CIMP) in colorectal cancer. Clin. Colorectal Cancer 2021 20 2 137 147.e1 10.1016/j.clcc.2020.09.007 33229221
    [Google Scholar]
  15. Zhang X. Zhang W. Cao P. Advances in CpG Island methylator phenotype colorectal cancer therapies. Front. Oncol. 2021 11 629390 10.3389/fonc.2021.629390 33718206
    [Google Scholar]
  16. Nazemalhosseini Mojarad E. Kuppen P.J. Aghdaei H.A. Zali M.R. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol. Hepatol. Bed Bench 2013 6 3 120 128 24834258
    [Google Scholar]
  17. Suzuki H. Yamamoto E. Nakase H. Sugai T. DNA and histone methylation in colon cancer. DNA and Histone Methylation as Cancer Targets. Humana Press Cham 2017 10.1007/978‑3‑319‑59786‑7_17
    [Google Scholar]
  18. Rush A.J. Ibrahim H.M. A clinician’s perspective on biomarkers. Focus Am. Psychiatr. Publ. 2018 16 2 124 134 10.1176/appi.focus.20170044 31975907
    [Google Scholar]
  19. Gutierrez M.E. Price K.S. Lanman R.B. Nagy R.J. Shah I. Mathura S. Mulcahy M. Norden A.D. Goldberg S.L. Genomic profiling for KRAS, NRAS, BRAF, microsatellite instability, and mismatch repair deficiency among patients with metastatic colon cancer. JCO Precis. Oncol. 2019 3 3 1 9 10.1200/PO.19.00274 32923867
    [Google Scholar]
  20. Zygulska A.L. Pierzchalski P. Novel diagnostic biomarkers in colorectal cancer. Int. J. Mol. Sci. 2022 23 2 852 10.3390/ijms23020852 35055034
    [Google Scholar]
  21. Deschoolmeester V. Baay M. Specenier P. Lardon F. Vermorken J.B. A review of the most promising biomarkers in colorectal cancer: One step closer to targeted therapy. Oncologist 2010 15 7 699 731 10.1634/theoncologist.2010‑0025 20584808
    [Google Scholar]
  22. Bahar M.E. Kim H.J. Kim D.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduct. Target. Ther. 2023 8 1 455 10.1038/s41392‑023‑01705‑z 38105263
    [Google Scholar]
  23. Barr R.K. Bogoyevitch M.A. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int. J. Biochem. Cell Biol. 2001 33 11 1047 1063 10.1016/S1357‑2725(01)00093‑0 11551821
    [Google Scholar]
  24. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. Proteins Proteomics 2005 1754 1-2 253 262 10.1016/j.bbapap.2005.08.017 16198162
    [Google Scholar]
  25. Srivastava S. Bagang N. Yadav S. Rajput S. Sharma D. Dahiya A. Bhardwaj L. Deshmukh K. Joshi J.C. Singh G. Evolution of β-catenin-independent Wnt–GSK3–mTOR signalling in regulation of energy metabolism in isoproterenol-induced cardiotoxicity model. Inflamm. Res. 2021 70 7 743 747 10.1007/s00011‑021‑01477‑8 34185111
    [Google Scholar]
  26. He K. Gan W.J. Wnt/β-Catenin signaling pathway in the development and progression of colorectal cancer. Cancer Manag. Res. 2023 15 435 448 10.2147/CMAR.S411168 37250384
    [Google Scholar]
  27. Zhao H. Ming T. Tang S. Ren S. Yang H. Liu M. Tao Q. Xu H. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer 2022 21 1 144 10.1186/s12943‑022‑01616‑7 35836256
    [Google Scholar]
  28. Srivastava S. Yadav S. Singh G. Bajwa S.S. Wnt/β-catenin antagonist pyrvinium rescues high dose isoproterenol induced cardiotoxicity in rats: Biochemical and immunohistological evidences. Chem. Biol. Interact. 2022 358 109902 10.1016/j.cbi.2022.109902 35305975
    [Google Scholar]
  29. Bellizzi A.M. Frankel W.L. Colorectal cancer due to deficiency in DNA mismatch repair function: A review. Adv. Anat. Pathol. 2009 16 6 405 417 10.1097/PAP.0b013e3181bb6bdc 19851131
    [Google Scholar]
  30. Tokarz P. Pawlowska E. Bialkowska-Warzecha J. Blasiak J. The significance of DNA methylation profile in metastasis-related genes for the progression of colorectal cancer. Cell. Mol. Biol. 2017 63 2 79 87 10.14715/cmb/2017.63.2.12 28364795
    [Google Scholar]
  31. Tyagi A. Sharma A.K. Damodaran C. A review on notch signaling and colorectal cancer. Cells 2020 9 6 1549 10.3390/cells9061549 32630477
    [Google Scholar]
  32. Carethers J.M. Jung B.H. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology 2015 149 5 1177 1190.e3 10.1053/j.gastro.2015.06.047 26216840
    [Google Scholar]
  33. Arrington A.K. Heinrich E.L. Lee W. Duldulao M. Patel S. Sanchez J. Garcia-Aguilar J. Kim J. Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int. J. Mol. Sci. 2012 13 10 12153 12168 10.3390/ijms131012153 23202889
    [Google Scholar]
  34. Danielsen S.A. Eide P.W. Nesbakken A. Guren T. Leithe E. Lothe R.A. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta 2015 1855 1 104 121
    [Google Scholar]
  35. Yu J.S.L. Cui W. Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016 143 17 3050 3060 10.1242/dev.137075 27578176
    [Google Scholar]
  36. Thaman S. Bhattacharya S. Wnt/β-catenin pathway, PTEN/PI3K/AKT pathway, RAS/Raf/epidermal growth factor receptor/mitogen-activated protein kinases pathway, and nuclear factor kappa B in colorectal cancer treatment and management. Cancer Plus 2024 3 4 51 10.18063/cp.v3i4.326
    [Google Scholar]
  37. Wee P. Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 2017 9 5 52 10.3390/cancers9050052 28513565
    [Google Scholar]
  38. Ahmad R. Singh J. Wunnava A. Al-Obeed O. Abdulla M. Srivastava S. Emerging trends in colorectal cancer: Dysregulated signaling pathways (Review). Int. J. Mol. Med. 2021 47 3 14 10.3892/ijmm.2021.4847 33655327
    [Google Scholar]
  39. Chen P.N. Hsieh Y.S. Chiou H.L. Chu S.C. Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chem. Biol. Interact. 2005 156 2-3 141 150 10.1016/j.cbi.2005.08.005 16169542
    [Google Scholar]
  40. Shen Y. Wang J. Han X. Yang H. Wang S. Lin D. Shi Y. Effectors of epidermal growth factor receptor pathway: The genetic profiling ofKRAS, BRAF, PIK3CA, NRAS mutations in colorectal cancer characteristics and personalized medicine. PLoS One 2013 8 12 e81628 10.1371/journal.pone.0081628 24339949
    [Google Scholar]
  41. Kong D.H. Kim M. Jang J. Na H.J. Lee S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int. J. Mol. Sci. 2017 18 8 1786 10.3390/ijms18081786 28817103
    [Google Scholar]
  42. Akinleye A. Avvaru P. Furqan M. Song Y. Liu D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J. Hematol. Oncol. 2013 6 1 88 10.1186/1756‑8722‑6‑88 24261963
    [Google Scholar]
  43. Rascio F. Spadaccino F. Rocchetti M.T. Castellano G. Stallone G. Netti G.S. Ranieri E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers 2021 13 16 3949 10.3390/cancers13163949 34439105
    [Google Scholar]
  44. Zhang S. Hu B. Lv X. Chen S. Liu W. Shao Z. The prognostic role of ribosomal protein S6 kinase 1 pathway in patients with solid tumors: A Meta-analysis. Front. Oncol. 2019 9 390 10.3389/fonc.2019.00390 31139572
    [Google Scholar]
  45. De Luca A Maiello MR D'Alessio A Pergameno M Normanno N The RAS/RAF/MEK/ERK and the PI3K/AKT signaling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 2012 16 17 27
    [Google Scholar]
  46. Li K. Guo Q. Yang J. Chen H. Hu K. Zhao J. Zheng S. Pang X. Zhou S. Dang Y. Li L. FOXD3 is a tumor suppressor of colon cancer by inhibiting EGFR-Ras-Raf-MEK-ERK signal pathway. Oncotarget 2017 8 3 5048 5056 10.18632/oncotarget.13790 27926503
    [Google Scholar]
  47. Yao W. Lin Z. Shi P. Chen B. Wang G. Huang J. Sui Y. Liu Q. Li S. Lin X. Liu Q. Yao H. Delicaflavone induces ROS-mediated apoptosis and inhibits PI3K/AKT/mTOR and Ras/MEK/Erk signaling pathways in colorectal cancer cells. Biochem. Pharmacol. 2020 171 113680 10.1016/j.bcp.2019.113680 31669234
    [Google Scholar]
  48. McArthur G.A. Combination therapies to inhibit the RAF/MEK/ERK pathway in melanoma: We are not done yet. Front. Oncol. 2015 5 161 10.3389/fonc.2015.00161 26236691
    [Google Scholar]
  49. Xu Y. Pasche B. TGF-β signaling alterations and susceptibility to colorectal cancer. Hum. Mol. Genet. 2007 16 R1 R14 R20 10.1093/hmg/ddl486 17613544
    [Google Scholar]
  50. Itatani Y. Kawada K. Sakai Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int. J. Mol. Sci. 2019 20 23 5822 10.3390/ijms20235822 31756952
    [Google Scholar]
  51. Housini M. Dariya B. Ahmed N. Stevens A. Fiadjoe H. Nagaraju G.P. Basha R. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024 892 147857 10.1016/j.gene.2023.147857 37783294
    [Google Scholar]
  52. Kather J.N. Halama N. Jaeger D. Genomics and emerging biomarkers for immunotherapy of colorectal cancer. Semin. Cancer Biol. 2018 52 Pt 2 189 197 10.1016/j.semcancer.2018.02.010 29501787
    [Google Scholar]
  53. Mauri G. Vitiello P.P. Sogari A. Crisafulli G. Sartore-Bianchi A. Marsoni S. Siena S. Bardelli A. Liquid biopsies to monitor and direct cancer treatment in colorectal cancer. Br. J. Cancer 2022 127 3 394 407 10.1038/s41416‑022‑01769‑8 35264786
    [Google Scholar]
  54. Nikolouzakis T. Vassilopoulou L. Fragkiadaki P. Mariolis Sapsakos T. Papadakis G. Spandidos D. Tsatsakis A. Tsiaoussis J. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review). Oncol. Rep. 2018 39 6 2455 2472 10.3892/or.2018.6330 29565457
    [Google Scholar]
  55. Ji Y. Lv J. Sun D. Huang Y. Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer (Review). Int. J. Mol. Med. 2021 49 1 1 10.3892/ijmm.2021.5056 34713301
    [Google Scholar]
  56. Martini M. De Santis M.C. Braccini L. Gulluni F. Hirsch E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med. 2014 46 6 372 383 10.3109/07853890.2014.912836 24897931
    [Google Scholar]
  57. Glaviano A. Foo A.S.C. Lam H.Y. Yap K.C.H. Jacot W. Jones R.H. Eng H. Nair M.G. Makvandi P. Geoerger B. Kulke M.H. Baird R.D. Prabhu J.S. Carbone D. Pecoraro C. Teh D.B.L. Sethi G. Cavalieri V. Lin K.H. Javidi-Sharifi N.R. Toska E. Davids M.S. Brown J.R. Diana P. Stebbing J. Fruman D.A. Kumar A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  58. Lionetti M. Barbieri M. Todoerti K. Agnelli L. Marzorati S. Fabris S. Ciceri G. Galletti S. Milesi G. Manzoni M. Mazzoni M. Greco A. Tonon G. Musto P. Baldini L. Neri A. Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: Implication for MEK-ERK pathway activation. Oncotarget 2015 6 27 24205 24217 10.18632/oncotarget.4434 26090869
    [Google Scholar]
  59. Zhao M. Mishra L. Deng C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018 14 2 111 123 10.7150/ijbs.23230 29483830
    [Google Scholar]
  60. Kumari L. Mishra L. Sharma Y. Chahar K. Kumar M. Patel P. NOTCH signaling pathway: Occurrence, mechanism, and NOTCH-directed therapy for the management of cancer. Cancer Biother. Radiopharm. 2023 37797218
    [Google Scholar]
  61. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti and pro-angiogenic therapies. Genes Cancer 2011 2 12 1097 1105 10.1177/1947601911423031 22866201
    [Google Scholar]
  62. Geiger J.L. Grandis J.R. Bauman J.E. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol. 2016 56 84 92 10.1016/j.oraloncology.2015.11.022 26733183
    [Google Scholar]
  63. Newton K.F. Newman W. Hill J. Review of biomarkers in colorectal cancer. Colorectal Dis. 2012 14 1 3 17 10.1111/j.1463‑1318.2010.02439.x 21040359
    [Google Scholar]
  64. Tanaka T. Tanaka M. Tanaka T. Ishigamori R. Biomarkers for colorectal cancer. Int. J. Mol. Sci. 2010 11 9 3209 3225 10.3390/ijms11093209 20957089
    [Google Scholar]
  65. Duffy M.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem. 2001 47 4 624 630 10.1093/clinchem/47.4.624 11274010
    [Google Scholar]
  66. Herlyn M. Steplewski Z. Herlyn D. Koprowski H. Colorectal carcinoma-specific antigen: Detection by means of monoclonal antibodies. Proc. Natl. Acad. Sci. USA 1979 76 3 1438 1442 10.1073/pnas.76.3.1438 286328
    [Google Scholar]
  67. Brand T.M. Iida M. Wheeler D.L. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol. Ther. 2011 11 9 777 792 10.4161/cbt.11.9.15050 21293176
    [Google Scholar]
  68. Messersmith W.A. Hidalgo M. Panitumumab, a monoclonal anti epidermal growth factor receptor antibody in colorectal cancer: Another one or the one? Clin. Cancer Res. 2007 13 16 4664 4666 10.1158/1078‑0432.CCR‑07‑0065 17699842
    [Google Scholar]
  69. Yau T.O. Precision treatment in colorectal cancer: Now and the future. JGH Open 2019 3 5 361 369 10.1002/jgh3.12153 31633039
    [Google Scholar]
  70. Guruharsha K.G. Kankel M.W. Artavanis-Tsakonas S. The Notch signalling system: Recent insights into the complexity of a conserved pathway. Nat. Rev. Genet. 2012 13 9 654 666 10.1038/nrg3272 22868267
    [Google Scholar]
  71. Alrushaid N. Khan F.A. Al-Suhaimi E. Elaissari A. Progress and perspectives in colon cancer pathology, diagnosis, and treatments. Diseases 2023 11 4 148 10.3390/diseases11040148 37987259
    [Google Scholar]
  72. d’Apolito M. Spagnuolo R. Siciliano M.A. Barbieri V. Cosco C. Fiorillo L. Cuomo O. Zuccalà V. Correale P. Pensabene L. Rossi M. Doldo P. Tassone P. Tagliaferri P. Autoimmune colitis and neutropenia in adjuvant anti-PD-1 therapy for malignant melanoma: Efficacy of Vedolizumab, a case report. Ther. Adv. Chronic Dis. 2022 13 20406223211063024 10.1177/20406223211063024 35070249
    [Google Scholar]
  73. Zarkavelis G. Boussios S. Papadaki A. Katsanos K.H. Christodoulou D.K. Pentheroudakis G. Current and future biomarkers in colorectal cancer. Ann. Gastroenterol. 2017 30 6 613 621 10.20524/aog.2017.0191 29118555
    [Google Scholar]
  74. László L. Kurilla A. Takács T. Kudlik G. Koprivanacz K. Buday L. Vas V. Recent updates on the significance of KRAS mutations in colorectal cancer biology. Cells 2021 10 3 667 10.3390/cells10030667 33802849
    [Google Scholar]
  75. Cefalì M. Epistolio S. Palmarocchi M.C. Frattini M. De Dosso S. Research progress on KRAS mutations in colorectal cancer. J. Cancer Metastasis Treat. 2021 10.20517/2394‑4722.2021.61
    [Google Scholar]
  76. Meng M. Zhong K. Jiang T. Liu Z. Kwan H.Y. Su T. The current understanding on the impact of KRAS on colorectal cancer. Biomed. Pharmacother. 2021 140 111717 10.1016/j.biopha.2021.111717 34044280
    [Google Scholar]
  77. Koulouridi A. Karagianni M. Messaritakis I. Sfakianaki M. Voutsina A. Trypaki M. Bachlitzanaki M. Koustas E. Karamouzis M.V. Ntavatzikos A. Koumarianou A. Androulakis N. Mavroudis D. Tzardi M. Souglakos J. Prognostic value of KRAS mutations in colorectal cancer patients. Cancers 2022 14 14 3320 10.3390/cancers14143320 35884381
    [Google Scholar]
  78. Irahara N. Baba Y. Nosho K. Shima K. Yan L. Dias-Santagata D. Iafrate A.J. Fuchs C.S. Haigis K.M. Ogino S. NRAS mutations are rare in colorectal cancer. Diagn. Mol. Pathol. 2010 19 3 157 163 10.1097/PDM.0b013e3181c93fd1 20736745
    [Google Scholar]
  79. Cicenas J. Tamosaitis L. Kvederaviciute K. Tarvydas R. Staniute G. Kalyan K. Meskinyte-Kausiliene E. Stankevicius V. Valius M. KRAS, NRAS and BRAF mutations in colorectal cancer and melanoma. Med. Oncol. 2017 34 2 26 10.1007/s12032‑016‑0879‑9 28074351
    [Google Scholar]
  80. Palomba G. Doneddu V. Cossu A. Paliogiannis P. Manca A. Casula M. Colombino M. Lanzillo A. Defraia E. Pazzola A. Sanna G. Putzu C. Ortu S. Scartozzi M. Ionta M.T. Baldino G. Sarobba G. Capelli F. Sedda T. Virdis L. Barca M. Gramignano G. Budroni M. Tanda F. Palmieri G. Prognostic impact of KRAS, NRAS, BRAF, and PIK3CA mutations in primary colorectal carcinomas: A population based study. J. Transl. Med. 2016 14 1 292 10.1186/s12967‑016‑1053‑z 27737711
    [Google Scholar]
  81. Kalady M.F. DeJulius K.L. Sanchez J.A. Jarrar A. Liu X. Manilich E. Skacel M. Church J.M. BRAF mutations in colorectal cancer are associated with distinct clinical characteristics and worse prognosis. Dis. Colon Rectum 2012 55 2 128 133 10.1097/DCR.0b013e31823c08b3 22228154
    [Google Scholar]
  82. Caputo F. Santini C. Bardasi C. Cerma K. Casadei-Gardini A. Spallanzani A. Andrikou K. Cascinu S. Gelsomino F. BRAF-mutated colorectal cancer: Clinical and molecular insights. Int. J. Mol. Sci. 2019 20 21 5369 10.3390/ijms20215369 31661924
    [Google Scholar]
  83. Barras D. BRAF mutation in colorectal cancer: An update. Biomark Cancer. 2015 7 1 9 12 10.4137/BIC.S25248
    [Google Scholar]
  84. Saoudi González N. Salvà F. Ros J. Baraibar I. Rodríguez-Castells M. García A. Alcaráz A. Vega S. Bueno S. Tabernero J. Elez E. Unravelling the complexity of colorectal cancer: Heterogeneity, clonal evolution, and clinical implications. Cancers 2023 15 16 4020 10.3390/cancers15164020 37627048
    [Google Scholar]
  85. Iacopetta B. TP53 mutation in colorectal cancer. Hum. Mutat. 2003 21 3 271 276 10.1002/humu.10175 12619112
    [Google Scholar]
  86. Iacopetta B. Russo A. Bazan V. Dardanoni G. Gebbia N. Soussi T. Kerr D. Elsaleh H. Soong R. Kandioler D. Janschek E. Kappel S. Lung M. Leung C.S.S. Ko J.M. Yuen S. Ho J. Leung S.Y. Crapez E. Duffour J. Ychou M. Leahy D.T. O’Donoghue D.P. Agnese V. Cascio S. Di Fede G. Chieco-Bianchi L. Bertorelle R. Belluco C. Giaretti W. Castagnola P. Ricevuto E. Ficorella C. Bosari S. Arizzi C.D. Miyaki M. Onda M. Kampman E. Diergaarde B. Royds J. Lothe R.A. Diep C.B. Meling G.I. Ostrowski J. Trzeciak L. Guzińska-Ustymowicz K. Zalewski B. Capellá G.M. Moreno V. Peinado M.A. Lönnroth C. Lundholm K. Sun X.F. Jansson A. Bouzourene H. Hsieh L.L. Tang R. Smith D.R. Allen-Mersh T.G. Khan Z.A.J. Shorthouse A.J. Silverman M.L. Kato S. Ishioka C. TP53-CRC Collaborative Group Functional categories of TP53 mutation in colorectal cancer: Results of an international collaborative study. Ann. Oncol. 2006 17 5 842 847 10.1093/annonc/mdl035 16524972
    [Google Scholar]
  87. Oden-Gangloff A. Di Fiore F. Bibeau F. Lamy A. Bougeard G. Charbonnier F. Blanchard F. Tougeron D. Ychou M. Boissière F. Le Pessot F. Sabourin J-C. Tuech J-J. Michel P. Frebourg T. TP53 mutations predict disease control in metastatic colorectal cancer treated with cetuximab-based chemotherapy. Br. J. Cancer 2009 100 8 1330 1335 10.1038/sj.bjc.6605008 19367287
    [Google Scholar]
  88. Al-Kuraya K. KRAS and TP53 mutations in colorectal carcinoma. Saudi J. Gastroenterol. 2009 15 4 217 219 10.4103/1319‑3767.56087 19794264
    [Google Scholar]
  89. Jung G. Hernández-Illán E. Moreira L. Balaguer F. Goel A. Epigenetics of colorectal cancer: Biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 2020 17 2 111 130 10.1038/s41575‑019‑0230‑y 31900466
    [Google Scholar]
  90. Okugawa Y. Grady W.M. Goel A. Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology 2015 149 5 1204 1225.e12 10.1053/j.gastro.2015.07.011 26216839
    [Google Scholar]
  91. Psofaki V. Kalogera C. Tzambouras N. Stephanou D. Tsianos E. Seferiadis K. Kolios G. Promoter methylation status of hMLH1, MGMT, and CDKN2A / p16 in colorectal adenomas. World J. Gastroenterol. 2010 16 28 3553 3560 10.3748/wjg.v16.i28.3553 20653064
    [Google Scholar]
  92. Zhao P. Li L. Jiang X. Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J. Hematol. Oncol. 2019 12 1 54 10.1186/s13045‑019‑0738‑1 31151482
    [Google Scholar]
  93. Kumar S. Gonzalez E.A. Rameshwar P. Etchegaray J.P. Non-coding RNAs as mediators of epigenetic changes in malignancies. Cancers 2020 12 12 3657 10.3390/cancers12123657 33291485
    [Google Scholar]
  94. O’Sullivan J. Risques R.A. Mandelson M.T. Chen L. Brentnall T.A. Bronner M.P. MacMillan M.P. Feng Z. Siebert J.R. Potter J.D. Rabinovitch P.S. Telomere length in the colon declines with age: A relation to colorectal cancer? Cancer Epidemiol. Biomarkers Prev. 2006 15 3 573 577 10.1158/1055‑9965.EPI‑05‑0542 16537718
    [Google Scholar]
  95. Grady W.M. Carethers J.M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008 135 4 1079 1099 10.1053/j.gastro.2008.07.076 18773902
    [Google Scholar]
  96. Wang J. Song Y.X. Ma B. Wang J.J. Sun J.X. Chen X.W. Zhao J.H. Yang Y.C. Wang Z.N. Regulatory roles of non-coding RNAs in colorectal cancer. Int. J. Mol. Sci. 2015 16 8 19886 19919 10.3390/ijms160819886 26307974
    [Google Scholar]
  97. Khan A. Ahmed E. Elareer N. Junejo K. Steinhoff M. Uddin S. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells 2019 8 8 840 10.3390/cells8080840 31530793
    [Google Scholar]
  98. Li Q. Song W. Wang J. TUG1 confers Adriamycin resistance in acute myeloid leukemia by epigenetically suppressing miR-34a expression via EZH2. Biomed. Pharmacother. 2019 109 1793 1801 10.1016/j.biopha.2018.11.003 30551433
    [Google Scholar]
  99. Hong D.S. Kang Y.K. Borad M. Sachdev J. Ejadi S. Lim H.Y. Brenner A.J. Park K. Lee J.L. Kim T.Y. Shin S. Becerra C.R. Falchook G. Stoudemire J. Martin D. Kelnar K. Peltier H. Bonato V. Bader A.G. Smith S. Kim S. O’Neill V. Beg M.S. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020 122 11 1630 1637 10.1038/s41416‑020‑0802‑1 32238921
    [Google Scholar]
  100. Redruello-Guerrero P. Córdoba-Peláez P. Láinez-Ramos-Bossini A.J. Rivera-Izquierdo M. Mesas C. Ortiz R. Prados J. Perazzoli G. Liposomal Doxorubicin in vitro and in vivo assays in non-small cell lung cancer: A systematic review. Curr. Drug Deliv. 2024 21 10 1346 1361 10.2174/0115672018272162231116093143 38099532
    [Google Scholar]
  101. Malayaperumal S. Sriramulu S. Banerjee A. Makalakshmi M.K. Pathak S. Is biotechnological next-generation therapeutics promising enough in clinical development to treat advanced colon cancer? Curr. Pharm. Biotechnol. 2021 22 10 1287 1301 10.2174/1389201021666201126142716 33243115
    [Google Scholar]
  102. Tolcher A.W. Papadopoulos K.P. Patnaik A. Rasco D.W. Martinez D. Wood D.L. Fielman B. Sharma M. Janisch L.A. Brown B.D. Bhargava P. Ratain M.J. Safety and activity of DCR-MYC, a first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors. J. Clin. Oncol. 2015 33 15_suppl Suppl. 11006 11006 10.1200/jco.2015.33.15_suppl.11006
    [Google Scholar]
  103. Bazhenova L. Mamdani H. Chiappori A. Spira A. Iams W. Tolcher A. Barve M. Gabayan A. Vandross A. Cina C. Cohen-Arazi Y. Albaugh Z. Huynh A. Gullbo J. Zabludoff S. Abstract CT040: First-in-human dose-expansion study of NBF-006, a novel investigational siRNA targeting GSTP, in patients with KRAS-mutated non-small cell lung cancer. Cancer Res. 2024 84 7_Supplement Suppl. CT040 CT040 10.1158/1538‑7445.AM2024‑CT040
    [Google Scholar]
  104. Schultheis B. Strumberg D. Santel A. Vank C. Gebhardt F. Keil O. Lange C. Giese K. Kaufmann J. Khan M. Drevs J. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol. 2014 32 36 4141 4148 10.1200/JCO.2013.55.0376 25403217
    [Google Scholar]
  105. Sarfi M. Abbastabar M. Khalili E. Long noncoding RNAs biomarker‐based cancer assessment. J. Cell. Physiol. 2019 234 10 16971 16986 10.1002/jcp.28417 30835829
    [Google Scholar]
  106. Beylerli O. Gareev I. Sufianov A. Ilyasova T. Guang Y. Long noncoding RNAs as promising biomarkers in cancer. Noncoding RNA Res. 2022 7 2 66 70 10.1016/j.ncrna.2022.02.004 35310927
    [Google Scholar]
  107. Yamada A. Yu P. Lin W. Okugawa Y. Boland C.R. Goel A. A RNA-Sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci. Rep. 2018 8 1 575 10.1038/s41598‑017‑18407‑6 29330370
    [Google Scholar]
  108. Sharma G.G. Okada Y. Von Hoff D. Goel A. Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin. Cancer Biol. 2021 75 153 168 10.1016/j.semcancer.2020.10.001 33049362
    [Google Scholar]
  109. Sablin M.P. Dreyer C. Colichi C. Bouattour M. Faivre S. [Targeted therapies in colorectal cancer]. Rev. Prat. 2010 60 8 1094 1099 [Targeted therapies in colorectal cancer]. 21197741
    [Google Scholar]
  110. Zhao B. Wang L. Qiu H. Zhang M. Sun L. Peng P. Yu Q. Yuan X. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 2017 8 3 3980 4000 10.18632/oncotarget.14012 28002810
    [Google Scholar]
  111. Dienstmann R. Salazar R. Tabernero J. Overcoming resistance to anti-EGFR therapy in colorectal cancer. Am. Soc. Clin. Oncol. Educ. Book 2015 35 e149 e156 10.14694/EdBook_AM.2015.35.e149 25993166
    [Google Scholar]
  112. Misale S. Di Nicolantonio F. Sartore-Bianchi A. Siena S. Bardelli A. Resistance to anti-EGFR therapy in colorectal cancer: From heterogeneity to convergent evolution. Cancer Discov. 2014 4 11 1269 1280 10.1158/2159‑8290.CD‑14‑0462 25293556
    [Google Scholar]
  113. Zhou J. Ji Q. Li Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: Underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res. 2021 40 1 328 10.1186/s13046‑021‑02130‑2 34663410
    [Google Scholar]
  114. Li Q.H. Wang Y.Z. Tu J. Liu C.W. Yuan Y.J. Lin R. He W.L. Cai S.R. He Y.L. Ye J.N. Anti-EGFR therapy in metastatic colorectal cancer: Mechanisms and potential regimens of drug resistance. Gastroenterol. Rep. (Oxf.) 2020 8 3 179 191 10.1093/gastro/goaa026 32665850
    [Google Scholar]
  115. Yadav S. Srivastava S. Singh G. Platelet‐rich plasma exhibits anti‐inflammatory effect and attenuates cardiomyocyte damage by reducing NF‐κB and enhancing VEGF expression in isoproterenol induced cardiotoxicity model. Environ. Toxicol. 2022 37 4 936 953 10.1002/tox.23456 35014750
    [Google Scholar]
  116. Saif W. Anti-VEGF agents in metastatic colorectal cancer (mCRC): Are they all alike? Cancer Manag. Res. 2013 5 Jun 103 115 10.2147/CMAR.S45193 23807861
    [Google Scholar]
  117. Teng L. He Cui Jin Li Wang The effect of anti-VEGF drugs (bevacizumab and aflibercept) on the survival of patients with metastatic colorectal cancer (mCRC). Onco Targets Ther. 2012 Apr 59 10.2147/OTT.S29719
    [Google Scholar]
  118. Hirano H. Takashima A. Hamaguchi T. Shida D. Kanemitsu Y. Colorectal Cancer Study Group (CCSG) of the Japan Clinical Oncology Group (JCOG) Current status and perspectives of immune checkpoint inhibitors for colorectal cancer. Jpn. J. Clin. Oncol. 2021 51 1 10 19 10.1093/jjco/hyaa200 33205813
    [Google Scholar]
  119. Mulet-Margalef N. Linares J. Badia-Ramentol J. Jimeno M. Sanz Monte C. Manzano Mozo J.L. Calon A. Challenges and therapeutic opportunities in the dMMR/MSI-H colorectal cancer landscape. Cancers 2023 15 4 1022 10.3390/cancers15041022 36831367
    [Google Scholar]
  120. Morse M.A. Hochster H. Benson A. Perspectives on treatment of metastatic colorectal cancer with immune checkpoint inhibitor therapy. Oncologist 2020 25 1 33 45 10.1634/theoncologist.2019‑0176 31383813
    [Google Scholar]
  121. Gorzo A. Galos D. Volovat S.R. Lungulescu C.V. Burz C. Sur D. Landscape of immunotherapy options for colorectal cancer: Current knowledge and future perspectives beyond immune checkpoint blockade. Life 2022 12 2 229 10.3390/life12020229 35207516
    [Google Scholar]
  122. Suwaidan A.A. Lau D.K. Chau I. HER2 targeted therapy in colorectal cancer: New horizons. Cancer Treat. Rev. 2022 105 102363 10.1016/j.ctrv.2022.102363 35228040
    [Google Scholar]
  123. DeStefanis R.A. Kratz J.D. Emmerich P.B. Deming D.A. Targeted therapy in metastatic colorectal cancer: Current standards and novel agents in review. Curr. Colorectal Cancer Rep. 2019 15 2 61 69 10.1007/s11888‑019‑00430‑6 31130830
    [Google Scholar]
  124. Ros J. Saoudi N. Baraibar I. Salva F. Tabernero J. Elez E. Encorafenib plus cetuximab for the treatment of BRAF-V600E mutated metastatic colorectal cancer. Therap. Adv. Gastroenterol. 2022 15 17562848221110644 10.1177/17562848221110644 35812780
    [Google Scholar]
  125. Cao Y. Langer R. Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug Discov. 2023 22 6 476 495 10.1038/s41573‑023‑00671‑z 37041221
    [Google Scholar]
  126. Tsamis I. Gomatou G. Chachali S.P. Trontzas I.P. Patriarcheas V. Panagiotou E. Kotteas E. BRAF/MEK inhibition in NSCLC: Mechanisms of resistance and how to overcome it. Clin. Transl. Oncol. 2022 25 1 10 20 10.1007/s12094‑022‑02849‑0 35729451
    [Google Scholar]
  127. Wu X. Huang S. He W. Song M. Emerging insights into mechanisms of trastuzumab resistance in HER2-positive cancers. Int. Immunopharmacol. 2023 122 110602 10.1016/j.intimp.2023.110602 37437432
    [Google Scholar]
  128. Papadatos-Pastos D. Rabbie R. Ross P. Sarker D. The role of the PI3K pathway in colorectal cancer. Crit. Rev. Oncol. Hematol. 2015 94 1 18 30 10.1016/j.critrevonc.2014.12.006 25591826
    [Google Scholar]
  129. Voutsadakis I.A. The landscape of PIK3CA mutations in colorectal cancer. Clin. Colorectal Cancer 2021 20 3 201 215 10.1016/j.clcc.2021.02.003 33744168
    [Google Scholar]
  130. Ligresti G. Militello L. Steelman L.S. Cavallaro A. Basile F. Nicoletti F. Stivala F. McCubrey J.A. Libra M. PIK3CA mutations in human solid tumors: Role in sensitivity to various therapeutic approaches. Cell Cycle 2009 8 9 1352 1358 10.4161/cc.8.9.8255 19305151
    [Google Scholar]
  131. Curigliano G. Shah R.R. Safety and tolerability of Phosphatidylinositol-3-Kinase (PI3K) inhibitors in oncology. Drug Saf. 2019 42 2 247 262 10.1007/s40264‑018‑0778‑4 30649751
    [Google Scholar]
  132. Pietrantonio F. Oddo D. Gloghini A. Valtorta E. Berenato R. Barault L. Caporale M. Busico A. Morano F. Gualeni A.V. Alessi A. Siravegna G. Perrone F. Di Bartolomeo M. Bardelli A. de Braud F. Di Nicolantonio F. MET-driven resistance to dual EGFR and BRAF blockade may be overcome by switching from EGFR to MET inhibition in BRAF mutated colorectal cancer. Cancer Discov. 2016 6 9 963 971 10.1158/2159‑8290.CD‑16‑0297 27325282
    [Google Scholar]
  133. Tuynman J.B. Vermeulen L. Boon E.M. Kemper K. Zwinderman A.H. Peppelenbosch M.P. Richel D.J. Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res. 2008 68 4 1213 1220 10.1158/0008‑5472.CAN‑07‑5172 18281498
    [Google Scholar]
  134. Safaie Qamsari E. Safaei Ghaderi S. Zarei B. Dorostkar R. Bagheri S. Jadidi-Niaragh F. Somi M.H. Yousefi M. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol. 2017 39 5 10.1177/1010428317699118 28459362
    [Google Scholar]
  135. Takahashi S. Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biol. Pharm. Bull. 2011 34 12 1785 1788 10.1248/bpb.34.1785 22130231
    [Google Scholar]
  136. Harari P.M. Epidermal growth factor receptor inhibition strategies in oncology. Endocr. Relat. Cancer 2004 11 4 689 708 10.1677/erc.1.00600 15613446
    [Google Scholar]
  137. Zhu Z. Targeted cancer therapies based on antibodies directed against epidermal growth factor receptor: Status and perspectives. Acta Pharmacol. Sin. 2007 28 9 1476 1493 10.1111/j.1745‑7254.2007.00681.x 17723181
    [Google Scholar]
  138. Ketzer S. Schimmel K. Koopman M. Guchelaar H.J. Clinical pharmacokinetics and pharmacodynamics of the epidermal growth factor receptor inhibitor panitumumab in the treatment of colorectal cancer. Clin. Pharmacokinet. 2018 57 4 455 473 10.1007/s40262‑017‑0590‑9 28853050
    [Google Scholar]
  139. Falcon B.L. Chintharlapalli S. Uhlik M.T. Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol. Ther. 2016 164 204 225 10.1016/j.pharmthera.2016.06.001 27288725
    [Google Scholar]
  140. Suzuki N. Ito M. Takechi T. Discovery and development of trifluridine/Tipiracil (<scp>Lonsurf TM</scp>). Successful Drug Discovery. Wiley 2018 417 441 10.1002/9783527808694.ch15
    [Google Scholar]
  141. Constantinidou A. Alifieris C. Trafalis D.T. Targeting programmed cell death -1 (PD-1) and Ligand (PD-L1): A new era in cancer active immunotherapy. Pharmacol. Ther. 2019 194 84 106 10.1016/j.pharmthera.2018.09.008 30268773
    [Google Scholar]
  142. Momtaz P. Postow M.A. Immunologic checkpoints in cancer therapy: Focus on the programmed death-1 (PD-1) receptor pathway. Pharm. Genomics Pers. Med. 2014 7 Nov 357 365 25484597
    [Google Scholar]
  143. Ivashko I.N. Kolesar J.M. Pembrolizumab and nivolumab: PD-1 inhibitors for advanced melanoma. Am. J. Health Syst. Pharm. 2016 73 4 193 201 10.2146/ajhp140768 26843495
    [Google Scholar]
  144. Huijberts S.C.F.A. van Geel R.M.J.M. Bernards R. Beijnen J.H. Steeghs N. Encorafenib, binimetinib and cetuximab combined therapy for patients with BRAFV600E mutant metastatic colorectal cancer. Future Oncol. 2020 16 6 161 173 10.2217/fon‑2019‑0748 32027186
    [Google Scholar]
  145. Zhang R. Su C. Jia Y. Xing M. Jin S. Zong H. Molecular mechanisms of HER2-targeted therapy and strategies to overcome the drug resistance in colorectal cancer. Biomed. Pharmacother. 2024 179 117363 10.1016/j.biopha.2024.117363 39236476
    [Google Scholar]
  146. Zhai Z. Yu X. Yang B. Zhang Y. Zhang L. Li X. Sun H. Colorectal cancer heterogeneity and targeted therapy: Clinical implications, challenges and solutions for treatment resistance. Semin. Cell Dev. Biol. 2017 64 107 115 10.1016/j.semcdb.2016.08.033 27578007
    [Google Scholar]
  147. El Bali M. Bakkach J. Bennani Mechita M. Colorectal cancer: From genetic landscape to targeted therapy. J. Oncol. 2021 2021 1 17 10.1155/2021/9918116 34326875
    [Google Scholar]
  148. Shin A.E. Giancotti F.G. Rustgi A.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol. Sci. 2023 44 4 222 236 10.1016/j.tips.2023.01.003 36828759
    [Google Scholar]
  149. Dazio G. Epistolio S. Frattini M. Saletti P. Recent and future strategies to overcome resistance to targeted therapies and immunotherapies in metastatic colorectal cancer. J. Clin. Med. 2022 11 24 7523 10.3390/jcm11247523 36556139
    [Google Scholar]
  150. Jeong W.J. Cha P.H. Choi K.Y. Strategies to overcome resistance to epidermal growth factor receptor monoclonal antibody therapy in metastatic colorectal cancer. World J. Gastroenterol. 2014 20 29 9862 9871 10.3748/wjg.v20.i29.9862 25110417
    [Google Scholar]
  151. Fong W. To K.K.W. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell. Mol. Life Sci. 2019 76 17 3383 3406 10.1007/s00018‑019‑03134‑0 31087119
    [Google Scholar]
  152. Cao J-X. Lu Y. Qi J-J. An G-S. Mao Z-B. Jia H-T. Li S-Y. Ni J-H. MiR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells. Cell Death Dis. 2014 5 9 e1426 e1426 10.1038/cddis.2014.386 25255219
    [Google Scholar]
  153. Mohapatra S.S. Batra S.K. Bharadwaj S. Bouvet M. Cosman B. Goel A. Jogunoori W. Kelley M.J. Mishra L. Mishra B. Mohapatra S. Patel B. Pisegna J.R. Raufman J.P. Rao S. Roy H. Scheuner M. Singh S. Vidyarthi G. White J. Precision medicine for CRC patients in the veteran population: State-of-the-art, challenges and research directions. Dig. Dis. Sci. 2018 63 5 1123 1138 10.1007/s10620‑018‑5000‑0 29572615
    [Google Scholar]
  154. Di Nicolantonio F. Vitiello P.P. Marsoni S. Siena S. Tabernero J. Trusolino L. Bernards R. Bardelli A. Precision oncology in metastatic colorectal cancer: From biology to medicine. Nat. Rev. Clin. Oncol. 2021 18 8 506 525 10.1038/s41571‑021‑00495‑z 33864051
    [Google Scholar]
  155. Saleh R.O. Al-Ouqaili M.T.S. Ali E. Alhajlah S. Kareem A.H. Shakir M.N. Alasheqi M.Q. Mustafa Y.F. Alawadi A. Alsaalamy A. lncRNA-microRNA axis in cancer drug resistance: Particular focus on signaling pathways. Med. Oncol. 2024 41 2 52 10.1007/s12032‑023‑02263‑8 38195957
    [Google Scholar]
  156. Korngiebel D.M. Thummel K.E. Burke W. Implementing precision medicine: The ethical challenges. Trends Pharmacol. Sci. 2017 38 1 8 14 10.1016/j.tips.2016.11.007 27939182
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096338273241224061021
Loading
/content/journals/ccdt/10.2174/0115680096338273241224061021
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Molecular profiling ; biomarkers ; genomic ; signalling pathway ; clinical trials
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test